
SLAM Handbook

From Localization and Mapping to Spatial Intelligence

Edited by

Luca Carlone, Ayoung Kim, Frank Dellaert,

Timothy Barfoot, and Daniel Cremers

IMPORTANT NOTE ON RELEASE:

© Cambridge University Press. No reproduction of any part may take place

without the written permission of Cambridge University Press.

Authored by

Henrik Andreasson Arash Asgharivaskasi Nikolay Atanasov
Timothy Barfoot Jens Behley Jose Luis Blanco-Claraco
Martin Büchner Cesar Cadena Marco Camurri
Luca Carlone Yun Chang Boris Chidlovskii
Margarita Chli Henrik Christensen Javier Civera
Daniel Cremers Andrew J. Davison Frank Dellaert

Jia Deng Gamini Dissanayake Kevin Doherty
Jakob Engel Maurice Fallon Guillermo Gallego

Cédric Le Gentil Christoffer Heckman Javier Hidalgo-Carrió
Connor Holmes Guoquan Huang Shoudong Huang
Nathan Hughes Krishna Murthy Jatavallabhula Michael Kaess
Kasra Khosoussi Ayoung Kim Giseop Kim
John Leonard Stefan Leutenegger Dominic Maggio

Martin Magnusson Joshua Mangelson Hidenobu Matsuki
Matias Mattamala José M Mart́ınez Montiel Sacha Morin
Mustafa Mukadam Jose Neira Paul Newman
Helen Oleynikova Lionel Ott Liam Paull
Marc Pollefeys Victor Reijgwart Jerome Revaud
David Rosen Davide Scaramuzza Lukas Schmid
Jingnan Shi Cyrill Stachniss Niko Sunderhauf

Juan D. Tardós Zachary Teed Abhinav Valada
Teresa Vidal-Calleja Chen Wang Felix Wimbauer

Heng Yang Fu Zhang Ji Zhang
Shibo Zhao

Contents

Notation page 1

PART ONE FOUNDATIONS OF SLAM 3

I Prelude 5

I.1 What is SLAM? 5

I.2 Anatomy of a Modern SLAM System 7

I.3 The Role of SLAM in the Autonomy Architecture 11

I.3.1 Do we really need SLAM for robotics? 12

I.4 Past, Present, and Future of SLAM, and Scope of this Handbook 15

I.4.1 Short History and Scope of this Handbook 15

I.4.2 From SLAM to Spatial AI 18

I.5 Handbook Structure 19

1 Factor Graphs for SLAM 21

1.1 Visualizing SLAM With Factor Graphs 22

1.1.1 A Toy Example 22

1.1.2 A Factor-Graph View 23

1.1.3 Factor Graphs as a Language 25

1.2 From MAP Inference to Least Squares 26

1.2.1 Factor Graphs for MAP Inference 27

1.2.2 Specifying Probability Densities 28

1.2.3 Nonlinear Least Squares 30

1.3 Solving Linear Least Squares 30

1.3.1 Linearization 31

1.3.2 SLAM as Least-Squares 32

1.3.3 Matrix Factorization for Least-Squares 32

1.4 Nonlinear Optimization 34

1.4.1 Steepest Descent 34

1.4.2 Gauss-Newton 35

1.4.3 Levenberg-Marquardt 35

iv Contents

1.4.4 Dogleg Minimization 36

1.5 Factor Graphs and Sparsity 37

1.5.1 The Sparse Jacobian and its Factor Graph 37

1.5.2 The Sparse Information Matrix and its Graph 38

1.5.3 Sparse Factorization 39

1.6 Elimination 40

1.6.1 Variable Elimination Algorithm 40

1.6.2 Linear-Gaussian Elimination 42

1.6.3 Sparse Cholesky Factor as a Bayes Net 45

1.7 Incremental SLAM 47

1.7.1 The Bayes Tree 48

1.7.2 Updating the Bayes Tree 50

1.7.3 Incremental Smoothing and Mapping 51

2 Advanced State Variable Representations 54

2.1 Optimization on Manifolds 54

2.1.1 Rotations and Poses 55

2.1.2 Matrix Lie Groups 56

2.1.3 Lie Group Optimization 57

2.1.4 Uncertainty and Lie Groups 59

2.1.5 Lie Group Extras 60

2.2 Continuous-Time Trajectories 62

2.2.1 Splines 63

2.2.2 From Parametric to Nonparametric 64

2.2.3 Gaussian Processes 66

2.2.4 Spline and GPs on Lie Groups 68

3 Robustness to Incorrect Data

Association and Outliers 74

3.1 What Causes Outliers and Why Are They a Problem? 74

3.1.1 Data Association and Outliers 74

3.1.2 Least-Squares in the Presence of Outliers 76

3.2 Detecting and Rejecting Outliers in the SLAM Front-end 77

3.2.1 RANdom SAmple Consensus (RANSAC) 77

3.2.2 Graph-theoretic Outlier Rejection and

Pairwise Consistency Maximization 80

3.3 Increasing Robustness to Outliers in the SLAM Back-end 84

3.3.1 Iteratively Reweighted Least Squares 88

3.3.2 Black-Rangarajan Duality 89

3.3.3 Alternating Minimization 91

3.3.4 Graduated Non-Convexity 92

3.4 Further References and New Trends 97

Contents v

4 Differentiable Optimization 100

4.1 Introduction 100

4.1.1 Recap on Nonlinear Least Squares 101

4.2 Differentiation Through Nonlinear Least Squares 102

4.2.1 Unrolled Differentiation 103

4.2.2 Truncated Unrolled Differentiation 105

4.2.3 Implicit Differentiation 106

4.3 Differentiation on Manifold 108

4.3.1 Derivatives on the Lie Group 108

4.3.2 Differentiation Operations on Manifold 110

4.4 Modern Libraries 112

4.4.1 Numerical Challenges of Automatic Differentiation 112

4.4.2 Implementation of Differentiable Optimization 114

4.4.3 Related Open-source Libraries 115

4.5 Final Considerations & Recent Trends 117

5 Dense Map Representations 118

5.1 Range Sensing Preliminaries 118

5.1.1 Sensor Measurement Model 119

5.1.2 Conversion to Point Cloud 120

5.2 Foundations of Mapping 121

5.2.1 Occupancy Maps 122

5.2.2 Distance Fields 123

5.2.3 Occupancy Maps or Distance Fields? 125

5.3 Map Representations 125

5.3.1 Explicitness of Target Spatial Structures 125

5.3.2 Types of Spatial Abstractions 126

5.3.3 Data Structures and Storage 131

5.4 Constructing Maps: Methods and Practices 134

5.4.1 Points 134

5.4.2 Surfels 135

5.4.3 Meshes 135

5.4.4 Voxels 136

5.4.5 GPs 140

5.4.6 Hilbert Maps 142

5.4.7 Deep Learning in Mapping 143

5.5 Usage Considerations 143

5.5.1 Environmental Aspects 144

5.5.2 Downstream Task Types 145

5.5.3 Summary of Mapping Methods 146

6 Certifiably Optimal Solvers and Theoretical Properties of SLAM 148

6.1 Certifiably Optimal Solvers for SLAM 149

vi Contents

6.1.1 Shor’s Relaxation 150

6.1.2 SE-Sync: Certifiably Correct Pose Graph Optimization 152

6.1.3 Landmark-based SLAM 163

6.1.4 Extensions: Range Measurements,

Anisotropic Noise, and Outliers 165

6.2 How Accurate is the Optimal Solution of a SLAM Problem? 171

6.2.1 Cramér-Rao Lower Bound and the Fisher Information

Matrix 172

6.2.2 Fisher Information Matrix and Graph Laplacian 173

6.3 New Trends 176

PART TWO SLAM IN PRACTICE 179

II Prelude 181

II.1 Structure of SLAM Framework 181

II.1.1 Odometry 182

II.1.2 Loop-closure 182

II.1.3 Priors and Unary Factors 183

II.2 Sensors in a Factor Graph 183

II.2.1 Selecting the Right Sensor for Your Application 184

II.2.2 Sensor Fusion 185

II.2.3 Calibration and Synchronization of Sensors 186

II.3 Evaluation 187

II.4 How to Read this Part? 187

7 Visual SLAM 189

7.1 Historic Background and Terminology 189

7.1.1 From Photogrammetry to Bundle Adjustment and

Visual SLAM 189

7.1.2 Terminology 190

7.2 Visual SLAM Fundamentals 191

7.2.1 Camera Model 191

7.2.2 Keypoints 194

7.2.3 Reprojection Error 199

7.2.4 Keypoint-Based Visual SLAM 200

7.2.5 Photometric Error and Direct Methods 202

7.2.6 Visual Place Recognition and Global Localization 202

7.2.7 Initialization 202

7.2.8 Common Steps 203

7.2.9 Map Representations 203

7.3 The Processing Pipeline of a Visual SLAM System 203

7.3.1 Visual Odometry Front-End 203

Contents vii

7.3.2 Mapping Back-End 204

7.3.3 Visual Place Recognition and Relocalization 204

7.3.4 Compute and Data Flow 204

7.3.5 Keypoint-based Image Alignment 205

7.3.6 Direct Image Alignment 207

7.3.7 Solving BA 209

7.3.8 Examples of Full Visual SLAM Systems 211

7.4 Realtime Dense Reconstruction 212

7.5 SLAM with Depth-sensing Cameras 213

7.6 Combining Vision with Other Modalities 215

7.6.1 Inertial Measurement Units (IMU) 215

7.6.2 GPS and WiFi for Global Localization 217

7.7 Bundle Adjustment Revisited 218

7.8 Recent Developments 218

8 LiDAR SLAM 220

8.1 LiDAR Sensing Preliminary and Categorization 220

8.2 LiDAR Odometry 223

8.2.1 Foundations of Scan Registration 223

8.2.2 Common Components for LiDAR Odometry 226

8.2.3 Summary 231

8.3 LiDAR Place Recognition 232

8.3.1 Problem Definition 233

8.3.2 Methods for LiDAR Place Recognition 234

8.3.3 Summary 236

8.4 LiDAR SLAM 236

8.4.1 Structure of a LiDAR SLAM System 238

8.4.2 Pose-graph Optimization and Map Update 239

8.4.3 Multi-robot and Multi-session LiDAR SLAM 240

8.5 Outlook and Futures Challenges 244

9 Radar SLAM 246

9.1 Introduction to Radar 246

9.1.1 Sensor Types 246

9.1.2 Radar Sensing Principles 248

9.1.3 Challenges to Radar Applications 254

9.1.4 Radar Filtering 255

9.2 Radar Odometry 257

9.2.1 Doppler Odometry 258

9.2.2 Direct Odometry 261

9.2.3 Feature-based Odometry 261

9.2.4 Registration-based Odometry 262

9.2.5 Motion Compensation 264

viii Contents

9.3 Radar Place Recognition 264

9.3.1 Unique Challenges in Radar Place Recognition 265

9.3.2 Learning-based Radar PR 266

9.3.3 Descriptor-based Radar PR 267

9.4 Radar SLAM 268

9.4.1 Map Representations 269

9.4.2 Radar SLAM 270

9.4.3 Multi-modality in Radar SLAM 273

9.5 Radar Datasets 275

9.6 Outlook and challenges 276

10 Event-based SLAM 278

10.1 Sensor Description 278

10.1.1 Working principle 278

10.1.2 Advantages of Event Cameras 280

10.1.3 Current Devices and Trends. 281

10.2 Challenges and Applications 282

10.3 Methodology Overview 283

10.4 Front-end 285

10.4.1 Pre-processing. Event Representations 285

10.4.2 Indirect Methods 286

10.4.3 Direct Methods 287

10.4.4 Model-based and Learning-based Methods 288

10.5 Back-end 288

10.6 State-of-the-Art Systems 289

10.7 Datasets, Simulators, and Benchmarks 291

10.7.1 Simulators 291

10.7.2 Datasets and Benchmarks 293

10.7.3 Metrics 297

10.8 Outlook 298

11 Inertial Odometry for SLAM 299

11.1 Basics of Inertial Sensing and Navigation 299

11.1.1 Sensing Principles and Measurement Models 300

11.1.2 Initial Alignment 301

11.2 IMU Preintegration and Factor Graphs 302

11.2.1 Motion Integration 303

11.2.2 IMU Preintegration on Manifold 305

11.2.3 Advanced Preintegration Techniques 311

11.3 Observability of Aided Inertial Navigation 314

11.3.1 Linearized Measurement Models 315

11.3.2 Observability Analysis 318

11.3.3 Degenerate Motions 320

Contents ix

11.4 Visual-Inertial Odometry and Practical Considerations 320

11.4.1 Visual-Inertial Odometry 321

11.4.2 Extrinsic Calibration 324

11.4.3 Temporal Synchronization 324

11.5 New trends 325

12 Leg Odometry for SLAM 327

12.1 Introduction 327

12.1.1 Historical Background 328

12.1.2 Reference Frames 329

12.1.3 State Definition 330

12.1.4 Legged Robot Kinematics 330

12.1.5 Legged Robot Dynamics 332

12.1.6 Joint Sensing 333

12.2 Motion Estimation 336

12.2.1 Relative Pose Estimation 336

12.2.2 Velocity Estimation 338

12.3 Contact Estimation 339

12.3.1 With Contact Sensors 340

12.3.2 With Force/Torque Sensors 340

12.3.3 With IMUs 341

12.3.4 From Joint Torque Sensing 341

12.4 Leg Odometry for Estimation Problems 342

12.4.1 Encoder Noise Propagation 342

12.4.2 Factor Graph Smoothing 343

12.4.3 Integration with Exteroceptive Sensors for SLAM 346

12.5 Open Challenges 347

12.5.1 Leg Deformation 347

12.5.2 Non-rigid Contacts and Slippage 348

12.6 New Trends and Paradigm Shifts 349

12.6.1 Learning-based Contact Estimation 349

12.6.2 End-to-End Learning 349

12.6.3 Humanoid Robots 350

PART THREE FROM SLAM TO SPATIAL AI 353

II Prelude 355

13 Boosting SLAM with Deep Learning 356

13.1 Introduction 356

13.2 Deep Learning for Depth and Camera Pose 358

13.2.1 Deep Learning for Depth Prediction 358

13.2.2 Deep Learning for Camera Pose Prediction 360

x Contents

13.2.3 Unsupervised Learning of Depth and Camera Pose 361

13.3 Deep Learning for Feature Matching and Optical Flow 363

13.3.1 Learning Feature Detectors and Descriptors 364

13.3.2 Feature Matching 365

13.3.3 Optical Flow and RAFT 365

13.3.4 Optical Flow as Visual Measurements 368

13.3.5 Estimating Pose and Depth from Optical Flow 368

13.4 Differentiable Bundle Adjustment and DROID-SLAM 369

13.4.1 DROID-SLAM Architecture 370

13.4.2 DROID-SLAM Inference 372

13.4.3 Generalizing to Other Modalities 373

13.4.4 Deep Patch Visual Odometry (DPVO) 374

13.5 DuSt3R 376

13.5.1 A Network for Generalized Stereo Reconstruction 378

13.5.2 Regression Loss and Confidence-Aware Loss 379

13.5.3 Downstream Applications 380

13.5.4 Global Alignment 381

13.6 MASt3R 382

13.6.1 Matching Head 382

13.6.2 Matching Objective 382

13.7 Extending MASt3R to SfM and SLAM 383

13.7.1 MASt3R-SfM 383

13.7.2 MUSt3R 383

13.7.3 MASt3R-SLAM 384

14 Map Representations with Differentiable Volume Rendering 386

14.1 Introduction 387

14.1.1 Learnable 3D Representations 387

14.1.2 Differentiable Rendering 388

14.1.3 3D Scene Representation with Differentiable Rendering 388

14.2 Neural Radiance Fields (NeRF) 390

14.2.1 Method Overview 391

14.2.2 Data Structures in NeRF 392

14.2.3 Neural Fields 392

14.2.4 NeRF/Neural Fields for Visual SLAM 395

14.3 3D Gaussian Splatting 397

14.3.1 Method Overview 398

14.3.2 Applications of 3D Gaussian Splatting 399

14.3.3 3D Gaussian Splatting for SLAM 401

14.4 Challenges and Future Directions 404

14.5 Conclusion 405

Contents xi

15 Dynamic and Deformable SLAM 406

15.1 Characterizing the Dynamic SLAM Problem 407

15.1.1 Characterizing Dynamics 408

15.1.2 Terminology 409

15.1.3 Degrees of Dynamism 410

15.1.4 State Estimation vs. Scene Representation 411

15.1.5 Online vs. Offline Methods 411

15.2 Dynamic SLAM 412

15.2.1 Dynamic Object Removal 413

15.2.2 Dynamic Object Tracking 415

15.2.3 Dense Dynamic SLAM 417

15.3 Long-term and Changing SLAM 421

15.3.1 Lifelong SLAM 422

15.3.2 Map Cleaning and Change Detection 424

15.3.3 Change-aware SLAM 430

15.3.4 Temporal Scene Understanding 433

15.4 Deformable SLAM 434

15.4.1 NRSfM vs. Deformable SLAM 435

15.4.2 Deformable SLAM with Depth Information 437

15.4.3 Pipeline for Deformable SLAM using Monocular

Cameras 438

15.4.4 Initialization and Map Extension 439

15.5 Summary, Challenges, and Future Directions 440

16 Metric-Semantic SLAM 442

16.1 From Traditional SLAM to Metric-Semantic SLAM 443

16.2 Sparse Metric-Semantic Representations 444

16.2.1 Object Representation and Factor Graph Modeling 444

16.2.2 Hybrid Solvers for Sparse Metric-Semantic SLAM 455

16.3 Dense Metric-Semantic Representations 459

16.3.1 Point-based and Surfel-based Metric-Semantic SLAM 459

16.3.2 Voxel-based Metric-Semantic SLAM 460

16.3.3 Mesh-based Metric-Semantic SLAM 466

16.4 Hierarchical Metric-Semantic Representations and 3D Scene

Graphs 470

16.4.1 Hierarchical Representations and Symbol Grounding 470

16.4.2 3D Scene Graphs 473

16.5 New Trends 475

17 Towards Open-World Spatial AI 477

17.1 Introduction 478

17.1.1 A Brief History of Foundation Models 478

17.1.2 Nomenclature and Scope 481

xii Contents

17.2 Foundation Models for Spatial AI 482

17.2.1 Feature-Based Foundation Models 483

17.2.2 Generative Foundation Models 485

17.2.3 Class-Agnostic Image Segmentation 486

17.3 Open-World Mapping 486

17.3.1 Dense Representations 487

17.3.2 Object Maps and 3D Scene Graphs 491

17.3.3 Implicit Functions 497

17.3.4 Task-Driven Applications of Foundational Models 499

17.4 Future Trends 501

17.4.1 Grounding Foundation Models with Maps 501

17.4.2 Revisiting the Question of the Need for Maps 502

17.4.3 A Foundation Model for Robotics? 503

17.4.4 Concluding Remarks 507

18 The Computational Structure of Spatial AI Systems 508

18.1 From SLAM to Spatial AI 508

18.1.1 Intelligent Embodied Devices Need Spatial AI 508

18.1.2 Scene Representation and World Models 509

18.1.3 SLAM is Evolving into Spatial AI 511

18.2 Overall Computational Structure 512

18.3 State Estimation and Machine Learning in Spatial AI 513

18.4 The Future Landscape of Processor and Sensor Hardware 515

18.4.1 Processors 515

18.4.2 Sensors 518

18.5 Mapping Spatial AI Graphs to Hardware 519

18.5.1 World Model Processing 520

18.5.2 Real-Time Loop 523

18.5.3 Processing Close to the Image Plane 525

18.6 Convergent Distributed Computation

with Gaussian Belief Propagation 527

18.7 Continual Learning within Factor Graphs 529

18.8 Performance Metrics 532

18.9 Conclusions 534

Notes 535

References 536

Author index 629

Subject index 630

Notation

– General Notation –

a This font is used for real scalars

a This font is used for real column vectors

A This font is used for real matrices

X This font is used for sets

I The identity matrix

0 The zero matrix

AT The transpose of matrix A

RM×N The vector space of real M ×N matrices

p(a) The probability density of a

p(a|b) The probability density of a given b

N (µ,Σ) Gaussian probability density with mean µ and covariance Σ

GP(µ(t),K(t, t′)) Gaussian process with mean function, µ(t), and covariance function, K(t, t′)

(̂·) A posterior (estimated) quantity

(̌·) A prior quantity

(·)k The value of a quantity at timestep k

(·)k1:k2
The set of values of a quantity from timestep k1 to timestep k2, inclusive

∥·∥1 L1 norm ∥x∥1 =
∑ |xi|

∥·∥2 L2 norm ∥x∥2 =
√∑

x2i

2 Notation

– 3D Geometry Notation –

Fa A reference frame in three dimensions

va The coordinates of a vector in frame Fa

Rb
a A 3× 3 rotation matrix (member of SO(3)) that takes points expressed in Fa and

re-expresses them in (purely rotated) Fb: vb = Rb
av

a

tba The three-dimensional position of the origin of frame Fa expressed in Fb

ṽa =

[
va

1

]
A 4× 1 homogeneous point expressed in Fa

T b
a =

[
Rb

a tba
0 1

]
A 4 × 4 transformation matrix (member of SE(3)) that takes homogeneous points

expressed in Fa and re-expresses them in (rotated and translated) Fb: ṽb = T b
a ṽ

a

SO(3) The special orthogonal group, a matrix Lie group used to represent rotations

so(3) The Lie algebra associated with SO(3)

SE(3) The special Euclidean group, a matrix Lie group used to represent poses

se(3) The Lie algebra associated with SE(3)

(·)∧ An operator mapping a vector in R3 (resp. R6) to an element of the Lie algebra for

rotations (resp. poses); implements the cross product for three-dimensional quanti-

ties, i.e., for two vectors u,v ∈ R3, u∧v = u× v
(·)∨ An operator mapping an element of the Lie algebra for rotations (resp. poses) to a

vector in R3 (resp. R6)

PART ONE

FOUNDATIONS OF SLAM

I

Prelude
Luca Carlone, Ayoung Kim, Frank Dellaert, Timothy Barfoot, and Daniel

Cremers

This chapter introduces the Simultaneous Localization and Mapping (SLAM) prob-

lem, presents the modules that form a typical SLAM system, and explains the role

of SLAM in the architecture of an autonomous system. The chapter also provides

a short historical perspective of the topic and discusses how the traditional notion

of SLAM is evolving to fully leverage new technological trends and opportunities.

The ultimate goal of the chapter is to introduce basic terminology and motivations,

and to describe the scope and structure of this handbook.

I.1 What is SLAM?

A necessary prerequisite for a robot to operate safely and effectively in an unknown

environment is to form an internal representation of its surroundings. These type of

representations can be used to support obstacle avoidance, low-level control, plan-

ning, and, more generally, the decision-making processes required for the robot to

complete the task it has been assigned. The execution of simple tasks (e.g., fol-

lowing a lane, or maintaining a certain distance to an object in front of the robot)

may only require tracking entities of interest in the sensor data streams, and com-

plex tasks (e.g., large-scale navigation or mobile manipulation) require building and

maintaining a persistent representation (a map) of the environment. Such a map

describes the presence of obstacles, objects, and other entities of interest, and their

relative location with respect to the robot’s pose (position and orientation). For in-

stance, the map might be used instruct the robot to reach a location of interest, to

grasp a certain object, or to support the exploration of an initially unknown envir-

onment. Figure I.1 provides some real-world examples of simultaneous localization

and mapping (SLAM) in action.

For a robot operating in an initially unknown environment, the problem of build-

ing a map of the environment, while concurrently estimating its pose with respect

to that map, is referred to as Simultaneous Localization and Mapping (SLAM).

SLAM reduces to localization if the map is given, in which case the robot only has

to estimate its pose with respect to the map. On the other hand, SLAM reduces to

mapping if the pose of the robot is already known, for instance when an absolute

6 Prelude

Drone Mapping As-Built Construction via Visual SLAM
(credit: Skydio)

Self-Driving Car Navigating with High-Definition Map Created by SLAM
(credit: Cruise)

Floor-Cleaning Robot Using SLAM to Navigate
(credit: Robot Vacuum Company)

Legged Robot Using SLAM to Map a Building
(credit: Boston Dynamics)

EFM3D: A Benchmark for Measuring Progress
Towards 3D Egocentric Foundation Models

Julian Straubω, Daniel DeToneωω, Tianwei Shenωω, Nan Yangωω,
Chris Sweeney, Richard Newcombe

Meta Reality Labs Research

Abstract. The advent of wearable computers enables a new source of
context for AI that is embedded in egocentric sensor data. This new ego-
centric data comes equipped with fine-grained 3D location information
and thus presents the opportunity for a novel class of spatial founda-
tion models that are rooted in 3D space. To measure progress on what
we term Egocentric Foundation Models (EFMs) we establish EFM3D,
a benchmark with two core 3D egocentric perception tasks. EFM3D
is the first benchmark for 3D object detection and surface regression
on high quality annotated egocentric data of Project Aria. We propose
Egocentric Voxel Lifting (EVL), a baseline for 3D EFMs. EVL leverages
all available egocentric modalities and inherits foundational capabilities
from 2D foundation models. This model, trained on a large simulated
dataset, outperforms existing methods on the EFM3D benchmark.

3D
Egocentric
Foundation

Model

Multi-Camera Video

Semi-dense Points

Camera Trajectory

Surfaces

Objects

Fig. 1: 3D Egocentric Foundation Models leverage spatial priors from egocentric data
to power core 3D tasks such as 3D object detection and reconstruction.

1 Introduction

Foundation models trained on Internet-scale text, image and video datasets
have demonstrated the potential in using large-scale self-supervised learning ap-
proaches to build backbones that are useful for numerous downstream tasks,
ω Project lead.

ωω Equal contribution in alphabetic order.

ar
X

iv
:2

40
6.

10
22

4v
1

 [
cs

.C
V

]
 1

4
Ju

n
20

24

Wearable Devices Using SLAM to Build Augmented Reality Scenes
(credit: Meta Reality Labs)

Warehouse Robot Using Visual SLAM to Navigate
(credit: Canon Inc.)

similar algorithm could possibly largely remove the remaining
errors. Using the method as an initial step to correct the trajectory
for the larger positional and angular errors is beneficial as iterative
closest point algorithm is prone to settling for local minima instead
of finding the correct transformation. By starting from an opti-
mized solution close to the correct one the chances for finding con-
verging fine-tune corrections to the trajectory locally using ICP are
expected to greatly improve.

7. Conclusions

We have developed a process pipeline for MLS data from boreal
forests to correct trajectory data for errors induced by obstructed
GNSS signal under mature boreal forest canopy and report results
achieved using the method. The experiments were conducted on
data from ATV mounted RoamerR2 MLS system, which allows for
efficient collection of 3D tree inventory data from the ground.
The point cloud data was obtained with cross-track vertical laser
scanning and post-processed GNSS-IMU positioning. We present
the processing pipeline and report optimization results for the data
from three test plots of nominal size 64 m by 64 m, and analyze the
results against tree location reference derived from TLS data geo-
referenced to spherical landmarks with known locations on each
plot.

The results show that the method could vastly improve the
quality of the produced optimized point cloud. The internal consis-
tency of tree stem locations is reduced to millimeter level in terms
of distance residual standard deviation: for plot A 0.008 m, for B
0.007 m and C 0.005 m. The methods ability in providing correc-
tion in absolute coordinates is found slightly weaker, but this is
of secondary importance from individual tree modeling point of
view. There were no absolute landmarks used to constraint the
optimization from locational drifting, and the results show that
with the larger the initial drift the larger the remaining absolute
positional offset may be expected.

The attained level of correction in the internal accuracy of the
point cloud enables us to use all of the non noise measured points
when extracting individual tree inventory parameters, such as

diameter-at-breast-height and tree height. The improved point
cloud data permit stem curve modeling of individual trees unam-
biguously. We could also expect more accurate object level match-
ing to be successful after running the optimization method on
forest MLS data as the ambiguity in pairing adjacent tree stems
is significantly reduced.

The applied feature detection is less accurate in constraining
the elevation direction than what is achieved in the planar domain.
For correcting the elevation the features in use also require us to
trade-off some of the performance for planar corrections as use
of them causes a large part of the constraints to be disabled during
the optimization. Use of additional features, such as ground
batches and horizontal structures, which could better tie the cor-
rection for error in elevation to the optimization pipeline, is a
straightforward task and should enable us to remove the remain-
ing major errors in the near future.

By incorporating a separate set of features to correct for the ele-
vation drift, the tree features currently used could be reserved for
only constraining the horizontal drift of the trajectory. This would
decrease the number of disabled constraints and enable us to cap-
italize most of the detected stem features in making the optimiza-
tion more accurate. A ground detection algorithm better suited to
handle raw data with considerable elevation errors and below-
ground patterned noise within relatively short periods of time is
needed.

The proposed method is based on sparse features and graph
optimization, and is tested on MLS data on forestry application
with supposedly the most challenging GNSS signal loss conditions.
However, the method could be also used in any general MLS case,
e.g. for correcting urban and road asset point cloud data as similar
pole features are abundant in those environments. Additional fea-
tures, such as building and other structural corners, provide robust
constraints for trajectory optimization in built and industrial envi-
ronments that often pose a challenge for the GNSS based position-
ing. Thus the proposed method is seen to provide an important
asset for a diversity of MLS data applications.

The phase-shift ranging scanner mounted on RoamerR2 and
used in the experiments for this paper generate noise in dense veg-

Fig. 7. Optimized point cloud for the forest plot B shows the accurately matched tree stems ready for further stem modeling and inventory work.

208 A. Kukko et al. / ISPRS Journal of Photogrammetry and Remote Sensing 132 (2017) 199–209

UIMU-LCI) is seen below the scanner and is connected to the GNSS
receiver (NovAtel Flexpak6) observing Navstar GPS and GLONASS
constellation satellites.

The sensor head is elevated to about 2 m above the ground
using a GlobalTruss segment mounted on the rear rack of the
ATV. The scanner has a 50 degree blind angle beneath (See
Fig. 4). The collected laser measurements are stored on 32 GB SDHC
(10) card on the scanner and positioning data is stored using a
tablet computer (Panasonic Toughpad FZ-G1, Windows 8, 8 GB
RAM, 1 TB SSD). The laser scanner sends TTL level timing signal
to the SPAN system event logger for mutual synchronization
(3.3 V TTL pulse for start of each scan). The scanner measures pre-
cise ranges up to 100 m by measuring the phase difference of the
emitted amplitude modulated beam and the scattered returning
signal. Such ranging principle has its shortcomings in vegetation
and as a result the point observations from the tree stems through
dense canopy is somewhat reduced. Also partial hits on thin
branches and no-return sky generate measurement noise that
needs to be removed prior to further data processing.

3.3. Point cloud data acquisition

The experimental data comprises three boreal forest test areas
(A, B, and C) that were capturedwith the RoamerR2 system in Octo-
ber 2014 as a part of an extensive data collection campaign to cover
all the forest study plots in the Evo research forests. TheMLS trajec-
tory snakes through the plots to cover all the trees from multiple
directions and to collect complete terrain data (as seen in Fig. 7).
Table 1 gives some plot and data collection characteristics showing
the average data collection speed to be about 1 m/s. The scanner
scan frequency was set to 95 Hz and point measurement speed to

488 kHz, while 5 Hz satellite and 200 Hz IMU observations were
recorded with the positioning system. Thus the profile spacing in
the point cloud data was ca. 1 cm and the angular resolution
1.2 mrad (0.07!). The scan data was split into file blocks of 3000
profiles in each at the data collection to permit batch processing
for the data preparation phase. Fig. 2 represents an illustration of
the point cloud data for dataset B colored by the point elevation.
The yellow circles in the figure are 50 m in diameter and are used
as data buffer around the actual 32 m by 32 m field plots shown
in white squares.

4. A method for trajectory optimization

4.1. Outline of the method

The proposed processing pipeline is shown in full in Fig. 3. The
steps are from data collection, georeferencing, ground classifica-
tion and other preparations for the raw point cloud data to trunk
detection, trunk feature association, generating the graph repre-
sentation of the features and the trajectory, optimization and
finally georeferencing of the point cloud using the optimized tra-
jectory. The following sections describe in detail the steps taken
to reach the final optimization result.

4.2. Pre-processing of the MLS data

The initial trajectories (position and attitude) of theMLS system at
each site were calculated from the GNSS-IMU data with Inertial
Explorer (NovAtel Inc., Canada)post-processing software. Base station
data for differential correction of theGNSS-IMUdatawas downloaded
from virtual data service (Trimnet, Geotrim, Finland). The recorded
laser measurements were then georeferenced based on the time syn-
chronization and trajectory data using proprietary Matlab tool.

Next the georeferenced point clouds were processed with
TerraScan (TerraSolid, Finland) to remove measurement noise
and to extract the ground points. Points with intensity value less
than 1000 (full range 11 bits, 0–2047) were removed from the fur-
ther processing as experience has shown that these data points are
mostly noise. Points from dark objects are also typically worse in
ranging quality compared to higher reflectance surfaces. Next, iso-
lated points, a result of failed ranging, were removed using two-
step filtering requiring each point to have at least one neighbor clo-
ser than 10 cm to remove single noise points, and after that clus-
tered noise patterns were removed by demanding at least 30
points to be found within a 1 m point neighborhood.

Ground classification was based on triangulation method
implemented into TerraScan (Axelsson, 2000) with parameters
set to 65! maximum terrain slope, 20! iteration angle, and 20 cm
iteration distance. The seed points for the ground classification
were the lowest points within 5 m radius from the original noise
filtered point clouds.

To enable easy finding of tree stems, a horizontal slice of the
point cloud following the terrain elevation with a constant offset
from the ground is extracted. The assumption here was to have
slices from the trees to constrain the horizontal drift, but also to
provide ability to tie the elevation uncertainty as the slices are rel-
ative to the instantaneous local ground eliminating the effect of
drift. Fig. 4 shows an example of the outcome of the pre-
processing step for a single data block.

4.3. Stem extraction

The horizontal slice of the point cloud at a constant offset from
the ground is used as an input for the graph optimization pipeline,
which is built with the help of the Point Cloud Library (PCL) (Rusu

Fig. 1. RoamerR2 mounted on the rear rack of the ATV. The scanner provides with
cross-track data collection up to 100 m range and the GNSS-IMU system observes
the system trajectory and orientation for kinematic mapping of the surroundings
into a 3D point cloud.

A. Kukko et al. / ISPRS Journal of Photogrammetry and Remote Sensing 132 (2017) 199–209 201

Lidar SLAM Used in the Forestry Industry to Inventory Trees
(credit: Kukko et al. (2017))

Figure I.1 SLAM is rapidly becoming an enabling technology in a wide array of appli-
cations including warehouse robotics, forest inventories [621], floor-cleaning, self-driving
cars, drones surveillance, legged-robot mapping, and augmented reality to name only a
few.

positioning system is used (e.g., differential GPS or motion capture), in which case

the robot only needs to model its surroundings using its sensor data.

The central role of SLAM in robotics research is due to the fact that robot poses

are rarely known in practical applications. Differential GPS and motion capture

systems are expensive and restricted to small areas, hence being unsuitable for large-

scale robot deployments. Consumer-grade GPS is much more broadly available, but

its accuracy (with errors typically in the order of meters) and its availability (which

is limited to outdoor areas with line-of-sight to satellites) often makes it unsuitable

as a source of localization; the consumer-grade GPS —when available— is typically

used as an additional source of information for SLAM, rather than a replacement

for the localization aspects of SLAM.

Similarly, in many robotics applications, the robot will not typically have access

I.2 Anatomy of a Modern SLAM System 7

to a prior map, hence it needs to perform SLAM rather than localization. Indeed,

in certain applications, building a map is actually the goal of the robot deployment;

for instance, when robots are used to support disaster response and search-and-

rescue operations, they might be deployed to construct a map of the disaster site

to help first-responders. In other cases, the map might be stale or not have enough

detail. For instance, a domestic robot might have access to the floor plan of the

apartment it has to operate in, but such a floor plan may not describe the furniture

and objects actually present in the environment, nor the fact that these elements

can be rearranged from day to day. In a similar manner, Mars exploration rovers

have access to low-resolution satellite maps of the Martian surface, but they still

need to perform local mapping to guide obstacle avoidance and motion planning.

The importance of the SLAM problem motivates the large amount of attention

this topic has received, both within the research community and from practitioners

interested in using SLAM technologies across multiple application domains from

robotics, to virtual and augmented reality. At the same time, SLAM remains an

exciting area of research, with many open problems and new opportunities.

I.2 Anatomy of a Modern SLAM System

The ultimate goal of SLAM is to infer a map representation and robot poses (i.e.,

trajectory) from sensor data, including data from proprioceptive sensors (e.g., wheel

odometry or inertial measurement unit, IMU) and exteroceptive sensors (e.g., cam-

eras, light detection and ranging (LiDAR)s, radars). In mathematical terms this

can be understood as an inverse problem: given a set of measurements, determine

a model of the world (the map) and a set of robot poses (trajectory) that could

have produced those measurements. There exist two alternative strategies to solve

the SLAM problem: indirect and direct methods.

The vast majority of SLAM methods prefers pre-processing the raw sensory data

in order to extract “intermediate representations” that are compact and easier to

describe mathematically. Instead of using every pixel in an image, these methods

extract a few distinctive 2D point features (or keypoints) and then only model the

geometry of how these keypoints depend on the pose of the camera and the geometry

of the scene. In contrast, rather than computing an intermediate abstraction, direct

methods aim to compute localization and mapping directly from the raw sensory

data. This categorization is prominent in visual SLAM but is not limited to it as

we will see in Chapter 8 and Chapter 9. Both indirect and direct methods have

their advantages and shortcomings.

Indirect methods are often faster and more memory efficient. Rather than pro-

cessing every single pixel of each camera image, for example, they merely process a

small subset of keypoints for which the 3D location is determined. As a consequence,

real-time capable systems for indirect visual SLAM were already available around

the year 2000. To date, indirect methods are the preferred approach for real-time

8 Prelude

robot vision on platforms with limited compute. Moreover, once the intermediate

representation is determined, the subsequent computations are often mathemati-

cally simpler, making the resulting inference problems more tractable. In the case

of visual SLAM, for example, once a set of corresponding points is identified across

a set of images, the resulting problem of localization and mapping amounts to the

classical bundle adjustment problem for which a multitude of powerful solvers and

approximation methods exist.

In turn, direct methods have the potential to provide superior accuracy because

they make use of all available input information. While the processing of all avail-

able input information (for example all pixels in each image) is computationally

cumbersome and capturing the complex relationship between the quantities of in-

terest (localization and mapping) and the raw input data (e.g. the brightness of

each pixel) may create additional non-convexities in the overall loss function, there

exist efficient approximation and inference strategies with first real-time capable

methods for direct visual SLAM emerging in the 2010s. As we will see in Part II

and III, the efficient processing of huge amounts of input data can be facilitated by

using graphics processing units (GPUs) to parallelize computations.

In both direct and indirect methods the measurements are used to infer the robot

pose and map representation. There is a well-established literature in estimation

theory describing how we can infer quantities of interest (in our case, the robot

poses and the surrounding map) from observations. This book particularly focuses

on estimation theoretic tools —reviewed and tailored to the SLAM problem in

Chapter 1 and Chapter 2— that have their foundations in probabilistic inference

and that rephrase estimation in terms of solving optimization problems.

sensor processing
(feature extraction,
IMU preintegration,

downsampling)

estimated
pose,
map

raw
measure-

ments

place recognition
(topological loop-
closure detection)

front-end back-end
pseudo-
measure-

ments

geometric SLAM
(based on factor graph

optimization)

map
constraints

Figure I.2 The anatomy of a typical SLAM is made up of a front-end (to process rich
sensing data into more manageable information and to detect topological loop closures)
and a back-end (to estimate the robot’s pose and a geometric map). The back-end often has
a number of helper modules aimed at helping with robustness, computational tractability,
and map quality.

I.2 Anatomy of a Modern SLAM System 9

Indirect methods produce a natural split in common SLAM architectures (Figure

I.2): the raw sensor data is first passed to a set of algorithms (the SLAM front-

end) in charge of extracting intermediate representations; then such intermediate

representations are passed to an estimator (the SLAM back-end), that estimates the

quantities of interest. The front-end is typically also in charge of building an initial

guess: this is an initial estimate the back-end can use for iterative optimization,

hence mitigating convergence issues due to non-convexity. Let us discuss a few

examples to clarify the difference between the SLAM front-end and back-end.

Figure I.3 (a) In landmark-based SLAM models, the front-end produces measurements
to 3D landmarks and the back-end estimates the robot trajectory (as a set of poses) and
landmark positions. (b) In pose-graph-based SLAM models, the front-end abstracts the
raw sensor measurements in terms of odometry and loop closure measurements (these
are typically relative pose measurements) and the back-end estimates the overall robot
trajectory.

Example I.1 (Visual SLAM: from pixels to landmarks) Visual SLAM uses cam-

era images to estimate the robot trajectory and a sparse 3D point cloud map. The

typical front-end of a visual SLAM system extracts 2D keypoints and matches them

across frames such that each group (a feature track) corresponds to re-observations

of the same 3D point (a landmark) across different camera views. The front-end will

also compute rough estimates of the camera poses and 3D landmark positions by

using computer vision techniques known as minimal solvers.1 Then, the back-end

is in charge of estimating (or refining) the unknown 3D position of the landmarks

and the robot poses observing them by solving an optimization problem, known

as bundle adjustment. This example leads to a landmark-based (of feature-based)

SLAM model, visualized in Figure I.3(a). We will discuss visual SLAM at length in

Chapter 7.

Example I.2 (Lidar SLAM: from scans to odometry and loop closures) Lidar

1 A more subtle point is that minimal solvers will also allow pruning away a large portion of outliers,
i.e., incorrect detections of a landmark. This makes the job of the back-end easier, while still
allowing it to remove any remaining outlier. We discuss outlier rejection and the related problem of
data association in Chapter 3.

10 Prelude

SLAM uses lidar scans to estimate the robot trajectory and a map. A common

front-end for lidar SLAM consists in using scan matching algorithms (e.g., the

Iterative Closest Point or ICP) to compute the relative pose between two lidar scans.

In particular, the front-end will match scans taken at consecutive time instants to

estimate the relative motion of the robot between them (the so called odometry) and

will also match scans corresponding to multiple visits to the same place (the so called

loop closures). Odometry and loop closure measurements are then passed to the

back-end that optimizes the robot trajectory by solving an optimization problem,

known as pose-graph optimization. This example leads to a pose-graph-based SLAM

model, visualized in Figure I.3(b). We discuss LiDAR SLAM in Chapter 8.

The previous examples showcase three popular examples of “intermediate rep-

resentations” (or pseudo-measurements) that are produced by the front-end and

passed to the back-end (Figure I.2): landmark observations, odometry, and loop

closures. In complex SLAM systems, these representations can be used in combi-

nation: for instance, in certain visual-SLAM systems one might extract keypoints

corresponding to 3D landmarks, and further process them to compute relative poses

corresponding to odometry and loop-closures, and finally use a pose-graph-based

back-end. The choice of the front-end/back-end split is about selecting a desired

trade-off between computation and accuracy. Extracting simpler representations

might lead to much faster back-end solvers (e.g., performing pose-graph optimiza-

tion is typically much faster than doing bundle adjustment); but at the same time

abstracting measurements induces approximation in how the measurements are

modeled in the back-end, hence leading to small inaccuracies (e.g., bundle adjust-

ment is typically more accurate than pose-graph optimization).

We remark that loop closures are a key aspect of SLAM. If we only use odom-

etry for trajectory estimation, the resulting estimate —obtained by accumulating

odometry motion estimates— is bound to drift over time, leading to severe distor-

sion in the trajectory estimate. Revisiting already visited places is crucial to keep

the trajectory estimation error bounded and obtain globally consistent maps. We

also remark that loop closures are implicitly captured in landmark-based SLAM,

where loop closures correspond to new observations of previously seen landmarks.

We conclude this section by observing how SLAM research cuts across multi-

ple disciplines. The SLAM front-end extracts features from raw sensor data, hence

touching disciplines ranging from signal processing, geometry, 2D computer vision,

and machine learning. The SLAM back-end performs estimation given measure-

ments from the front-end, hence touching estimation theory, optimization, and ap-

plied mathematics. This variety of ideas and influences contribute to making SLAM

a fascinating and multi-faceted problem.

I.3 The Role of SLAM in the Autonomy Architecture 11

control
inputsmotion

planning
motion

controller

system:
robot and

environment

SLAM
front-end:
odometry

SLAM
front-end:

loop closures

SLAM
back-end

motion
goal

motion
plan

sensor
data

SLAM

map and
robot state

error

odometry

-+

Figure I.4 SLAM plays an important role in the overall autonomy pipeline of a robot
that interacts with the world, and provides necessary information for control and motion
planning.

I.3 The Role of SLAM in the Autonomy Architecture

The role of SLAM is to serve downstream tasks. For instance, the robot pose es-

timate can be used to control the robot to follow a desired trajectory, while the

map (in combination with the current robot pose) can be used for motion planning

(Figure I.4). Here motion planning is used in a broad sense: while SLAM is typi-

cally used to build large-scale maps to support navigation tasks, it can also support

building local 3D maps to enable manipulation and grasping.

While it would be tempting to think about SLAM as a monolithic system that

takes sensor data in input and instantaneously outputs robot poses and map, the

actual implementation of these systems and their integration in autonomy archi-

tectures is more complicated in practice. This is due to the fact that the robot

needs to close different control and decision-making loops with different latency re-

quirements. For instance, with reference to Figure I.4, the robot will need to close

low-level control loops over its trajectory (this is the standard feedback control

loop at the top-right of the figure), which might require relatively high rates and

low-latency to be stable; for instance, a UAV flying at high speed might need the

front-end to produce odometry estimates with a latency of a few milliseconds. On

the other hand, closing the loop over motion planning (the outer loop in Figure I.4)

can accommodate higher latencies, since global planning typically runs at lower

rates; hence it might be acceptable for the back-end to provide global trajectory

and map estimates with a latency of seconds. For these reasons, a typical imple-

mentation of a SLAM system involves multiple processes running in parallel and in

a way that slower processes (e.g., global pose and map optimization in the back-

end) do not get in the way of faster processes (e.g., odometry estimation). We also

12 Prelude

observe that the processes involved in a SLAM system have complex interactions

(as emphasized by the bi-directional edges in Figure I.4): for instance, while the

front-end feeds the odometry to the back-end, the back-end periodically applies

global corrections to the odometric trajectory, which is then passed to the motion

controller; similarly, while the front-end computes loop closures that are fed to the

back-end, the back-end can also inform loop closure detection about plausible or

implausible loop closure opportunities.

The problem of visual SLAM is closely related to the problem of Structure from

Motion (SfM). While for some researchers both terms are equivalent, others distin-

guish and argue that visual SLAM systems will typically also integrate additional

sensory information (IMUs, wheel odometry, etc) and focus on an online approach

where data comes in sequentially whereas in SfM both online and offline versions

are conceivable and the input is only images.

Overall, one can distinguish two complementary challenges: There is the online

challenge, where a robot moves around, where sensory data streams in sequentially

and while the SLAM back-end might run at a slower pace, vital estimates such

as the localization of the robot must be determined in real-time, often even on

embedded hardware with limited compute. These realtime constraints are vital for

the robot to properly act in a complex environment, in particular with faster robots

such as drones. They often dictate the choice of algorithms and processing steps.

And there is the offline challenge where the input data may not exhibit any

sequential ordering (say an unordered dataset of images), where computations typ-

ically do not require real-time performance and where the compute hardware can

be (arbitrarily) large (multiple powerful GPUs), see for example [20]. In such cases,

accuracy of the estimated map and trajectories is more important than compute

time.

In most applications, however, one will face a mix of these two extreme sce-

narios where certain quantities need to be determined fast whereas others can be

determined offline. In practical applications of SLAM it is of utmost importance to

carefully analyze which quantities need to be determined at which frequency and

one may come up with an entire hierarchy of different temporal scales at which

quantities are being estimated.

I.3.1 Do we really need SLAM for robotics?

From our description above, SLAM feels like an intriguing but very challenging

problem, ranging from its complex implementation, to the need of fast runtime

on resource-constrained platforms. Therefore, a fair question to ask is whether we

can develop complex autonomous robots that do not rely on SLAM. We refine this

question into three sub-questions.

Q1. Do we need SLAM for any robotics task? We started this section

stating that SLAM is designed to support robotics tasks. Then a natural question is

I.3 The Role of SLAM in the Autonomy Architecture 13

whether it is necessary for any robotics task. The answer is clearly: no. More reactive

tasks, for instance keeping a target in sight can be solved with simpler control

strategies (e.g., visual servoing).2 Similarly, if the robot has to operate over small

distances, relying on odometry estimates and local mapping might be acceptable.

Moreover, if the environment the robot operates in has some infrastructure for

localization, then we may not need to solve SLAM. Nevertheless, SLAM seems

an indispensable component for long-term robot operation in unstructured (i.e.,

infrastructure-free) environments: long-term operation typically requires memory

(e.g., to go back to previously seen objects or find suitable collision-free paths),

and map representations built from SLAM provide such a long-term memory.

Meeting room
Closet

Kitchen

Office 2

Office 1 Office 3 Office 1

Office 3

Office 2

Kitchen
(a)

(b)

(c) (d)

Meeting
room

Corridor

Office 3Office 1

Office 2

Kitchen

Closet

Office 2

Kitchen

Corridor

Office 1

Figure I.5 (a) Our robot visits Office 1 in a building and then —after exploring other
areas (including Office 2 and the Kitchen)— it visits Office 3, which is just next door from
Office 1. Obstacles are shown in black and ground truth trajectory is shown in green. (b)
Odometric estimate of the trajectory, labeled with corresponding room labels. (c) Ground
truth topological map of the environment. (d) Estimated topological map in the presence
of perceptual aliasing, causing the robot to think that Office 1 and 3 are the same room.

Q2. Do we need globally consistent geometric maps for navigation? A

major focus in SLAM is to optimize the trajectory and map representations such

that they are metrically accurate (or globally consistent) – this is precisely the role

of the SLAM back-end. One might ask whether metric accuracy is actually needed.

One alternative that comes to mind is to just use odometry to get locally consis-

tent trajectory and map estimates; this circumvents the need for loop closures and

2 One could argue that while not being strictly necessary for tracking, SLAM and odometry might
still be helpful to increase its robustness, e.g., when the target gets out of sight.

14 Prelude

back-end optimization. Unfortunately, due to its drift, odometry is unsuitable to

support long-term operation: imagine that our robot visits Office 1 in a building

and then, after exploring other areas of the building it visits Office 3, which is just

next door from Office 1 (see Figure I.5(a)). Using just odometry, the robot might

be misled to conclude that Office 1 and Office 3 are quite far from each other (due

to the odometry drift), hence being unable to realize there is a short path connect-

ing the two offices (Figure I.5(b)). A slightly more sophisticated alternative is to

build a topological map instead. A topological map can be thought of as a graph

where nodes are places the robot visited and edges represent traversability between

the places connected by each edge (Figure I.5(c)). The difference with the metric

SLAM lens we adopt in this handbook is that nodes and edges in a topological map

do not carry metric information (distances, bearing, positions), hence they do not

require any optimization: one can simply add edges to a topological map when the

robot traveled between two places (odometry) or when a place recognition module

recognizes the places to overlap (loop closures). While this seems a perfectly reason-

able approach, the main issue is that place recognition techniques are not perfect

and, more fundamentally, two different places might look similar (a phenomenon

known as perceptual aliasing). Therefore, going back to our example above, if Office

1 and Office 3 look very similar, a purely topological approach might be misled

to think there is a single office instead (Figure I.5(d)). On the other hand, metric

SLAM approaches can use geometric information to conclude that the two offices

are indeed two different rooms, by giving the user access to a more powerful set of

tools to decide whether place recognition results are correct and if two observations

correspond to the same place; we will discuss these tools at length in Chapter 3.

Q3. Do we need maps? SLAM builds a map that can be directly queried,

inspected, and visualized. As we will see in Chapter 5, there are many ways to rep-

resent a map, including 3D point clouds, voxels, meshes, neural radiance fields, and

others. On the other hand, one might take a completely different approach: in order

for the robot to execute a task, the robot might be trained to translate raw sensor

data directly to actions (e.g., using Reinforcement Learning), hence circumventing

the need to build a map. In such an approach, the neural network trained from

sensor data to actions will arguably create an internal representation, but such an

internal representation cannot be directly queried, inspected, or visualized. While

the jury is still out on whether maps are indeed necessary, there is some initial

evidence that using maps as an intermediate representation is at least beneficial

in completing many visual tasks for robotics [919, 1247]. Moreover, maps have the

benefit of being useful across a wide variety of tasks, while a representation that is

fully learned in the context of a single task might not be able to support new unseen

tasks. Finally, we observe that there are several applications where the goal is to

have a map that can be inspected. This is the case in search-and-rescue robotics ap-

plications where it is desirable to provide a map to help first-responders. Moreover,

it is the case for several applications beyond robotics (e.g., real-estate planning and

I.4 Past, Present, and Future of SLAM, and Scope of this Handbook 15

visualization, construction monitoring, virtual and augmented reality), where the

goal is for a human to inspect or visualize the map.

I.4 Past, Present, and Future of SLAM, and Scope of this Handbook

The design of algorithms for spatial reasoning has been at the center-stage of

robotics and computer vision research since their inception. At the same time,

SLAM research keeps evolving and expanding to novel tools and problems.

I.4.1 Short History and Scope of this Handbook

As discussed across the various chapters of this book, SLAM has multiple facets.

As a consequence, its history is also multi-faceted with origins that can be traced

back across different scientific communities.

Creating maps of the world from observations and measurements is among the

oldest challenges in history and leads to the fields of geodesy (the science measuring

properties of the Earth) and surveying. There are many pioneers who contributed to

this field. Carl Friedrich Gauss triangulated the Kingdom of Hannover in the years

1821-1825. Sir George Everest served as Surveyor General of India 1830-1843 in the

Great Trigonometric Survey, efforts for which he was honored by having the world’s

largest mountain named after him. In 1856, Carl Maximilian von Bauernfeind pub-

lished a standard book on “Elements of Surveying” [67]. He subsequently founded

the Technical University of Munich in 1868 with a central focus on establishing

geodesy as a scientific discipline. André-Louis Cholesky developed the well-known

Cholesky matrix decomposition while surveying Crete and North Africa before the

First World War.

The problem of visual SLAM is also closely related to the field of photogrammetry

and the problems of Structure from Motion in computer vision. Its origins can be

traced back to the 19th century. See Chapter 7.

In robotics, the origin of SLAM is typically traced back to the seminal work of

Smith and Chessman [1024] and Durrant-Whyte [301], as well as the parallel work

by Crowley [241] and Chatila and Laumond [178]. The acronym SLAM was coined

in 1995, as part of the survey paper [302]. These early works developed two funda-

mental insights. The first insight is that to avoid drift in unknown environments,

one needs to simultaneously estimate the robot poses and the position of fixed

external entities (e.g., landmarks). The second insight is that existing tools from

estimation theory, and in particular the celebrated Extended Kalman Filter (EKF),

could be used to perform estimation over an extended state describing the robot

poses and the landmark positions, leading to a family of EKF-SLAM approaches.

EKF-SLAM approaches have been extremely popular but face three main issues

in practice. The first is that they are sensitive to outliers and data association er-

rors. These errors may result from failures of place recognition or object detection,

16 Prelude

Compressed EKF SLAM, Victoria
Park Dataset (credit: J. Guivant / E.

Nebot, 2001)

Rao-Blackwellized Particle Filter
SLAM (credit: G. Grisseti / C.
Stachniss / W. Burgard, 2007)

10 IEEE TRANSACTIONS ON ROBOTICS, MANUSCRIPT SEPTEMBER 7, 2008

(a) Original noisy data set. (b) Trajectory after incremental optimization. (c) Final R factor with side length 10 500.

Fig. 9. iSAM results for the simulated Manhattan world from [21] with 3500 poses and 5598 constraints. iSAM takes about 40ms per step. The resulting
R factor has 187 423 entries, which corresponds to 0.34% or an average of 17.8 entries per column.

(a) Trajectory based on odometry only. (b) Final trajectory and evidence grid map. (c) Final R factor with side length 2730.

Fig. 10. Results from iSAM applied to the Intel dataset. iSAM calculates the full solution for 910 poses and 4453 constraints with an average of 85ms
per step, while reordering the variables every 20 steps. The problem has 910 ⇥ 3 = 2730 variables and 4453 ⇥ 3 = 13 359 measurement equations. The R
factor contains 90 363 entries, which corresponds to 2.42% or 33.1 entries per column.

(a) Trajectory based on odometry only. (b) Final trajectory and evidence grid map. (c) Final R factor with side length 5823.

Fig. 11. iSAM results for the MIT Killian Court dataset. iSAM calculates the full solution for the 1941 poses and 2190 pose constraints with an average
of 12.2ms per step. The R factor contains 52 414 entries for 5823 variables, which corresponds to 0.31% or 9.0 per column.

Incremental Smoothing and Mapping
(iSAM) (credit: M. Kaess / A.

Ranganathan / F. Dellaert, 2008)

10 IEEE TRANSACTIONS ON ROBOTICS, MANUSCRIPT SEPTEMBER 7, 2008

(a) Original noisy data set. (b) Trajectory after incremental optimization. (c) Final R factor with side length 10 500.

Fig. 9. iSAM results for the simulated Manhattan world from [21] with 3500 poses and 5598 constraints. iSAM takes about 40ms per step. The resulting
R factor has 187 423 entries, which corresponds to 0.34% or an average of 17.8 entries per column.

(a) Trajectory based on odometry only. (b) Final trajectory and evidence grid map. (c) Final R factor with side length 2730.

Fig. 10. Results from iSAM applied to the Intel dataset. iSAM calculates the full solution for 910 poses and 4453 constraints with an average of 85ms
per step, while reordering the variables every 20 steps. The problem has 910 ⇥ 3 = 2730 variables and 4453 ⇥ 3 = 13 359 measurement equations. The R
factor contains 90 363 entries, which corresponds to 2.42% or 33.1 entries per column.

(a) Trajectory based on odometry only. (b) Final trajectory and evidence grid map. (c) Final R factor with side length 5823.

Fig. 11. iSAM results for the MIT Killian Court dataset. iSAM calculates the full solution for the 1941 poses and 2190 pose constraints with an average
of 12.2ms per step. The R factor contains 52 414 entries for 5823 variables, which corresponds to 0.31% or 9.0 per column.

10 IEEE TRANSACTIONS ON ROBOTICS, MANUSCRIPT SEPTEMBER 7, 2008

(a) Original noisy data set. (b) Trajectory after incremental optimization. (c) Final R factor with side length 10 500.

Fig. 9. iSAM results for the simulated Manhattan world from [21] with 3500 poses and 5598 constraints. iSAM takes about 40ms per step. The resulting
R factor has 187 423 entries, which corresponds to 0.34% or an average of 17.8 entries per column.

(a) Trajectory based on odometry only. (b) Final trajectory and evidence grid map. (c) Final R factor with side length 2730.

Fig. 10. Results from iSAM applied to the Intel dataset. iSAM calculates the full solution for 910 poses and 4453 constraints with an average of 85ms
per step, while reordering the variables every 20 steps. The problem has 910 ⇥ 3 = 2730 variables and 4453 ⇥ 3 = 13 359 measurement equations. The R
factor contains 90 363 entries, which corresponds to 2.42% or 33.1 entries per column.

(a) Trajectory based on odometry only. (b) Final trajectory and evidence grid map. (c) Final R factor with side length 5823.

Fig. 11. iSAM results for the MIT Killian Court dataset. iSAM calculates the full solution for the 1941 poses and 2190 pose constraints with an average
of 12.2ms per step. The R factor contains 52 414 entries for 5823 variables, which corresponds to 0.31% or 9.0 per column.

a

b

P1

P2

P3

P n-1

Pn

Early Graph SLAM
(F. Lu / E. Milios, 1997)

!"#$%&''&()$*+,-.

3D SLAM in the DARPA SubT
Competition (credit: K. Ebadi et al., 2023)

Large-Scale Direct SLAM
(credit: J.Engel / T. Schöps /

D. Cremers, 2014)

IEEE
TR

A
N

SA
C

TIO
N

S
O

N
R

O
B

O
TIC

S
10

Fig.6.
O

R
B

-SLA
M

reconstruction
of

the
fullsequence

of
N

ew
C

ollege.The
biggerloop

on
the

rightis
traversed

in
opposite

directions
and

notvisualloop
closures

w
ere

found,therefore
they

do
not

perfectly
align.

the
efficient

querying
of

the
database

that
only

com
pare

the
subsetof

im
ages

w
ith

w
ords

in
com

m
on,w

hich
dem

onstrates
the

potential
of

bag
of

w
ords

for
place

recognition.
O

ur
Essential

G
raph

includes
edges

around
5

tim
es

the
num

ber
of

keyfram
es,w

hich
is

a
quite

sparse
graph.

B.
Localization

Accuracy
in

the
TU

M
RG

B-D
Benchm

ark

The
TU

M
R

G
B

-D
benchm

ark
[38]

is
an

excellent
dataset

to
evaluate

the
accuracy

of
cam

era
localization

as
it

provides
several

sequences
w

ith
accurate

ground
truth

obtained
w

ith
an

external
m

otion
capture

system
.

W
e

have
discarded

all
those

sequences
thatw

e
consider

thatare
notsuitable

for
pure

m
onocular

SLA
M

system
s,

as
they

contain
strong

rotations,
no

texture
or

no
m

otion.
For

com
parison

w
e

have
also

executed
the

novel,
direct,

sem
i-dense

LSD
-SLA

M
[10]and

PTA
M

[4]in
the

benchm
ark.

W
e

com
pare

also
w

ith
the

trajectories
generated

by
R

G
B

D
-

SLA
M

[43]
w

hich
are

provided
for

som
e

of
the

sequences
in

the
benchm

ark
w

ebsite.In
order

to
com

pare
O

R
B

-SLA
M

,
LSD

-SLA
M

and
PTA

M
w

ith
the

ground
truth,

w
e

align
the

keyfram
e

trajectories
using

a
sim

ilarity
transform

ation,
as

scale
is

unknow
n,

and
m

easure
the

absolute
trajectory

error
(ATE)

[38].In
the

case
of

R
G

B
D

-SLA
M

w
e

align
the

trajec-
tories

w
ith

a
rigid

body
transform

ation,butalso
a

sim
ilarity

to
check

if
the

scale
w

as
w

ellrecovered.LSD
-SLA

M
initializes

from
random

depth
values

and
takes

tim
e

to
converge,there-

fore
w

e
have

discarded
the

first10
keyfram

es
w

hen
com

paring
w

ith
the

ground
truth.

For
PTA

M
w

e
m

anually
selected

tw
o

fram
es

from
w

hich
w

e
get

a
good

initialization.
Table

III
show

s
the

m
edian

results
over

5
executions

in
each

of
the

16
sequences

selected.
It

can
be

seen
that

O
R

B
-SLA

M
is

able
to

process
all

the
sequences,

except
for

fr3
nostructure

texture
far

(fr3
nstr

tex
far).

This
is

a
planar

scene
that

because
of

the
cam

era
trajectory

w
ith

respect
to

the
plane

has
tw

o
possible

interpretations,
i.e.

the
tw

ofold
am

biguity
described

in
[27].

O
ur

initialization
m

ethod
detects

the
am

biguity
and

for
safety

refuses
to

initialize.
PTA

M
initializes

selecting
som

etim
es

the
true

solution
and

others
the

corrupted
one,

in
w

hich
case

the
error

is
unacceptable.

W
e

have
not

noticed
tw

o
differentreconstructions

from
LSD

-SLA
M

butthe
errorin

this
sequence

is
very

high.In
the

restofthe
sequences,PTA

M
and

LSD
-SLA

M
exhibit

less
robustness

than
our

m
ethod,loosing

track
in

eight
and

three
sequences

respectively.
In

term
s

of
accuracy

O
R

B
-SLA

M
and

PTA
M

are
sim

ilar
in

open
trajectories,

w
hile

O
R

B
-SLA

M
achieves

higher
accuracy

w
hen

detecting
large

loops
as

in
the

sequence
fr3

nostructure
texture

near
w

ithloop
(fr3

nstr
tex

near).
The

m
ost

surprising
results

is
that

both
PTA

M
and

O
R

B
-

SLA
M

are
clearly

m
ore

accurate
than

LSD
-SLA

M
and

R
G

B
D

-SLA
M

.
O

ne
of

the
possible

causes
can

be
that

they
reduce

the
m

ap
optim

ization
to

a
pose-graph

optim
ization

w
ere

sensor
m

easurem
ents

are
discarded,

w
hile

w
e

perform
bundle

adjustm
entand

jointly
optim

ize
cam

eras
and

m
ap

over
sensor

m
easurem

ents,w
hich

is
the

gold
standard

algorithm
to

solve
structure

from
m

otion
[2].W

e
further

discuss
this

result
in

Section
IX

-B
.A

notherinteresting
resultis

thatLSD
-SLA

M
seem

s
to

be
less

robust
to

dynam
ic

objects
than

our
system

as
seen

in
fr2

desk
w

ith
person

and
fr3

w
alking

xyz.
W

e
have

noticed
thatR

G
B

D
-SLA

M
has

a
bias

in
the

scale
in

fr2
sequences,

as
aligning

the
trajectories

w
ith

7
D

oF
significantly

reduces
the

error.Finally
it

should
be

noted
that

Engel
et

al.
[10]

reported
that

PTA
M

has
less

accuracy
than

LSD
-SLA

M
in

fr2
xyz

w
ith

an
R

M
SE

of
24.28cm

.H
ow

ever,
the

paper
does

not
give

enough
details

on
how

those
results

w
ere

obtained,and
w

e
have

been
unable

to
reproduce

them
.

C
.

Relocalization
in

the
TU

M
RG

B-D
Benchm

ark

W
e

perform
tw

o
relocalization

experim
ents

in
the

TU
M

R
G

B
-D

benchm
ark.

In
the

first
experim

ent
w

e
build

a
m

ap
w

ith
the

first30
seconds

of
the

sequence
fr2

xyz
and

perform
globalrelocalization

w
ith

every
successive

fram
e

and
evaluate

the
accuracy

of
the

recovered
poses.

W
e

perform
the

sam
e

experim
ent

w
ith

PTA
M

for
com

parison.
Fig.

7
show

s
the

keyfram
es

used
to

create
the

initial
m

ap,
the

poses
of

the
relocalized

fram
es

and
the

ground
truth

for
those

fram
es.

It
can

be
seen

that
PTA

M
is

only
able

to
relocalize

fram
es

w
hich

are
near

to
the

keyfram
es

due
to

the
little

invariance
of

its
relocalization

m
ethod.

Table
IV

show
s

the
recall

and
the

error
w

ith
respectto

the
ground

truth.O
R

B
-SLA

M
accurately

relocalizes
m

ore
than

the
double

of
fram

es
than

PTA
M

.
In

the
second

experim
ent

w
e

create
an

initial
m

ap
w

ith
se-

quence
fr3

sitting
xyz

and
try

to
relocalize

all
fram

es
from

fr3
w

alking
xyz.

This
is

a
challenging

experim
ent

as
there

are
big

occlusions
due

to
people

m
oving

in
the

scene.
H

ere
PTA

M
finds

no
relocalizations

w
hile

our
system

relocalizes
78%

of
the

fram
es,as

can
be

seen
in

Table
IV

.Fig.8
show

s
som

e
exam

ples
of

challenging
relocalizations

perform
ed

by
our

system
in

these
experim

ents.

D
.

Lifelong
Experim

ent
in

the
TU

M
RG

B-D
Benchm

ark

Previous
relocalization

experim
ents

have
show

n
that

our
system

is
able

to
localize

in
a

m
ap

from
very

different
view

-
points

and
robustly

under
m

oderate
dynam

ic
changes.

This
property

in
conjunction

w
ith

our
keyfram

e
culling

procedure

ORB-SLAM (credit: R. Mur-
Artal, J Montiel, J Tardós, 2015)

…

Figure I.6 The history of SLAM is filled with numerous advances that have led to modern
SLAM systems capable of localizing and mapping robots in challenging real-world envi-
ronments. This image shows a selection of representative highlights.

where the robot believes it is observing a given object or place, but it is actually

observing a different (but possibly similarly looking) one. If these spurious measure-

ments are not properly handled, EKF-SLAM produces grossly incorrect estimates.

The second issue is related to the fact that EKF relies on linearization of the equa-

tions describing the motion of the robot and sensor observations. In practice, the

linearization point is typically built from odometry and when the latter drifts, the

linearized system might be a poor approximation of the original nonlinear system.

This leads EKF-SLAM to diverge when odometry accumulates substantial drift.

The third problem is about computational complexity: a naive implementation of

the Kalman Filter leads to a computational complexity that grows quadratically in

the number of state variables, due to the need to manipulate a dense covariance

matrix. In a landmark-based SLAM problem it is not uncommon to have thousands

of landmark, which makes the naive approach prohibitive to run in real-time.

As a response to these issues, in the early 2000s, the community started focusing

I.4 Past, Present, and Future of SLAM, and Scope of this Handbook 17

on particle-filter-based approaches [777, 1019, 408], which model the robot trajectory

using a set of hypothesis (or particles), building on the theory of particle filtering

in estimation theory.3 When used in combination with landmark-based maps, these

models allowed using a large number of landmarks (breaking through the quadratic

complexity of the EKF); moreover, they allowed to more easily estimate dense map

models, such as 2D occupancy grid maps. Also, these approaches did not rely on

linearization and were less sensitive to outliers and incorrect data association. How-

ever, they still exhibited a trade-off between computation and accuracy: obtaining

accurate trajectories and maps requires using many particles (in the thousands)

but the more particles, the more computation. In particular, for a finite amount

of particles, a particle filter may still diverge when none of the sampled particles

are near the real trajectory of the robot (an issue known as particle depletion);

this issue is exacerbated in 3D problems where one needs many particles to cover

potential robot poses.

Between 2005 and 2015, a key insight pushed to the spotlight an alternative

approach to SLAM. The insight is that while the covariance matrix appearing in

the EKF is dense, its inverse (the so called Information Matrix) is very sparse and

has a very predictable sparsity pattern when past robot poses are retained in the

estimation [321]; this allows designing filtering algorithms that have close-to-linear

complexity, as opposed to the quadratic complexity of the EKF. While this insight

was initially applied to EKF-like approaches, such as EIF, it also paved the way for

optimization-based approaches. Optimization-based approaches were first proposed

in the early days of SLAM [709], but then disregarded as too slow to be practi-

cal. The sparsity structure mentioned above allowed rethinking these optimization

methods and making them more scalable and solvable in online fashion [258, 539].4

This new wave can be interpreted as a shift toward yet another estimation frame-

work: maximum likelihood and maximum a posteriori estimation. These frameworks

rephrase estimation problems in terms of optimization, while describing the struc-

ture of the problem in terms of a probabilistic graphical model, or, specifically, a

factor graph. The resulting factor-graph-based approach to SLAM is still the dom-

inant paradigm today, and has also shaped the way the community thinks about

related problems, such as visual and visual-inertial odometry. The optimization lens

is a powerful one and allows a much deeper theoretical analysis than previously

possible (see Chapter 6). Moreover, it is fairly easy to show that the EKF (with

suitable linearization points) can be understood as a single iteration of a nonlinear

optimization solver, hence making the optimization lens strictly more powerful than

its filtering-based counterpart. Finally, the optimization-based perspective appears

more suitable for recent extensions of SLAM (described in the next section and

3 The resulting algorithms are known with different names in different communities, e.g.,
Sampling/Importance Re-sampling, Monte-Carlo filter Condensation algorithm, Survival of the
fittest algorithm, and others.

4 More details are in Chapter 1.

18 Prelude

Part III of this handbook), where one wants to estimate both continuous variables

(describing the scene geometry) and discrete variables (describing semantic aspects

of the scene).

This short history review stops at 2015, while the goal of Part III of this handbook

is to discuss more modern trends, including those triggered by the “deep learning

revolution”, which started around 2012 and slowly permeated to robotics. We also

remark that the short history above mostly gravitates around what we called the

SLAM back-end (essentially, the estimation engine), while the development of the

SLAM front-end traces back to work done across multiple communities, including

computer vision, signal processing, and machine learning.

As a result of the considerations mentioned above, this handbook will primarily

focus on the factor-graph-based formulation of SLAM. This is a decision about

scope and does not detract from the value of ongoing works using other technical

tools. For instance, at the time of writing of this handbook, EKF-based tools are

still popular for visual-inertial odometry applications (building on the seminal work

from Mourikis and Roumeliotis [783]), and novel estimation formulations have been

developed, including invariant [63] and equivariant filters [339], as well as alternative

formulations based on random finite sets [787].

I.4.2 From SLAM to Spatial AI

SLAM essentially focuses on estimating geometric properties of the environment

(and the robot). For instance, the SLAM map carries information about obstacles

in the environment, distances and traversable paths between two locations, or ge-

ometric coordinates of distinctive landmarks. In this sense, SLAM is useful as a

representation for the robot to understand and execute commands such as “robot:

go to position [x, y, z]”, where [x, y, z] are the coordinates (in the map frame) of a

place or object the robot has to reach. However, specifying goals in terms of coor-

dinates is not suitable for non-expert human users and it is definitely not the way

we interact or specify goals for humans. Therefore, it would be desirable for the

next generation of robots to understand and execute high-level commands speci-

fied in natural language, such as “robot: pick up the clothes in the bathroom, and

take them to the laundry room”. Parsing these instructions requires the robot to

understand both geometry (e.g., where is the bathroom) and semantics (e.g., what

is a bathroom or laundry room, which objects are clothes) of the environment.

This realization has recently pushed the research community to think about

SLAM as an integrated component of a broader spatial perception system, that

simultaneously reasons about geometric, semantic, and possibly physical aspects of

the scene, in order to build a multi-faceted map representation (a “world model”),

that enables the robot to understand and execute complex instructions. The re-

sulting Spatial AI algorithms and systems have the potential to increase robot

autonomy and have rapidly progressed over the last decade. Intuitively, one can

I.5 Handbook Structure 19

control
inputsmotion

planning
motion

controller

system:
robot and

environment

motion
goal

motion
plan

sensor
data

metric-semantic
map and

robot state

error
-+

odometry

task
planning

SLAM
spatial AI

semantic/
high-level

goal

slow
loop

medium
loop

fast
loop

metric
map and

robot state

odometry

Figure I.7 Spatial AI (or spatial perception) extends the geometric reasoning capabilities
of SLAM to also perform semantic and physical reasoning. While the SLAM block is
informed by odometry and provides a geometric understanding of the scene, the Spatial
AI block is informed by the SLAM results and adds a scene understanding component,
spanning semantics, affordances, dynamics, and more. This allows closing the loop over
higher-level decision making modules, such as task planning, and allows the user to specify
higher-level goals the robot has to achieve.

think that Spatial AI has SLAM as a submodule (to handle the geometric reason-

ing part), but provides extra semantic reasoning capabilities. This allows closing

the loop over task planning, as shown in Figure I.7, where now the robot can take

high-level semantic goals instead of coordinates of motion goals. We will discuss

Spatial AI at length in Part III of this handbook.

I.5 Handbook Structure

The chapters of this handbook are grouped into three parts.

Part I covers the foundations of SLAM, with particular focus on the estimation-

theoretic machinery used in the SLAM back-end and the different types of map

representations SLAM can produce. In particular, Chapter 1 introduces the factor-

graph formulation of SLAM and reviews how to solve it via iterative nonlinear

optimization methods. Then, Chapter 2 takes the indispensable step of extending

the formulation to allow the estimation of variables belonging to smooth manifolds,

such as rotation and poses. Chapter 3 discusses how to model and mitigate the

impact of outliers and incorrect data association in the SLAM back-end. Chap-

ter 4 reviews techniques to make the back-end optimization differentiable, a key

step towards interfacing traditional SLAM methods with more recent deep learn-

ing architectures. Chapter 5 shifts the focus from the back-end to the question of

dense map representations and discusses the most important representations used

for SLAM. Finally, Chapter 6 discusses more advanced solvers and theoretical prop-

erties of the SLAM back-end.

Part II covers the “state of practice” in SLAM by discussing key approaches and

20 Prelude

applications of SLAM using different sensing modalities. This part touches on the

SLAM front-end design (which is heavily sensor dependent) and exposes what’s

feasible with modern SLAM algorithms and systems. Chapter 7 reviews the large

body of literature on visual SLAM. Chapter 8 and Chapter 9 cover lidar-SLAM

and radar-SLAM, respectively. Chapter 10 discusses recent work on SLAM using

event-based cameras. Chapter 11 reviews how to model inertial measurements as

part of a factor-graph SLAM system and discusses fundamental limits (e.g., observ-

ability). Chapter 12 discussed how to model other sources of odometry information,

including wheel and legged odometry.

Part III provides a future-looking view of the state of the art and recent trends.

In particular, we touch on a variety of topics, ranging from computational archi-

tectures, to novel problems and representations, to the role of language and Foun-

dation Models in SLAM. In particular, Chapter 13 reviews recent improvements

obtained by introducing deep learning modules in conjunction with differentiable

optimization in SLAM. Chapter 14 discusses opportunities and challenges in using

novel map presentations, including neural radiance fields (NeRFs) and Gaussian

Splatting. Chapter 15 covers recent work on SLAM in highly dynamic and de-

formable environments, touching on real applications from mapping in crowded

environments to surgical robotics. Chapter 16 discusses progress in Spatial AI and

metric-semantic map representations. Chapter 17 considers new opportunities aris-

ing from the use of Foundation Models (e.g., Large Vision-Language Models) and

their role in creating novel map representation for Spatial AI that allow under-

standing and grounding “open-vocabulary” commands given in natural language.

Finally, Chapter 18 focuses on future computational architectures for Spatial AI

that could leverage more flexible and distributed computing hardware and better

support spatial perception across many robotic platforms.

1

Factor Graphs for SLAM
Frank Dellaert, Michael Kaess, and Timothy Barfoot

In this chapter we introduce factor graphs and establish the connection with maxi-

mum a posteriori (MAP) inference and least-squares for the case of Gaussian priors

and Gaussian measurement noise. We focus on the SLAM back-end, after mea-

surements have been extracted by the front-end and data association has been

accomplished. We discuss both linear and nonlinear optimization methods for the

corresponding least-squares problems, and then make the connection between spar-

sity, factor graphs, and Bayes nets more explicit. Finally, we apply this to develop

the Bayes tree and the incremental smoothing and mapping (iSAM) algorithm.

Historical Note

A smoothing approach to SLAM involves not just the most current robot location,

but the entire robot trajectory up to the current time. A number of authors consider

the problem of smoothing the robot trajectory only [178, 707, 708, 427, 602, 320],

now known as PoseSLAM. This is particularly suited to sensors such as laser-range

finders that yield pairwise constraints between nearby robot poses.

More generally, one can consider the full SLAM problem [1092], i.e., the problem

of optimally estimating the entire set of sensor poses along with the parameters of

all features in the environment. This led to a flurry of work between 2000 and 2005

where these ideas were applied in the context of SLAM [295, 348, 347, 1092]. From a

computational view, this optimization-based smoothing was recognized as beneficial

since (a) in contrast to the filtering-based covariance or information matrices, which

both become fully dense over time [855, 1091], the information matrix associated

with smoothing is and stays sparse; (b) in typical mapping scenarios (i.e., not

repeatedly traversing a small environment) this matrix is a much more compact

representation of the map covariance structure.

Square-root Segment Anything Model (SAM), also known as the ‘factor-graph ap-

proach’, was introduced in [258, 262] based on the fact that the information matrix

or measurement Jacobian can be efficiently factorized using sparse Cholesky or QR

factorization, respectively. This yields a square-root information matrix that can

be used to immediately obtain the optimal robot trajectory and map. Factoring the

22 Factor Graphs for SLAM

information matrix is known in the sequential estimation literature as square-root

information filtering (SRIF), and was developed in 1969 for use in JPL’s Mariner

10 missions to Venus [90]. The use of square roots results in more accurate and

stable algorithms, and, quoting Maybeck [749], “a number of practitioners have

argued, with considerable logic, that square root filters should always be adopted

in preference to the standard Kalman filter recursion”.

Below we discuss in detail how factor graphs are a natural representation for

the sparsity inherent in SLAM problems, how (sparse) matrix factorization into a

matrix-square root is at the heart of solving these problems, and finally how all

this relates to the much more general variable elimination algorithm. Much of this

chapter is an abridged version of a longer article by Dellaert et al. [263].

1.1 Visualizing SLAM With Factor Graphs

In this section we introduce factor graphs as a way of intuitively visualizing the

sparse nature of the SLAM problem by first considering a toy example and its

factor graph representation. We then show how many different flavors of SLAM

can be represented as such, and how even in larger problems the sparse nature of

many sparse problems is immediately apparent.

1.1.1 A Toy Example

We begin by examining a simple SLAM scenario to illustrate how factor graphs are

constructed. Figure 1.1 shows a simple toy example illustrating the structure of the

problem graphically. A robot moving across three successive poses p1, p2, and p3
makes bearing observations on two landmarks ℓ1 and ℓ2. To anchor the solution

in space, let us also assume there is an absolute position/orientation measurement

on the first pose p1. Without this there would be no information about absolute

position, as bearing measurements are all relative.1

Because of measurement uncertainty, we cannot hope to recover the true state of

the world, but we can obtain a probabilistic description of what can be inferred from

the measurements. In the Bayesian probability framework, we use the language of

probability theory to assign a subjective degree of belief to uncertain events. We

do this using probability density functions (PDFs) p(x) over the unknown variables

x. PDFs are non-negative functions satisfying
∫
p(x) dx = 1, (1.1)

which is the axiom of total probability. In the simple example of Figure 1.1, the

1 Handling rotations properly is a bit more involved than our treatment in this first chapter lets on.
However, the next chapter will put us on a proper footing for such quantities. For now, we will
assume they are regular vector quantities and delay discussion of their subtleties.

1.1 Visualizing SLAM With Factor Graphs 23

x1 x2 x3

l1 l2

<latexit sha1_base64="kXx44wnjqLe/qAbLMONIjGgtM5U=">AAACEXicbVDLSsNAFL2pr1pfUZduglVwVRLxuSu4calgW6EtZTK5tUMnM2FmIpTQr3DrVv/Bnbj1C/wFv8JJWkStB4Y5nHsP93DChDNtfP/DKc3NLywulZcrK6tr6xvu5lZTy1RRbFDJpboNiUbOBDYMMxxvE4UkDjm2wuFFPm/do9JMihszSrAbkzvB+owSY6We63ZCySM9iu2XJeNe0HOrfs0v4M2SYEqq9TIUuOq5n51I0jRGYSgnWrcDPzHdjCjDKMdxpZNqTAgdkjtsWypIjLqbFcnH3r5VIq8vlX3CeIX605GRWOfh7GZMzED/neXif7N2avpn3YyJJDUo6ORQP+WekV5egxcxhdTwkSWEKmazenRAFKHGllXpFMZMSDOpaYAkQjWuFOWc5zj+rmKWNA9rwUktuD6q1vcmLUEZdmAXDiCAU6jDJVxBAyjcwyM8wbPz4Lw4r87bZLXkTD3b8AvO+xcbpZ6J</latexit>

p1

<latexit sha1_base64="i1LTsi0pXgXYdlkAuqdoH9DYknI=">AAACEXicbVDLSsNAFL3xWesr6tJNsAquSiI+dwU3LivYWmhLmUxu7eBkJsxMCiX0K9y61X9wJ279An/Br3CSFlHrgWEO597DPZww4Uwb3/9w5uYXFpeWSyvl1bX1jU13a7upZaooNqjkUrVCopEzgQ3DDMdWopDEIcfb8P4yn98OUWkmxY0ZJdiNyZ1gfUaJsVLPdTuh5JEexfbLknHvqOdW/KpfwJslwZRUaiUoUO+5n51I0jRGYSgnWrcDPzHdjCjDKMdxuZNqTAi9J3fYtlSQGHU3K5KPvQOrRF5fKvuE8Qr1pyMjsc7D2c2YmIH+O8vF/2bt1PTPuxkTSWpQ0Mmhfso9I728Bi9iCqnhI0sIVcxm9eiAKEKNLavcKYyZkGZS0wBJhGpcLsq5yHHyXcUsaR5Vg9NqcH1cqe1PWoIS7MIeHEIAZ1CDK6hDAygM4RGe4Nl5cF6cV+dtsjrnTD078AvO+xcdQZ6K</latexit>

p2

<latexit sha1_base64="xa47ISr24vnFk6T52/jxFM/EsFA=">AAACEXicbVDLSsNAFL3xWesr6tJNsAquSuLbXcGNSwVbhbaUyeS2HTqZCTOTQgn9Crdu9R/ciVu/wF/wK5ykImo9MMzh3Hu4hxMmnGnj++/OzOzc/MJiaam8vLK6tu5ubDa0TBXFOpVcqruQaORMYN0ww/EuUUjikONtOLjI57dDVJpJcWNGCbZj0hOsyygxVuq4biuUPNKj2H5ZMu4cdtyKX/ULeNMk+CKVWgkKXHXcj1YkaRqjMJQTrZuBn5h2RpRhlOO43Eo1JoQOSA+blgoSo25nRfKxt2eVyOtKZZ8wXqH+dGQk1nk4uxkT09d/Z7n436yZmu5ZO2MiSQ0KOjnUTblnpJfX4EVMITV8ZAmhitmsHu0TRaixZZVbhTET0kxq6iOJUI3LRTnnOY6/q5gmjYNqcFINro8qtd1JS1CCbdiBfQjgFGpwCVdQBwpDeIBHeHLunWfnxXmdrM44X54t+AXn7RMe3Z6L</latexit>

p3

<latexit sha1_base64="Tbii+PtKXnyJ7OyYW5J5YpVAs/I=">AAACFHicbVDLSsNAFL2pr1pfVZduglVwVRLxuSu4calgW6EpZTK5tUMnM2FmIpTQ33DrVv/Bnbh17y/4FU7SImo9MMzh3Hu4hxMmnGnjeR9OaW5+YXGpvFxZWV1b36hubrW0TBXFJpVcqtuQaORMYNMww/E2UUjikGM7HF7k8/Y9Ks2kuDGjBLsxuROszygxVupVt4NQ8kiPYvtlAXI+7vm9as2rewXcWeJPSa1RhgJXvepnEEmaxigM5UTrju8lppsRZRjlOK4EqcaE0CG5w46lgsSou1kRfuzuWyVy+1LZJ4xbqD8dGYl1ns9uxsQM9N9ZLv4366Smf9bNmEhSg4JODvVT7hrp5k24EVNIDR9ZQqhiNqtLB0QRamxflaAwZkKaSVMDJBGqcaUo5zzH8XcVs6R1WPdP6v71Ua2xN2kJyrADu3AAPpxCAy7hCppAYQSP8ATPzoPz4rw6b5PVkjP1bMMvOO9ffl+f0A==</latexit>

`1
<latexit sha1_base64="SQ47TFOWkZBwNsNyfERGuUiTcQY=">AAACFHicbVDLSsNAFL3xWeur2qWbYBVclUR87gpuXFawtdCUMpnc2sHJTJiZCCX0N9y61X9wJ27d+wt+hZO0iFoPDHM49x7u4YQJZ9p43oczN7+wuLRcWimvrq1vbFa2tttapopii0ouVSckGjkT2DLMcOwkCkkccrwJ7y7y+c09Ks2kuDajBHsxuRVswCgxVupXqkEoeaRHsf2yADkf9w/7lZpX9wq4s8SfklqjBAWa/cpnEEmaxigM5UTrru8lppcRZRjlOC4HqcaE0Dtyi11LBYlR97Ii/Njdt0rkDqSyTxi3UH86MhLrPJ/djIkZ6r+zXPxv1k3N4KyXMZGkBgWdHBqk3DXSzZtwI6aQGj6yhFDFbFaXDoki1Ni+ykFhzIQ0k6aGSCJU43JRznmO4+8qZkn7sO6f1P2ro1pjb9ISlGAHduEAfDiFBlxCE1pAYQSP8ATPzoPz4rw6b5PVOWfqqcIvOO9ff/uf0Q==</latexit>

`2

Figure 1.1 A toy simultaneous localization and mapping (SLAM) example with three
robot poses and two landmarks. Above we schematically indicate the robot motion with
arrows, while the dotted lines indicate bearing measurements.

state, x, is

x =

p1
p2
p3
ℓ1
ℓ2

, (1.2)

which is just a stacking of the individual unknowns.

In SLAM we want to characterize our knowledge about the unknowns x, in this

case robot poses and the unknown landmark positions, when given a set of observed

measurements z. Using the language of Bayesian probability, this is simply the

conditional density

p(x|z), (1.3)

and obtaining a description like this is called probabilistic inference. A prerequisite

is to first specify a probabilistic model for the variables of interest and how they

give rise to (uncertain) measurements. This is where probabilistic graphical models

enter the picture.

Probabilistic graphical models provide a mechanism to compactly describe com-

plex probability densities by exploiting the structure in them [600]. In particular,

high-dimensional probability densities can often be factorized as a product of many

factors, each of which is a probability density over a much smaller domain.

1.1.2 A Factor-Graph View

Factor graphs are probabilistic graphical models and they allow us to specify a joint

density as a product of factors. However, they are more general in that they can

be used to specify any factored function ϕ(x) over a set of variables x, not just

probability densities.

24 Factor Graphs for SLAM

x1 x2 x3

l1 l2

<latexit sha1_base64="kXx44wnjqLe/qAbLMONIjGgtM5U=">AAACEXicbVDLSsNAFL2pr1pfUZduglVwVRLxuSu4calgW6EtZTK5tUMnM2FmIpTQr3DrVv/Bnbj1C/wFv8JJWkStB4Y5nHsP93DChDNtfP/DKc3NLywulZcrK6tr6xvu5lZTy1RRbFDJpboNiUbOBDYMMxxvE4UkDjm2wuFFPm/do9JMihszSrAbkzvB+owSY6We63ZCySM9iu2XJeNe0HOrfs0v4M2SYEqq9TIUuOq5n51I0jRGYSgnWrcDPzHdjCjDKMdxpZNqTAgdkjtsWypIjLqbFcnH3r5VIq8vlX3CeIX605GRWOfh7GZMzED/neXif7N2avpn3YyJJDUo6ORQP+WekV5egxcxhdTwkSWEKmazenRAFKHGllXpFMZMSDOpaYAkQjWuFOWc5zj+rmKWNA9rwUktuD6q1vcmLUEZdmAXDiCAU6jDJVxBAyjcwyM8wbPz4Lw4r87bZLXkTD3b8AvO+xcbpZ6J</latexit>

p1

<latexit sha1_base64="i1LTsi0pXgXYdlkAuqdoH9DYknI=">AAACEXicbVDLSsNAFL3xWesr6tJNsAquSiI+dwU3LivYWmhLmUxu7eBkJsxMCiX0K9y61X9wJ279An/Br3CSFlHrgWEO597DPZww4Uwb3/9w5uYXFpeWSyvl1bX1jU13a7upZaooNqjkUrVCopEzgQ3DDMdWopDEIcfb8P4yn98OUWkmxY0ZJdiNyZ1gfUaJsVLPdTuh5JEexfbLknHvqOdW/KpfwJslwZRUaiUoUO+5n51I0jRGYSgnWrcDPzHdjCjDKMdxuZNqTAi9J3fYtlSQGHU3K5KPvQOrRF5fKvuE8Qr1pyMjsc7D2c2YmIH+O8vF/2bt1PTPuxkTSWpQ0Mmhfso9I728Bi9iCqnhI0sIVcxm9eiAKEKNLavcKYyZkGZS0wBJhGpcLsq5yHHyXcUsaR5Vg9NqcH1cqe1PWoIS7MIeHEIAZ1CDK6hDAygM4RGe4Nl5cF6cV+dtsjrnTD078AvO+xcdQZ6K</latexit>

p2

<latexit sha1_base64="xa47ISr24vnFk6T52/jxFM/EsFA=">AAACEXicbVDLSsNAFL3xWesr6tJNsAquSuLbXcGNSwVbhbaUyeS2HTqZCTOTQgn9Crdu9R/ciVu/wF/wK5ykImo9MMzh3Hu4hxMmnGnj++/OzOzc/MJiaam8vLK6tu5ubDa0TBXFOpVcqruQaORMYN0ww/EuUUjikONtOLjI57dDVJpJcWNGCbZj0hOsyygxVuq4biuUPNKj2H5ZMu4cdtyKX/ULeNMk+CKVWgkKXHXcj1YkaRqjMJQTrZuBn5h2RpRhlOO43Eo1JoQOSA+blgoSo25nRfKxt2eVyOtKZZ8wXqH+dGQk1nk4uxkT09d/Z7n436yZmu5ZO2MiSQ0KOjnUTblnpJfX4EVMITV8ZAmhitmsHu0TRaixZZVbhTET0kxq6iOJUI3LRTnnOY6/q5gmjYNqcFINro8qtd1JS1CCbdiBfQjgFGpwCVdQBwpDeIBHeHLunWfnxXmdrM44X54t+AXn7RMe3Z6L</latexit>

p3

<latexit sha1_base64="Tbii+PtKXnyJ7OyYW5J5YpVAs/I=">AAACFHicbVDLSsNAFL2pr1pfVZduglVwVRLxuSu4calgW6EpZTK5tUMnM2FmIpTQ33DrVv/Bnbh17y/4FU7SImo9MMzh3Hu4hxMmnGnjeR9OaW5+YXGpvFxZWV1b36hubrW0TBXFJpVcqtuQaORMYNMww/E2UUjikGM7HF7k8/Y9Ks2kuDGjBLsxuROszygxVupVt4NQ8kiPYvtlAXI+7vm9as2rewXcWeJPSa1RhgJXvepnEEmaxigM5UTrju8lppsRZRjlOK4EqcaE0CG5w46lgsSou1kRfuzuWyVy+1LZJ4xbqD8dGYl1ns9uxsQM9N9ZLv4366Smf9bNmEhSg4JODvVT7hrp5k24EVNIDR9ZQqhiNqtLB0QRamxflaAwZkKaSVMDJBGqcaUo5zzH8XcVs6R1WPdP6v71Ua2xN2kJyrADu3AAPpxCAy7hCppAYQSP8ATPzoPz4rw6b5PVkjP1bMMvOO9ffl+f0A==</latexit>

`1
<latexit sha1_base64="SQ47TFOWkZBwNsNyfERGuUiTcQY=">AAACFHicbVDLSsNAFL3xWeur2qWbYBVclUR87gpuXFawtdCUMpnc2sHJTJiZCCX0N9y61X9wJ27d+wt+hZO0iFoPDHM49x7u4YQJZ9p43oczN7+wuLRcWimvrq1vbFa2tttapopii0ouVSckGjkT2DLMcOwkCkkccrwJ7y7y+c09Ks2kuDajBHsxuRVswCgxVupXqkEoeaRHsf2yADkf9w/7lZpX9wq4s8SfklqjBAWa/cpnEEmaxigM5UTrru8lppcRZRjlOC4HqcaE0Dtyi11LBYlR97Ii/Njdt0rkDqSyTxi3UH86MhLrPJ/djIkZ6r+zXPxv1k3N4KyXMZGkBgWdHBqk3DXSzZtwI6aQGj6yhFDFbFaXDoki1Ni+ykFhzIQ0k6aGSCJU43JRznmO4+8qZkn7sO6f1P2ro1pjb9ISlGAHduEAfDiFBlxCE1pAYQSP8ATPzoPz4rw6b5PVOWfqqcIvOO9ff/uf0Q==</latexit>

`2

<latexit sha1_base64="AY73GQiTB52dLlEEET5KkyWQjX0=">AAACGXicbVDLSgMxFL3js9ZX1Y3gZrAKuikz4nNXcOOyglWhU4ZM5tYGM8mQZIQy1B9x61b/wZ24deUv+BVmpiK+DoQczrmH3Jwo5Uwbz3tzxsYnJqemKzPV2bn5hcXa0vK5lpmi2KaSS3UZEY2cCWwbZjhepgpJEnG8iK6PC//iBpVmUpyZQYrdhFwJ1mOUGCuFtdUg7bPQ3woiyWM9SOyVp8PQ3w5rda/hlXD/Ev+T1JsVKNEKa+9BLGmWoDCUE607vpeabk6UYZTjsBpkGlNCr8kVdiwVJEHdzcsfDN1Nq8RuTyp7hHFL9XsiJ4kutrOTCTF9/dsrxP+8TmZ6h92ciTQzKOjooV7GXSPdog43Zgqp4QNLCFXM7urSPlGEGltaNSiDuZBmVFcfSYxqWC3LOSqw91XFX3K+0/D3G/7pbr25MWoJKrAG67AFPhxAE06gBW2gcAv38ACPzp3z5Dw7L6PRMeczswI/4Lx+AH8KoVc=</latexit>

�1(p1)
<latexit sha1_base64="hJcgXdAki0rpaFkGbybvBuSfYg4=">AAACKnicbVDLSgMxFL3js9ZX1aWbwSooSJkpPncFNy4VrAqdMmQytzaYSYYkI5Sh3+CPuHWr/+CuuHXlV5iZivg6EHI45x5yc6KUM208b+RMTE5Nz8xW5qrzC4tLy7WV1UstM0WxTSWX6joiGjkT2DbMcLxOFZIk4ngV3Z4U/tUdKs2kuDCDFLsJuRGsxygxVgprO0HaZ2FzO4gkj/UgsVeeDsPm7i/B3wlrda/hlXD/Ev+T1FsVKHEW1t6DWNIsQWEoJ1p3fC813ZwowyjHYTXINKaE3pIb7FgqSIK6m5dfGrpbVondnlT2COOW6vdEThJdbGcnE2L6+rdXiP95ncz0jro5E2lmUNDxQ72Mu0a6RT9uzBRSwweWEKqY3dWlfaIINbbFalAGcyHNuL8+khjVsFqWc1xg/6uKv+Sy2fAPGv75Xr21OW4JKrAOG7ANPhxCC07hDNpA4R4e4QmenQfnxRk5r+PRCeczswY/4Lx9AJ7sqLo=</latexit>

�2(p2, p1)
<latexit sha1_base64="6w3K4iziOYNRVY/Dg+sA59X+blk=">AAACKnicbVDLSgMxFL3js9ZX1aWbwSooSJnx7a7gxqWCVaFThkzm1oZmkiHJCGXoN/gjbt3qP7gTt678CjNTEV8HQg7n3ENuTpRypo3nvThj4xOTU9OVmers3PzCYm1p+VLLTFFsUcmluo6IRs4EtgwzHK9ThSSJOF5F/ZPCv7pFpZkUF2aQYichN4J1GSXGSmFtK0h7LNzdDCLJYz1I7JWnw3B3+5ewsxXW6l7DK+H+Jf4nqTcrUOIsrL0HsaRZgsJQTrRu+15qOjlRhlGOw2qQaUwJ7ZMbbFsqSIK6k5dfGrobVondrlT2COOW6vdEThJdbGcnE2J6+rdXiP957cx0jzo5E2lmUNDRQ92Mu0a6RT9uzBRSwweWEKqY3dWlPaIINbbFalAGcyHNqL8ekhjVsFqWc1xg/6uKv+Ryp+EfNPzzvXpzfdQSVGAV1mATfDiEJpzCGbSAwh08wCM8OffOs/PivI5Gx5zPzAr8gPP2AaP2qL0=</latexit>

�3(p3, p2)

<latexit sha1_base64="GS5uFCPJnpEJVdcs05uLIoU++3g=">AAACLXicbVDLSgMxFL3js9ZX1aWbwSooSJkRtboruHGpYFXolCGTubXBTDIkGaEM/Ql/xK1b/QcXgrgV/AozUxFfB0IO59xDbk6UcqaN5z07Y+MTk1PTlZnq7Nz8wmJtaflcy0xRbFPJpbqMiEbOBLYNMxwvU4UkiTheRNdHhX9xg0ozKc7MIMVuQq4E6zFKjJXC2naQ9lnY3AwiyWM9SOyVp8PQ3/4uBMi51bbCWt1reCXcv8T/JPVWBUqchLX3IJY0S1AYyonWHd9LTTcnyjDKcVgNMo0podfkCjuWCpKg7ublr4buhlVityeVPcK4pfo9kZNEFwvayYSYvv7tFeJ/XiczvYNuzkSaGRR09FAv466RblGRGzOF1PCBJYQqZnd1aZ8oQo0tshqUwVxIM6qwjyRGNayW5RwW2Puq4i8532n4+w3/dLfeWh+1BBVYhTXYBB+a0IJjOIE2ULiFe3iAR+fOeXJenNfR6JjzmVmBH3DePgAlt6oF</latexit>

�7(p1, `1)
<latexit sha1_base64="ZaMrlTNmHTsHSoROOn40UVNP6Dg=">AAACLXicbVDLSiNBFL2tjsbMqFGXbhrjgIKE7jCPuAvMxmUGJjGQDk119Y0prK5qqqqF0PRP+COzna3+g4sBcSv4FVPdCUN8HCjqcM491K0TpZxp43l/nZXVtQ/rG7XN+sdPW9s7jd29gZaZotinkks1jIhGzgT2DTMch6lCkkQcL6KrH6V/cY1KMyl+mVmK44RcCjZhlBgrhY3TIJ2ysHMcRJLHepbYK0+LsH26LATIeRH6J2Gj6bW8Cu5b4i9Is1uDCr2w8RzEkmYJCkM50Xrke6kZ50QZRjkW9SDTmBJ6RS5xZKkgCepxXv2qcD9bJXYnUtkjjFupy4mcJLpc0E4mxEz1a68U3/NGmZl0xjkTaWZQ0PlDk4y7RrplRW7MFFLDZ5YQqpjd1aVTogg1tsh6UAVzIc28wimSGFVRr8o5K/H1fxVvyaDd8r+1/J9fmt2jeUtQgwM4hGPw4Tt04Rx60AcKN/AHbuHO+e3cOw/O43x0xVlk9uEFnKd/KSqqBw==</latexit>

�8(p2, `1)
<latexit sha1_base64="Eo/PBR3Z+fmPJNSoXw65gdCK38s=">AAACLXicbVDLSuRAFL1pXz3tq9Wlm2ArKEiT+Jpx1zAblwq2Cp0mVCq3uwsrVaGqIjQhPzE/Mlu3+g8uhMGtMF9hJS3i60BRh3PuoW6dKOVMG897dGpT0zOzc/UfjfmFxaXl5srqhZaZotilkkt1FRGNnAnsGmY4XqUKSRJxvIyuf5f+5Q0qzaQ4N+MU+wkZCjZglBgrhc3dIB2x8Hg7iCSP9TixV54W4f7ueyFAzotwbydstry2V8H9SvxX0urUocJp2PwfxJJmCQpDOdG653up6edEGUY5Fo0g05gSek2G2LNUkAR1P69+VbhbVondgVT2CONW6vtEThJdLmgnE2JG+rNXit95vcwMfvVzJtLMoKCThwYZd410y4rcmCmkho8tIVQxu6tLR0QRamyRjaAK5kKaSYUjJDGqolGVc1zi8K2Kr+Rir+0ftf2zg1Znc9IS1GEdNmAbfPgJHTiBU+gChT9wC3dw7/x1Hpx/ztNktOa8ZtbgA5znFy46qgo=</latexit>

�9(p3, `2)

<latexit sha1_base64="PqET7EFmVz4fHiCLlbz+BRucjoE=">AAACHHicbVDLSgMxFL3js9ZX1aWbwSropsxIfe0KblxWsCp0ypDJ3NpgJhmSjFCGLvwRt271H9yJW8Ff8CvMTEV8HQg5nHMPuTlRypk2nvfmTExOTc/MVuaq8wuLS8u1ldVzLTNFsUMll+oyIho5E9gxzHC8TBWSJOJ4EV0fF/7FDSrNpDgzwxR7CbkSrM8oMVYKa+tBOmBhczuIJI/1MLFXHiDno9DfCWt1r+GVcP8S/5PUWxUo0Q5r70EsaZagMJQTrbu+l5peTpRhlOOoGmQaU0KvyRV2LRUkQd3Ly0+M3C2rxG5fKnuEcUv1eyIniS4WtJMJMQP92yvE/7xuZvqHvZyJNDMo6PihfsZdI92iETdmCqnhQ0sIVczu6tIBUYQa21s1KIO5kGbc2ABJjGpULcs5KrD3VcVfcr7b8Pcb/mmz3toctwQVWIcN2AYfDqAFJ9CGDlC4hXt4gEfnznlynp2X8eiE85lZgx9wXj8A7y+ioQ==</latexit>

�4(`1)
<latexit sha1_base64="x6Vgnp8/4cA9+SDB5FaRdViLwOw=">AAACHHicbVDLSgMxFL3js9ZX1WU3g1XQTZkRn7uCG5cVrAqdMmQytzaYSYYkI5ShC3/ErVv9B3fiVvAX/AozUxFfB0IO59xDbk6UcqaN5705E5NT0zOzlbnq/MLi0nJtZfVcy0xR7FDJpbqMiEbOBHYMMxwvU4UkiTheRNfHhX9xg0ozKc7MMMVeQq4E6zNKjJXCWj1IByzc2woiyWM9TOyVB8j5KNzZDmsNr+mVcP8S/5M0WhUo0Q5r70EsaZagMJQTrbu+l5peTpRhlOOoGmQaU0KvyRV2LRUkQd3Ly0+M3E2rxG5fKnuEcUv1eyIniS4WtJMJMQP92yvE/7xuZvqHvZyJNDMo6PihfsZdI92iETdmCqnhQ0sIVczu6tIBUYQa21s1KIO5kGbc2ABJjGpULcs5KrD3VcVfcr7T9Peb/uluo7UxbgkqUId12AIfDqAFJ9CGDlC4hXt4gEfnznlynp2X8eiE85lZgx9wXj8A8n2iow==</latexit>

�5(`2)

<latexit sha1_base64="iC0E0ySHt+M5B1pmT0FEOWjfMnQ=">AAACGXicbVDLSgMxFL3js9ZX1Y3gZrAKuikzolV3BTcuFawKnTJkMrc2mEmGJCOUof6IW7f6D+7ErSt/wa8wMxXxdSDkcM495OZEKWfaeN6bMzY+MTk1XZmpzs7NLyzWlpbPtcwUxTaVXKrLiGjkTGDbMMPxMlVIkojjRXR9VPgXN6g0k+LMDFLsJuRKsB6jxFgprK0GaZ+Fza0gkjzWg8ReeToM/e2wVvcaXgn3L/E/Sb1VgRInYe09iCXNEhSGcqJ1x/dS082JMoxyHFaDTGNK6DW5wo6lgiSou3n5g6G7aZXY7UlljzBuqX5P5CTRxXZ2MiGmr397hfif18lM76CbM5FmBgUdPdTLuGukW9ThxkwhNXxgCaGK2V1d2ieKUGNLqwZlMBfSjOrqI4lRDatlOYcF9r6q+EvOdxp+s+Gf7tZbG6OWoAJrsA5b4MM+tOAYTqANFG7hHh7g0blznpxn52U0OuZ8ZlbgB5zXD4dwoVw=</latexit>

�6(p1)

x1x2x3

l1l2

Figure 1.2 Factor graph resulting from the example in Figure 1.1.

To motivate this, consider performing inference for the toy SLAM example. The

posterior p(x|z) can be re-written using Bayes’ law, p(x|z) ∝ p(z|x)p(x), as

p(x|z) ∝ p(p1) p(p2|p1) p(p3|p2) (1.4a)

× p(ℓ1) p(ℓ2) (1.4b)

× p(z1|p1) (1.4c)

× p(z2|p1, ℓ1) p(z3|p2, ℓ1) p(z4|p3, ℓ2). (1.4d)

where we assumed a typical Markov chain generative model for the pose trajectory.

Each of the factors represents one piece of information about the unknowns, x.

To visualize this factorization, we use a factor graph. Figure 1.2 introduces the

corresponding factor graph by example: all unknown states x, both poses and land-

marks, have a node associated with them. Measurements are not represented ex-

plicitly as they are known, and hence not of interest. In factor graphs we explicitly

introduce an additional node type to represent every factor in the posterior p(x|z).

In the figure, each small black node represents a factor, and—importantly—is con-

nected to only those state variables of which it is a function. For example, the factor

ϕ9(p3, ℓ2) is connected only to the variable nodes p3 and ℓ2. In more detail, we have

ϕ(p1,p2,p3, ℓ1, ℓ2) = ϕ1(p1)ϕ2(p2,p1)ϕ3(p3,p2) (1.5a)

× ϕ4(ℓ1)ϕ5(ℓ2) (1.5b)

× ϕ6(p1) (1.5c)

× ϕ7(p1, ℓ1)ϕ8(p2, ℓ1)ϕ9(p3, ℓ2), (1.5d)

1.1 Visualizing SLAM With Factor Graphs 25

where the correspondence between the factors and the original probability densities

in (1.4a)-(1.4d) should be obvious.

The factor values need only be proportional to the corresponding probability

densities: any normalization constants that do not depend on the state variables

may be omitted without consequence. Also, in this example, all factors above came

either from a prior, e.g., ϕ1(p1) ∝ p(p1) or from a measurement, e.g., ϕ9(p3, ℓ2) ∝
p(z4|p3, ℓ2). Although the measurement variables z1..z4 are not explicitly shown

in the factor graph, those factors are implicitly conditioned on them. Sometimes,

when it helps to make this more explicit, factors can be written as (for example)

ϕ9(p3, ℓ2; z4) or even ϕz4
(p3, ℓ2).

1.1.3 Factor Graphs as a Language

In addition to providing a formal basis for inference, factor graphs help visualize

SLAM problems of many different flavors, give insight into the structure of the

problem, and serve as a lingua franca that can help practitioners align across team

boundaries. Each factor in a factor graph, such as those in Fig 2.2, can be thought

of as an equation involving the variables it is connected to. There are typically

many more equations than unknowns, which is why we need to quantify the uncer-

tainty in both prior information and measurements. This will lead to a least-squares

formulation, appropriately fusing the information from multiple sources.

Many different flavors of the SLAM problem are all easily represented as factor

graphs. Figure 1.1 is an example of landmark-based SLAM because it involves both

pose and landmark variables. Figure 1.3 illustrates several other variants includ-

ing bundle adjustment (BA) (same as landmark-based SLAM but without motion

model), pose-graph optimization (PGO) (no landmark variables but includes loop

closures), and simultaneous trajectory estimation and mapping (STEAM) (poses

are augmented to include derivatives such as velocity).

The factor graph for a more realistic landmark-based SLAM problem than the

toy example could look something like Figure 1.4. This graph was created by sim-

ulating a 2D robot, moving in the plane for about 100 time steps, as it observes

landmarks. For visualization purposes, each robot pose and landmark is rendered at

its ground-truth position in 2D. With this, we see that the odometry factors form

a prominent, chain-like backbone, whereas off to the sides binary likelihood factors

are connected to the 20 or so landmarks. All factors in such SLAM problems are

typically nonlinear, except for priors.

Examining the factor graph reveals a great deal of structure by which we can gain

insight into a particular instance of the SLAM problem. First, there are landmarks

with a great deal of measurements, which we expect to be pinned down very well.

Others have only a tenuous connection to the graph, and hence we expect them to

be less well determined. For example, the lone landmark near the bottom right has

only a single measurement associated with it: if this is a bearing-only measurement,

26 Factor Graphs for SLAM

<latexit sha1_base64="tAUSgPttDVlGAhAf5tUO9UjLf+4=">AAACEXicbVDLSsNAFL2pr1pfUZdugkXoqiTic1dw41LBtkJbymRy2w6dzISZSaGEfoVbt/oP7sStX+Av+BVOUhFfB4Y5nHsP93DChDNtfP/NKS0sLi2vlFcra+sbm1vu9k5Ly1RRbFLJpboNiUbOBDYNMxxvE4UkDjm2w/FFPm9PUGkmxY2ZJtiLyVCwAaPEWKnvut1Q8khPY/tlyawf9N2qX/cLeH9J8EmqjTIUuOq7791I0jRGYSgnWncCPzG9jCjDKMdZpZtqTAgdkyF2LBUkRt3LiuQz78AqkTeQyj5hvEL97shIrPNwdjMmZqR/z3Lxv1knNYOzXsZEkhoUdH5okHLPSC+vwYuYQmr41BJCFbNZPToiilBjy6p0C2MmpJnXNEISoZpVinLOcxx/VfGXtA7rwUk9uD6qNmrzlqAMe7APNQjgFBpwCVfQBAoTuIcHeHTunCfn2XmZr5acT88u/IDz+gEc2Z6N</latexit>

p1

<latexit sha1_base64="PyPWDAiJqaev1QY37Ip8vMe49yM=">AAACEXicbVDLSsNAFL3xWesr6tJNsAiuSiI+dwU3LivYB7SlTCa3dnAyE2YmhRL6FW7d6j+4E7d+gb/gVzhJi6j1wDCHc+/hHk6YcKaN7384C4tLyyurpbXy+sbm1ra7s9vUMlUUG1Ryqdoh0ciZwIZhhmM7UUjikGMrvL/K560RKs2kuDXjBHsxuRNswCgxVuq7bjeUPNLj2H5ZMukf992KX/ULePMkmJFKrQQF6n33sxtJmsYoDOVE607gJ6aXEWUY5Tgpd1ONCaH35A47lgoSo+5lRfKJd2iVyBtIZZ8wXqH+dGQk1nk4uxkTM9R/Z7n436yTmsFFL2MiSQ0KOj00SLlnpJfX4EVMITV8bAmhitmsHh0SRaixZZW7hTET0kxrGiKJUE3KRTmXOU6/q5gnzeNqcFYNbk4qtaNpS1CCfTiAIwjgHGpwDXVoAIURPMITPDsPzovz6rxNVxecmWcPfsF5/wIedZ6O</latexit>

p2

<latexit sha1_base64="A2NNUUAtUlazpp7Hib/5Qu5OzT8=">AAACEXicbVDLSsNAFL3xWesr6tJNsAiuSuLbXcGNSwVbC20pk8ltO3QyE2YmQgn9Crdu9R/ciVu/wF/wK5ykRdR6YJjDufdwDydMONPG9z+cufmFxaXl0kp5dW19Y9Pd2m5omSqKdSq5VM2QaORMYN0ww7GZKCRxyPEuHF7m87t7VJpJcWtGCXZi0hesxygxVuq6bjuUPNKj2H5ZMu4edd2KX/ULeLMkmJJKrQQFrrvuZzuSNI1RGMqJ1q3AT0wnI8owynFcbqcaE0KHpI8tSwWJUXeyIvnY27dK5PWksk8Yr1B/OjIS6zyc3YyJGei/s1z8b9ZKTe+8kzGRpAYFnRzqpdwz0str8CKmkBo+soRQxWxWjw6IItTYssrtwpgJaSY1DZBEqMblopyLHCffVcySxmE1OK0GN8eV2sGkJSjBLuzBAQRwBjW4gmuoA4V7eIQneHYenBfn1XmbrM45U88O/ILz/gUgEZ6P</latexit>

p3
<latexit sha1_base64="ce4uuLkjfKZLQAC8vzdJb3ctrho=">AAACEXicbVDLSsNAFL3xWesr6tJNsAiuSiI+dwU3LivYB7SlTCa3dnAyE2YmhRL6FW7d6j+4E7d+gb/gVzhJi6j1wDCHc+/hHk6YcKaN7384C4tLyyurpbXy+sbm1ra7s9vUMlUUG1Ryqdoh0ciZwIZhhmM7UUjikGMrvL/K560RKs2kuDXjBHsxuRNswCgxVuq7bjeUPNLj2H5ZMumf9N2KX/ULePMkmJFKrQQF6n33sxtJmsYoDOVE607gJ6aXEWUY5Tgpd1ONCaH35A47lgoSo+5lRfKJd2iVyBtIZZ8wXqH+dGQk1nk4uxkTM9R/Z7n436yTmsFFL2MiSQ0KOj00SLlnpJfX4EVMITV8bAmhitmsHh0SRaixZZW7hTET0kxrGiKJUE3KRTmXOU6/q5gnzeNqcFYNbk4qtaNpS1CCfTiAIwjgHGpwDXVoAIURPMITPDsPzovz6rxNVxecmWcPfsF5/wIhrZ6Q</latexit>

p4

<latexit sha1_base64="b5MWbhCtoIcoBuQZk/2t5aCElIc=">AAACFHicbVDLSsNAFL2pr1pfVZdugkXoqiTic1dw47KCbYWmlMnkth06mQkzE6GE/oZbt/oP7sSte3/Br3CSivg6MMzh3Hu4hxMmnGnjeW9OaWFxaXmlvFpZW9/Y3Kpu73S0TBXFNpVcqpuQaORMYNsww/EmUUjikGM3nFzk8+4tKs2kuDbTBPsxGQk2ZJQYKw2qu0EoeaSnsf2yADmfDfxBteY1vALuX+J/klqzDAVag+p7EEmaxigM5UTrnu8lpp8RZRjlOKsEqcaE0AkZYc9SQWLU/awIP3MPrBK5Q6nsE8Yt1O+OjMQ6z2c3Y2LG+vcsF/+b9VIzPOtnTCSpQUHnh4Ypd4108ybciCmkhk8tIVQxm9WlY6IINbavSlAYMyHNvKkxkgjVrFKUc57j+KuKv6Rz2PBPGv7VUa1Zn7cEZdiDfaiDD6fQhEtoQRsoTOEeHuDRuXOenGfnZb5acj49u/ADzusHf5Of1A==</latexit>

`1

<latexit sha1_base64="7iyXCYXvtnf7LlcEQO+3L706C+s=">AAACFHicbVDLSsNAFL3xWeur6tJNsAhdlaT43BXcuKxgq9CUMpnctkMnM2FmIpTQ33DrVv/Bnbh17y/4FU5SEbUeGOZw7j3cwwkTzrTxvHdnYXFpeWW1tFZe39jc2q7s7Ha0TBXFNpVcqtuQaORMYNsww/E2UUjikONNOL7I5zd3qDST4tpMEuzFZCjYgFFirNSv7AWh5JGexPbLAuR82m/0K1Wv7hVw54n/RarNEhRo9SsfQSRpGqMwlBOtu76XmF5GlGGU47QcpBoTQsdkiF1LBYlR97Ii/NQ9tErkDqSyTxi3UH86MhLrPJ/djIkZ6b+zXPxv1k3N4KyXMZGkBgWdHRqk3DXSzZtwI6aQGj6xhFDFbFaXjogi1Ni+ykFhzIQ0s6ZGSCJU03JRznmO4+8q5kmnUfdP6v7VUbVZm7UEJdiHA6iBD6fQhEtoQRsoTOABHuHJuXeenRfndba64Hx59uAXnLdPgS+f1Q==</latexit>

`2

<latexit sha1_base64="XI+bVvG2FxLrcO8kqclPBNw10v8=">AAACFHicbVDLSsNAFL3xWeur6tJNsAiuSuLbXcGNSwVbC00pk8ltO3QyE2YmQgn9Dbdu9R/ciVv3/oJf4SQtotYDwxzOvYd7OGHCmTae9+HMzS8sLi2XVsqra+sbm5Wt7aaWqaLYoJJL1QqJRs4ENgwzHFuJQhKHHO/C4WU+v7tHpZkUt2aUYCcmfcF6jBJjpW5lJwglj/Qotl8WIOfj7lG3UvVqXgF3lvhTUq2XoMB1t/IZRJKmMQpDOdG67XuJ6WREGUY5jstBqjEhdEj62LZUkBh1JyvCj919q0RuTyr7hHEL9acjI7HO89nNmJiB/jvLxf9m7dT0zjsZE0lqUNDJoV7KXSPdvAk3Ygqp4SNLCFXMZnXpgChCje2rHBTGTEgzaWqAJEI1LhflXOQ4+a5iljQPa/5pzb85rtYPJi1BCXZhDw7AhzOowxVcQwMojOARnuDZeXBenFfnbbI650w9O/ALzvsXgsuf1g==</latexit>

`3

<latexit sha1_base64="tAUSgPttDVlGAhAf5tUO9UjLf+4=">AAACEXicbVDLSsNAFL2pr1pfUZdugkXoqiTic1dw41LBtkJbymRy2w6dzISZSaGEfoVbt/oP7sStX+Av+BVOUhFfB4Y5nHsP93DChDNtfP/NKS0sLi2vlFcra+sbm1vu9k5Ly1RRbFLJpboNiUbOBDYNMxxvE4UkDjm2w/FFPm9PUGkmxY2ZJtiLyVCwAaPEWKnvut1Q8khPY/tlyawf9N2qX/cLeH9J8EmqjTIUuOq7791I0jRGYSgnWncCPzG9jCjDKMdZpZtqTAgdkyF2LBUkRt3LiuQz78AqkTeQyj5hvEL97shIrPNwdjMmZqR/z3Lxv1knNYOzXsZEkhoUdH5okHLPSC+vwYuYQmr41BJCFbNZPToiilBjy6p0C2MmpJnXNEISoZpVinLOcxx/VfGXtA7rwUk9uD6qNmrzlqAMe7APNQjgFBpwCVfQBAoTuIcHeHTunCfn2XmZr5acT88u/IDz+gEc2Z6N</latexit>

p1

<latexit sha1_base64="PyPWDAiJqaev1QY37Ip8vMe49yM=">AAACEXicbVDLSsNAFL3xWesr6tJNsAiuSiI+dwU3LivYB7SlTCa3dnAyE2YmhRL6FW7d6j+4E7d+gb/gVzhJi6j1wDCHc+/hHk6YcKaN7384C4tLyyurpbXy+sbm1ra7s9vUMlUUG1Ryqdoh0ciZwIZhhmM7UUjikGMrvL/K560RKs2kuDXjBHsxuRNswCgxVuq7bjeUPNLj2H5ZMukf992KX/ULePMkmJFKrQQF6n33sxtJmsYoDOVE607gJ6aXEWUY5Tgpd1ONCaH35A47lgoSo+5lRfKJd2iVyBtIZZ8wXqH+dGQk1nk4uxkTM9R/Z7n436yTmsFFL2MiSQ0KOj00SLlnpJfX4EVMITV8bAmhitmsHh0SRaixZZW7hTET0kxrGiKJUE3KRTmXOU6/q5gnzeNqcFYNbk4qtaNpS1CCfTiAIwjgHGpwDXVoAIURPMITPDsPzovz6rxNVxecmWcPfsF5/wIedZ6O</latexit>

p2

<latexit sha1_base64="A2NNUUAtUlazpp7Hib/5Qu5OzT8=">AAACEXicbVDLSsNAFL3xWesr6tJNsAiuSuLbXcGNSwVbC20pk8ltO3QyE2YmQgn9Crdu9R/ciVu/wF/wK5ykRdR6YJjDufdwDydMONPG9z+cufmFxaXl0kp5dW19Y9Pd2m5omSqKdSq5VM2QaORMYN0ww7GZKCRxyPEuHF7m87t7VJpJcWtGCXZi0hesxygxVuq6bjuUPNKj2H5ZMu4edd2KX/ULeLMkmJJKrQQFrrvuZzuSNI1RGMqJ1q3AT0wnI8owynFcbqcaE0KHpI8tSwWJUXeyIvnY27dK5PWksk8Yr1B/OjIS6zyc3YyJGei/s1z8b9ZKTe+8kzGRpAYFnRzqpdwz0str8CKmkBo+soRQxWxWjw6IItTYssrtwpgJaSY1DZBEqMblopyLHCffVcySxmE1OK0GN8eV2sGkJSjBLuzBAQRwBjW4gmuoA4V7eIQneHYenBfn1XmbrM45U88O/ILz/gUgEZ6P</latexit>

p3
<latexit sha1_base64="ce4uuLkjfKZLQAC8vzdJb3ctrho=">AAACEXicbVDLSsNAFL3xWesr6tJNsAiuSiI+dwU3LivYB7SlTCa3dnAyE2YmhRL6FW7d6j+4E7d+gb/gVzhJi6j1wDCHc+/hHk6YcKaN7384C4tLyyurpbXy+sbm1ra7s9vUMlUUG1Ryqdoh0ciZwIZhhmM7UUjikGMrvL/K560RKs2kuDXjBHsxuRNswCgxVuq7bjeUPNLj2H5ZMumf9N2KX/ULePMkmJFKrQQF6n33sxtJmsYoDOVE607gJ6aXEWUY5Tgpd1ONCaH35A47lgoSo+5lRfKJd2iVyBtIZZ8wXqH+dGQk1nk4uxkTM9R/Z7n436yTmsFFL2MiSQ0KOj00SLlnpJfX4EVMITV8bAmhitmsHh0SRaixZZW7hTET0kxrGiKJUE3KRTmXOU6/q5gnzeNqcFYNbk4qtaNpS1CCfTiAIwjgHGpwDXVoAIURPMITPDsPzovz6rxNVxecmWcPfsF5/wIhrZ6Q</latexit>

p4

<latexit sha1_base64="b5MWbhCtoIcoBuQZk/2t5aCElIc=">AAACFHicbVDLSsNAFL2pr1pfVZdugkXoqiTic1dw47KCbYWmlMnkth06mQkzE6GE/oZbt/oP7sSte3/Br3CSivg6MMzh3Hu4hxMmnGnjeW9OaWFxaXmlvFpZW9/Y3Kpu73S0TBXFNpVcqpuQaORMYNsww/EmUUjikGM3nFzk8+4tKs2kuDbTBPsxGQk2ZJQYKw2qu0EoeaSnsf2yADmfDfxBteY1vALuX+J/klqzDAVag+p7EEmaxigM5UTrnu8lpp8RZRjlOKsEqcaE0AkZYc9SQWLU/awIP3MPrBK5Q6nsE8Yt1O+OjMQ6z2c3Y2LG+vcsF/+b9VIzPOtnTCSpQUHnh4Ypd4108ybciCmkhk8tIVQxm9WlY6IINbavSlAYMyHNvKkxkgjVrFKUc57j+KuKv6Rz2PBPGv7VUa1Zn7cEZdiDfaiDD6fQhEtoQRsoTOEeHuDRuXOenGfnZb5acj49u/ADzusHf5Of1A==</latexit>

`1

<latexit sha1_base64="7iyXCYXvtnf7LlcEQO+3L706C+s=">AAACFHicbVDLSsNAFL3xWeur6tJNsAhdlaT43BXcuKxgq9CUMpnctkMnM2FmIpTQ33DrVv/Bnbh17y/4FU5SEbUeGOZw7j3cwwkTzrTxvHdnYXFpeWW1tFZe39jc2q7s7Ha0TBXFNpVcqtuQaORMYNsww/E2UUjikONNOL7I5zd3qDST4tpMEuzFZCjYgFFirNSv7AWh5JGexPbLAuR82m/0K1Wv7hVw54n/RarNEhRo9SsfQSRpGqMwlBOtu76XmF5GlGGU47QcpBoTQsdkiF1LBYlR97Ii/NQ9tErkDqSyTxi3UH86MhLrPJ/djIkZ6b+zXPxv1k3N4KyXMZGkBgWdHRqk3DXSzZtwI6aQGj6xhFDFbFaXjogi1Ni+ykFhzIQ0s6ZGSCJU03JRznmO4+8q5kmnUfdP6v7VUbVZm7UEJdiHA6iBD6fQhEtoQRsoTOABHuHJuXeenRfndba64Hx59uAXnLdPgS+f1Q==</latexit>

`2

<latexit sha1_base64="XI+bVvG2FxLrcO8kqclPBNw10v8=">AAACFHicbVDLSsNAFL3xWeur6tJNsAiuSuLbXcGNSwVbC00pk8ltO3QyE2YmQgn9Dbdu9R/ciVv3/oJf4SQtotYDwxzOvYd7OGHCmTae9+HMzS8sLi2XVsqra+sbm5Wt7aaWqaLYoJJL1QqJRs4ENgwzHFuJQhKHHO/C4WU+v7tHpZkUt2aUYCcmfcF6jBJjpW5lJwglj/Qotl8WIOfj7lG3UvVqXgF3lvhTUq2XoMB1t/IZRJKmMQpDOdG67XuJ6WREGUY5jstBqjEhdEj62LZUkBh1JyvCj919q0RuTyr7hHEL9acjI7HO89nNmJiB/jvLxf9m7dT0zjsZE0lqUNDJoV7KXSPdvAk3Ygqp4SNLCFXMZnXpgChCje2rHBTGTEgzaWqAJEI1LhflXOQ4+a5iljQPa/5pzb85rtYPJi1BCXZhDw7AhzOowxVcQwMojOARnuDZeXBenFfnbbI650w9O/ALzvsXgsuf1g==</latexit>

`3

<latexit sha1_base64="tAUSgPttDVlGAhAf5tUO9UjLf+4=">AAACEXicbVDLSsNAFL2pr1pfUZdugkXoqiTic1dw41LBtkJbymRy2w6dzISZSaGEfoVbt/oP7sStX+Av+BVOUhFfB4Y5nHsP93DChDNtfP/NKS0sLi2vlFcra+sbm1vu9k5Ly1RRbFLJpboNiUbOBDYNMxxvE4UkDjm2w/FFPm9PUGkmxY2ZJtiLyVCwAaPEWKnvut1Q8khPY/tlyawf9N2qX/cLeH9J8EmqjTIUuOq7791I0jRGYSgnWncCPzG9jCjDKMdZpZtqTAgdkyF2LBUkRt3LiuQz78AqkTeQyj5hvEL97shIrPNwdjMmZqR/z3Lxv1knNYOzXsZEkhoUdH5okHLPSC+vwYuYQmr41BJCFbNZPToiilBjy6p0C2MmpJnXNEISoZpVinLOcxx/VfGXtA7rwUk9uD6qNmrzlqAMe7APNQjgFBpwCVfQBAoTuIcHeHTunCfn2XmZr5acT88u/IDz+gEc2Z6N</latexit>

p1

<latexit sha1_base64="PyPWDAiJqaev1QY37Ip8vMe49yM=">AAACEXicbVDLSsNAFL3xWesr6tJNsAiuSiI+dwU3LivYB7SlTCa3dnAyE2YmhRL6FW7d6j+4E7d+gb/gVzhJi6j1wDCHc+/hHk6YcKaN7384C4tLyyurpbXy+sbm1ra7s9vUMlUUG1Ryqdoh0ciZwIZhhmM7UUjikGMrvL/K560RKs2kuDXjBHsxuRNswCgxVuq7bjeUPNLj2H5ZMukf992KX/ULePMkmJFKrQQF6n33sxtJmsYoDOVE607gJ6aXEWUY5Tgpd1ONCaH35A47lgoSo+5lRfKJd2iVyBtIZZ8wXqH+dGQk1nk4uxkTM9R/Z7n436yTmsFFL2MiSQ0KOj00SLlnpJfX4EVMITV8bAmhitmsHh0SRaixZZW7hTET0kxrGiKJUE3KRTmXOU6/q5gnzeNqcFYNbk4qtaNpS1CCfTiAIwjgHGpwDXVoAIURPMITPDsPzovz6rxNVxecmWcPfsF5/wIedZ6O</latexit>

p2

<latexit sha1_base64="A2NNUUAtUlazpp7Hib/5Qu5OzT8=">AAACEXicbVDLSsNAFL3xWesr6tJNsAiuSuLbXcGNSwVbC20pk8ltO3QyE2YmQgn9Crdu9R/ciVu/wF/wK5ykRdR6YJjDufdwDydMONPG9z+cufmFxaXl0kp5dW19Y9Pd2m5omSqKdSq5VM2QaORMYN0ww7GZKCRxyPEuHF7m87t7VJpJcWtGCXZi0hesxygxVuq6bjuUPNKj2H5ZMu4edd2KX/ULeLMkmJJKrQQFrrvuZzuSNI1RGMqJ1q3AT0wnI8owynFcbqcaE0KHpI8tSwWJUXeyIvnY27dK5PWksk8Yr1B/OjIS6zyc3YyJGei/s1z8b9ZKTe+8kzGRpAYFnRzqpdwz0str8CKmkBo+soRQxWxWjw6IItTYssrtwpgJaSY1DZBEqMblopyLHCffVcySxmE1OK0GN8eV2sGkJSjBLuzBAQRwBjW4gmuoA4V7eIQneHYenBfn1XmbrM45U88O/ILz/gUgEZ6P</latexit>

p3
<latexit sha1_base64="ce4uuLkjfKZLQAC8vzdJb3ctrho=">AAACEXicbVDLSsNAFL3xWesr6tJNsAiuSiI+dwU3LivYB7SlTCa3dnAyE2YmhRL6FW7d6j+4E7d+gb/gVzhJi6j1wDCHc+/hHk6YcKaN7384C4tLyyurpbXy+sbm1ra7s9vUMlUUG1Ryqdoh0ciZwIZhhmM7UUjikGMrvL/K560RKs2kuDXjBHsxuRNswCgxVuq7bjeUPNLj2H5ZMumf9N2KX/ULePMkmJFKrQQF6n33sxtJmsYoDOVE607gJ6aXEWUY5Tgpd1ONCaH35A47lgoSo+5lRfKJd2iVyBtIZZ8wXqH+dGQk1nk4uxkTM9R/Z7n436yTmsFFL2MiSQ0KOj00SLlnpJfX4EVMITV8bAmhitmsHh0SRaixZZW7hTET0kxrGiKJUE3KRTmXOU6/q5gnzeNqcFYNbk4qtaNpS1CCfTiAIwjgHGpwDXVoAIURPMITPDsPzovz6rxNVxecmWcPfsF5/wIhrZ6Q</latexit>

p4

<latexit sha1_base64="X5TBhKNf0Y3tsPfq47nHaCz9y0M=">AAACEXicbVDLSsNAFL3xWesr6tJNsAhdlUSsj13BjUsF+4C2lMnk1g5OZsLMRCihX+HWrf6DO3HrF/gLfoWTtIhaDwxzOPce7uGECWfa+P6Hs7C4tLyyWlorr29sbm27O7stLVNFsUkll6oTEo2cCWwaZjh2EoUkDjm2w7uLfN6+R6WZFDdmnGA/JreCDRklxkoD1+2Fkkd6HNsvSyaD+sCt+DW/gDdPghmpNEpQ4GrgfvYiSdMYhaGcaN0N/MT0M6IMoxwn5V6qMSH0jtxi11JBYtT9rEg+8Q6tEnlDqewTxivUn46MxDoPZzdjYkb67ywX/5t1UzM862dMJKlBQaeHhin3jPTyGryIKaSGjy0hVDGb1aMjogg1tqxyrzBmQpppTSMkEapJuSjnPEf9u4p50jqqBSe14Pq40qhOW4IS7MMBVCGAU2jAJVxBEyjcwyM8wbPz4Lw4r87bdHXBmXn24Bec9y8jSZ6R</latexit>

p5

<latexit sha1_base64="RtLkGHayYJw83DAC6HZdu/eFnMo=">AAACEXicbVDLSsNAFL3xWesr6tJNsAhdlUS06q7gxqWCfUBbymRyawcnM2FmIpTQr3DrVv/Bnbj1C/wFv8JJWkStB4Y5nHsP93DChDNtfP/DWVhcWl5ZLa2V1zc2t7bdnd2Wlqmi2KSSS9UJiUbOBDYNMxw7iUIShxzb4d1FPm/fo9JMihszTrAfk1vBhowSY6WB6/ZCySM9ju2XJZNBfeBW/JpfwJsnwYxUGiUocDVwP3uRpGmMwlBOtO4GfmL6GVGGUY6Tci/VmBB6R26xa6kgMep+ViSfeIdWibyhVPYJ4xXqT0dGYp2Hs5sxMSP9d5aL/826qRme9TMmktSgoNNDw5R7Rnp5DV7EFFLDx5YQqpjN6tERUYQaW1a5VxgzIc20phGSCNWkXJRznuPku4p50jqqBfVacH1caVSnLUEJ9uEAqhDAKTTgEq6gCRTu4RGe4Nl5cF6cV+dturrgzDx78AvO+xck5Z6S</latexit>

p6

<latexit sha1_base64="AHK0nrRU1LpOxVTa1IhH+ei1FZY=">AAACEXicbVDLSsNAFL3xWesr6tJNsAiuSiJqdVdw47KCrUJbymRy2w6dzISZSaGEfoVbt/oP7sStX+Av+BVO0iK+DgxzOPce7uGECWfa+P67s7C4tLyyWlorr29sbm27O7stLVNFsUkll+ouJBo5E9g0zHC8SxSSOOR4G44u8/ntGJVmUtyYSYLdmAwE6zNKjJV6rtsJJY/0JLZflkx7tZ5b8at+Ae8vCeakUi9BgUbP/ehEkqYxCkM50bod+InpZkQZRjlOy51UY0LoiAywbakgMepuViSfeodWiby+VPYJ4xXqd0dGYp2Hs5sxMUP9e5aL/83aqemfdzMmktSgoLND/ZR7Rnp5DV7EFFLDJ5YQqpjN6tEhUYQaW1a5UxgzIc2spiGSCNW0XJRzkeP0q4q/pHVcDc6qwfVJpX40awlKsA8HcAQB1KAOV9CAJlAYwwM8wpNz7zw7L87rbHXBmXv24Aect08mgZ6T</latexit>

p7
<latexit sha1_base64="EnEwFa/DqrLXjHVf7dwDurBTOqQ=">AAACEXicbVDLSsNAFL3xWesr6tJNsAhdlUR87gpuXCrYB7SlTCa3dnAyE2YmhRL6FW7d6j+4E7d+gb/gVzhJi6j1wDCHc+/hHk6YcKaN7384C4tLyyurpbXy+sbm1ra7s9vUMlUUG1Ryqdoh0ciZwIZhhmM7UUjikGMrvL/M560RKs2kuDXjBHsxuRNswCgxVuq7bjeUPNLj2H5ZMumf992KX/MLePMkmJFKvQQFrvvuZzeSNI1RGMqJ1p3AT0wvI8owynFS7qYaE0LvyR12LBUkRt3LiuQT79AqkTeQyj5hvEL96chIrPNwdjMmZqj/znLxv1knNYPzXsZEkhoUdHpokHLPSC+vwYuYQmr42BJCFbNZPTokilBjyyp3C2MmpJnWNEQSoZqUi3Iucpx8VzFPmke14LQW3BxX6tVpS1CCfTiAKgRwBnW4gmtoAIURPMITPDsPzovz6rxNVxecmWcPfsF5/wIoHZ6U</latexit>

p8

<latexit sha1_base64="b5MWbhCtoIcoBuQZk/2t5aCElIc=">AAACFHicbVDLSsNAFL2pr1pfVZdugkXoqiTic1dw47KCbYWmlMnkth06mQkzE6GE/oZbt/oP7sSte3/Br3CSivg6MMzh3Hu4hxMmnGnjeW9OaWFxaXmlvFpZW9/Y3Kpu73S0TBXFNpVcqpuQaORMYNsww/EmUUjikGM3nFzk8+4tKs2kuDbTBPsxGQk2ZJQYKw2qu0EoeaSnsf2yADmfDfxBteY1vALuX+J/klqzDAVag+p7EEmaxigM5UTrnu8lpp8RZRjlOKsEqcaE0AkZYc9SQWLU/awIP3MPrBK5Q6nsE8Yt1O+OjMQ6z2c3Y2LG+vcsF/+b9VIzPOtnTCSpQUHnh4Ypd4108ybciCmkhk8tIVQxm9WlY6IINbavSlAYMyHNvKkxkgjVrFKUc57j+KuKv6Rz2PBPGv7VUa1Zn7cEZdiDfaiDD6fQhEtoQRsoTOEeHuDRuXOenGfnZb5acj49u/ADzusHf5Of1A==</latexit>

`1

<latexit sha1_base64="7iyXCYXvtnf7LlcEQO+3L706C+s=">AAACFHicbVDLSsNAFL3xWeur6tJNsAhdlaT43BXcuKxgq9CUMpnctkMnM2FmIpTQ33DrVv/Bnbh17y/4FU5SEbUeGOZw7j3cwwkTzrTxvHdnYXFpeWW1tFZe39jc2q7s7Ha0TBXFNpVcqtuQaORMYNsww/E2UUjikONNOL7I5zd3qDST4tpMEuzFZCjYgFFirNSv7AWh5JGexPbLAuR82m/0K1Wv7hVw54n/RarNEhRo9SsfQSRpGqMwlBOtu76XmF5GlGGU47QcpBoTQsdkiF1LBYlR97Ii/NQ9tErkDqSyTxi3UH86MhLrPJ/djIkZ6b+zXPxv1k3N4KyXMZGkBgWdHRqk3DXSzZtwI6aQGj6xhFDFbFaXjogi1Ni+ykFhzIQ0s6ZGSCJU03JRznmO4+8q5kmnUfdP6v7VUbVZm7UEJdiHA6iBD6fQhEtoQRsoTOABHuHJuXeenRfndba64Hx59uAXnLdPgS+f1Q==</latexit>

`2

<latexit sha1_base64="XI+bVvG2FxLrcO8kqclPBNw10v8=">AAACFHicbVDLSsNAFL3xWeur6tJNsAiuSuLbXcGNSwVbC00pk8ltO3QyE2YmQgn9Dbdu9R/ciVv3/oJf4SQtotYDwxzOvYd7OGHCmTae9+HMzS8sLi2XVsqra+sbm5Wt7aaWqaLYoJJL1QqJRs4ENgwzHFuJQhKHHO/C4WU+v7tHpZkUt2aUYCcmfcF6jBJjpW5lJwglj/Qotl8WIOfj7lG3UvVqXgF3lvhTUq2XoMB1t/IZRJKmMQpDOdG67XuJ6WREGUY5jstBqjEhdEj62LZUkBh1JyvCj919q0RuTyr7hHEL9acjI7HO89nNmJiB/jvLxf9m7dT0zjsZE0lqUNDJoV7KXSPdvAk3Ygqp4SNLCFXMZnXpgChCje2rHBTGTEgzaWqAJEI1LhflXOQ4+a5iljQPa/5pzb85rtYPJi1BCXZhDw7AhzOowxVcQwMojOARnuDZeXBenFfnbbI650w9O/ALzvsXgsuf1g==</latexit>

`3

<latexit sha1_base64="VSjXtvk3tP4GqyhJeZJraKYvkis=">AAACEXicbVDLSsNAFL3xWesr6tJNsAhdlUR87gpuXCrYB7SlTCa3dnAyE2YmYgn9Crdu9R/ciVu/wF/wK5ykRdR6YJjDufdwDydMONPG9z+cufmFxaXl0kp5dW19Y9Pd2m5qmSqKDSq5VO2QaORMYMMww7GdKCRxyLEV3p7n89YdKs2kuDajBHsxuRFswCgxVuq7bjeUPNKj2H7Z/bgf9N2KX/MLeLMkmJJKvQQFLvvuZzeSNI1RGMqJ1p3AT0wvI8owynFc7qYaE0JvyQ12LBUkRt3LiuRjb98qkTeQyj5hvEL96chIrPNwdjMmZqj/znLxv1knNYPTXsZEkhoUdHJokHLPSC+vwYuYQmr4yBJCFbNZPTokilBjyyp3C2MmpJnUNEQSoRqXi3LOchx9VzFLmge14LgWXB1W6tVJS1CCXdiDKgRwAnW4gEtoAIU7eIQneHYenBfn1XmbrM45U88O/ILz/gUp0Z6V</latexit>

x1

<latexit sha1_base64="Yr4EdV941G5d4F9Y7HI7OEu2xuQ=">AAACEXicbVDLSsNAFL2pr1pfUZdugkVwVZLic1dw41LBVqEtZTK5bYdOZsLMRCyhX+HWrf6DO3HrF/gLfoWTtIivA8Mczr2Hezhhwpk2vv/ulObmFxaXysuVldW19Q13c6ulZaooNqnkUt2ERCNnApuGGY43iUIShxyvw9FZPr++RaWZFFdmnGA3JgPB+owSY6We63ZCySM9ju2X3U169Z5b9Wt+Ae8vCWak2ihDgYue+9GJJE1jFIZyonU78BPTzYgyjHKcVDqpxoTQERlg21JBYtTdrEg+8fasEnl9qewTxivU746MxDoPZzdjYob69ywX/5u1U9M/6WZMJKlBQaeH+in3jPTyGryIKaSGjy0hVDGb1aNDogg1tqxKpzBmQpppTUMkEapJpSjnNMfhVxV/SateC45qweVBtbE/bQnKsAO7sA8BHEMDzuECmkDhFh7gEZ6ce+fZeXFep6slZ+bZhh9w3j4BK22elg==</latexit>

x2

<latexit sha1_base64="tPqvzQuur0DYkQKtz7xTE46gnjY=">AAACEXicbVDLSsNAFL3xWesr6tJNsAiuSuLbXcGNSwVbC20pk8ltO3QyE2YmxRL6FW7d6j+4E7d+gb/gVzhJRXwdGOZw7j3cwwkTzrTx/TdnZnZufmGxtFReXlldW3c3NhtapopinUouVTMkGjkTWDfMcGwmCkkccrwJh+f5/GaESjMprs04wU5M+oL1GCXGSl3XbYeSR3oc2y+7nXQPum7Fr/oFvL8k+CSVWgkKXHbd93YkaRqjMJQTrVuBn5hORpRhlOOk3E41JoQOSR9blgoSo+5kRfKJt2uVyOtJZZ8wXqF+d2Qk1nk4uxkTM9C/Z7n436yVmt5pJ2MiSQ0KOj3US7lnpJfX4EVMITV8bAmhitmsHh0QRaixZZXbhTET0kxrGiCJUE3KRTlnOY6+qvhLGvvV4LgaXB1WanvTlqAE27ADexDACdTgAi6hDhRGcA8P8OjcOU/Os/MyXZ1xPj1b8APO6wctCZ6X</latexit>

x3 <latexit sha1_base64="acd9JfZNbDkl7lvH5hNr4W4k70I=">AAACEXicbVDLSsNAFL2pr1pfUZdugkVwVRKpr13BjUsFW4W2lMnkth06mQkzE7GEfoVbt/oP7sStX+Av+BVO0iK+DgxzOPce7uGECWfa+P67U5qbX1hcKi9XVlbX1jfcza2Wlqmi2KSSS3UTEo2cCWwaZjjeJApJHHK8Dkdn+fz6FpVmUlyZcYLdmAwE6zNKjJV6rtsJJY/0OLZfdjfp1Xtu1a/5Bby/JJiRaqMMBS567kcnkjSNURjKidbtwE9MNyPKMMpxUumkGhNCR2SAbUsFiVF3syL5xNuzSuT1pbJPGK9QvzsyEus8nN2MiRnq37Nc/G/WTk3/pJsxkaQGBZ0e6qfcM9LLa/AippAaPraEUMVsVo8OiSLU2LIqncKYCWmmNQ2RRKgmlaKc0xyHX1X8Ja2DWnBUCy7r1cb+tCUoww7swj4EcAwNOIcLaAKFW3iAR3hy7p1n58V5na6WnJlnG37AefsELqWemA==</latexit>
x4

<latexit sha1_base64="gboL0Go5q/OALpzyy8xHMtqKhAQ=">AAACQnicbZDLThsxFIbPQIEQbilddmM1QmIVzSCui0qpuumSSoREykSRx3OSWPFlZHsQ0SjP0xfptltQX4EdYssCzwRVUPgly7++c458/CeZ4NaF4d9gafnDyupabb2+sbm1vdP4uHtpdW4YdpgW2vQSalFwhR3HncBeZpDKRGA3mX4v690rNJZrdeFmGQ4kHSs+4ow6j4aNb3GiRWpn0l/F9XzIyVcSJ4kkL3lW8jh+xa4qhokcNpphK6xE3pro2TTbNah0PmzcxalmuUTlmKDW9qMwc4OCGseZwHk9zi1mlE3pGPveKirRDorqq3Oy50lKRtr4oxyp6MuJgkpbbug7JXUT+3+thO/V+rkbnQ4KrrLcoWKLh0a5IE6TMjeScoPMiZk3lBnudyVsQg1lzqdbj6vBQmm3yHWCNEUzr1fhnJU6+hfFW3N50IqOW9HPw2Z7f5ES1OAzfIF9iOAE2vADzqEDDH7BH7iB2+B3cBfcBw+L1qXgeeYTvFLw+AQySLMV</latexit>

xi =

pi

vi

�

<latexit sha1_base64="D0t0Gbpa4yeBu+6gtb0njrI4NxM=">AAACJXicbVDLThtBEOwFQowTwEmOXEYxkbhg7SLyuhnlkgNIoGBAsi2rd7aNR57HamY2irXyD/AjXHNN/iG3CIkTd76C3TVCvEoaqVTVNT1TcSqF82F4GczNL7xYfFlbqr96vbyy2njz9siZzHLqcCONPYnRkRSaOl54SSepJVSxpON4/K30j3+SdcLoQz9Jqa/wVIuh4OgLadBY76nY/Mo5aqMLUTKJOlFox5vlrQn7sbuzNx00mmErrMCekuiWNNs1qLA/aFz3EsMzRdpzic51ozD1/RytF1zStN7LHKXIx3hK3YJqVOT6efWbKfuQlYuHxhZHe1ap9xM5KucmKi4mFfqRe+yV4nNeN/PDL/1c6DTzpPls0TCTzBtWVsMSYYl7OSkIciuKtzI+QovcFwXWe1Uw18bPqhsRJmSn9aqcryU+3lXxlBxttaJPrehgu9nemLUENViD97ABEXyGNnyHfegAhzP4DX/gb3Ae/Av+Bxez0bngNvMOHiC4ugEipqZf</latexit>

canonical landmark-based SLAM
<latexit sha1_base64="+g2/DAFVnlXF6YvmcHomzWFyuvY=">AAACH3icbZDNSiNBFIVvOzoTozPGcTkghUHIbEK3+De7gBuXGTAqJCFUV26bwvppqm4Phia7eZHZznbmHdyJW1/Bp7C7I+LfgYLDOfdSVV+cKukpDO+ChQ+LSx8/1ZbrK6ufv6w11r+eeps5gT1hlXXnMfeopMEeSVJ4njrkOlZ4Fl8elf3ZL3ReWnNC0xSHml8YmUjBqYhGjc2Bju1V3vLkMkGZQ5Y4q5m2Zf19Nmo0w3ZYib010aNpdmpQqTtq3A/GVmQaDQnFve9HYUrDnDuSQuGsPsg8plxc8gvsF9ZwjX6YV/+Yse0iGbPEuuIYYlX6fCPn2vupjotJzWniX3dl+F7Xzyg5HObSpBmhEfOLkkwxsqyEwsbSoSA1LQwXThZvZWLCHRdUoKsPqsXcWJpDmyAfo5vVKzg/Su09oXhrTnfa0X47+rnb7LTmlKAG32ALWhDBAXTgGLrQAwG/4S/8g//Bn+A6uAlu56MLwePOBrxQcPcAKGakZA==</latexit>

(structure from motion)

<latexit sha1_base64="8tITPc6bXNvcbi3uPX8pOIRZTOs=">AAACKnicbVDLahtBEOyVnVhWHpadYy6DRcC5iN1gJ/FNkIuPMkSyQRJidtSSJprHMtNrIhZ9Q34k11yTf/BN5OpTviKjlTCJ5YKBoqqa6a40U9JTHC+jys7uk6d71f3as+cvXh7UD4+63uZOYEdYZd11yj0qabBDkhReZw65ThVepbNPK//qBp2X1nymeYYDzSdGjqXgFKRh/W1fp/Zr4aXOFXGDNveMHP+CgqybM/QkdRldDOuNuBmXYNsk2ZBGqwol2sP6n/7IilyjIaG4970kzmhQcEdSKFzU+rnHjIsZn2AvUMM1+kFRnrRgb4IyYmPrwjPESvXfiYJr7+c6Dcmw39Q/9FbiY14vp/HHQSFNlhMasf5onCtGlq36YSPpwu1qHggXToZdmZhyxwWFFmv9crAwltb9TZGP0C1qZTnnK5zdV7FNuu+ayftmcnnaaJ2sW4IqvIZjOIEEPkALLqANHRDwDX7AT/gVfY9uo2X0ex2tRJuZV/Aforu/quWp8w==</latexit>

simultaneous trajectory estimation
<latexit sha1_base64="bJWI60TfCJ4Tb+2iBjPog2fC+fA=">AAACG3icbZBPSxtBGMbf9V9jtDa1N70MDUJ6Cbtiq95SSsFLQdGokITw7uybZHD+LDOzxbAE+kW8em2/Q2/i1UO/gp/CzUbE1j4w8PA878vM/OJUCufD8E8wN7+wuPSqslxdWX299qb2dv3UmcxyanMjjT2P0ZEUmtpeeEnnqSVUsaSz+OLLtD/7TtYJo0/8OKWewqEWA8HRF1G/ttFVsbnMUSdMYZoKPWSN45Ovn799mPRr9bAZlmIvTfRo6q0KlDrs1+67ieGZIu25ROc6UZj6Xo7WCy5pUu1mjlLkFzikTmE1KnK9vPzDhG0VScIGxhZHe1amzzdyVM6NVVxMKvQj9283Df/XdTI/2OvlQqeZJ81nFw0yybxhUyAsEZa4l+PCILeieCvjI7TIfYGt2i0Xc238DNiIMCE7qZZw9qf6+ITipTndbkafmtHRTr3VmFGCCmzCe2hABLvQggM4hDZw+AHX8BN+BVfB7+AmuJ2NzgWPO+/gLwV3DyPOoZo=</latexit>

and mapping (STEAM)

<latexit sha1_base64="lpGSL93mWhYMnX2/a8hp+K5o5eU=">AAACJXicbZDPSltBFMbP1f6JUWu0SzdDUyFdGO4VW+su4KLumkKjQhLC3MlJMjj/mDm3NF7yAn2Rbt227+BOhK7c+xS9uZFSaz8Y+Pi+c5iZX+qUDBTHv6Kl5SdPnz2vrFRX19ZfbNQ2t06CzbzAjrDK+rOUB1TSYIckKTxzHrlOFZ6m50fz/vQL+iCt+UxTh33Nx0aOpOBURIPa655O7dfc2YC7Y8/dhFlHUsuLsmeN9oePb2aDWj1uxqXYY5Pcm3qrAqXag9pdb2hFptGQUDyEbhI76ufckxQKZ9VeFtBxcc7H2C2s4RpDPy9/M2M7RTJkI+uLY4iV6d8bOdchTHVaTGpOk/BvNw//13UzGr3v59K4jNCIxUWjTDGybI6GDaVHQWpaGC68LN7KxIR7LqgAWO2Vi7mxtEA3QT5EP6uWcA7nevsHxWNzstdM3jWTT/v1VmNBCSqwDa+gAQkcQAuOoQ0dEPANLuEH/Iy+R1fRdXSzGF2K7ndewgNFt78BM1OmaA==</latexit>

pose-graph optimization (PGO)
<latexit sha1_base64="cUPWz9ra70fDOsZ4/H++hArTos0=">AAACGXicbZDNSgMxFIXv+FvrX9WN4CZYhLqwzIi/u4obFwqKVoW2lEx62wYzyZBkxDLUF3HrVt/Bnbh15Sv4FE6nRdR6IHA4516SfH4ouLGu++GMjI6NT0xmprLTM7Nz87mFxUujIs2wzJRQ+tqnBgWXWLbcCrwONdLAF3jl3xz2+qtb1IYreWE7IdYC2pK8yRm1SVTPLVcDX93FhVAZ3GhpGrbJ+fHByXq3nsu7RTcVGTbewORLGUh1Ws99VhuKRQFKywQ1puK5oa3FVFvOBHaz1chgSNkNbWElsZIGaGpx+oMuWUuSBmkqnRxpSZr+3IhpYEwn8JPJgNq2+dv1wv+6SmSbe7WYyzCyKFn/omYkiFWkh4M0uEZmRScxlGmevJWwNtWU2QRatpouxlLZPq420gbqbjaFs9/T9jeKYXO5WfR2it7ZVr5U6FOCDKzAKhTAg10owRGcQhkY3MMjPMGz8+C8OK/OW390xBnsLMEvOe9f1Reg8A==</latexit>

(pose-graph SLAM)

<latexit sha1_base64="lECXM6hVGHTQFnb5AYRe6ojWSDs=">AAACHnicbVDNSisxGP3G39rr1apLEYLlQu+mzFz83VXduFSwKrSlZDJfba6ZZEgyYhm68kXcutV3cCdu9RV8CjNTEf8OBA7nfCf5csJEcGN9/9kbG5+YnJouzZR/zf6em68sLB4blWqGTaaE0qchNSi4xKblVuBpopHGocCT8Hwv908uUBuu5JEdJNiJ6ZnkPc6odVK3stKOQ3WZhamMBBIa/U+NjVFaUtvd+TvsVqp+3S9AvpPgjVQbJShw0K28tCPF0vwGJqgxrcBPbCej2nImcFhupwYTys7pGbYclTRG08mKbwzJH6dEpKe0O26DQv2YyGhszCAO3WRMbd989XLxJ6+V2t5WJ+MySS1KNnqolwpiFck7IRHXyKwYOEKZ5m5XwvpUU2Zdc+V2EcyksqPO+kgj1MNyUc52jvX3Kr6T43/1YKMeHK5VG7VRS1CCZViFGgSwCQ3YhwNoAoMruIFbuPOuvXvvwXscjY55b5kl+ATv6RVcNaNb</latexit>

bundle adjustment (BA)

<latexit sha1_base64="4N7Wgeg/xukOKoR4S2YJYTSNh3M=">AAACEXicbZDLSiNBFIZPexljxhlbXbopzAiuQvfgdRdw4zKCUSEJobpyYgrr0lRVi6HJU7h1q+/gTtz6BL6CT2F1J4i3Hwp+/v8c6vAlqeDWRdFLMDM7N/9robJY/b305+9yuLJ6anVmGLaYFtqcJ9Si4ApbjjuB56lBKhOBZ8nlYdGfXaGxXKsTN0qxK+mF4gPOqPNRLww7MtHXudJE6iIZ98JaVI9Kke8mnppaowKlmr3wtdPXLJOoHBPU2nYcpa6bU+M4EziudjKLKWWX9ALb3ioq0Xbz8vIx2fRJnwy08U85UqYfN3IqrR3JxE9K6ob2a1eEP3XtzA32uzlXaeZQsclHg0wQp0mBgfS5QebEyBvKDPe3EjakhjLnYVU75aKn4iaYhkj7aMbVEs5BoZ13FN/N6f96vFuPj7drjX8TSlCBddiALYhhDxpwBE1oAYMruIU7uA9ugofgMXiajM4E0501+KTg+Q03gp6b</latexit>

no motion
<latexit sha1_base64="Z0JecP88ZehweYIK5KKnmatPFyc=">AAACC3icbZDLSsNAFIZP6q3GW9Wlm2AVXJVEvO4KblxWsBdoQplMT9uhk5kwMxFL6CO4davv4E7c+hC+gk9hmhZR6w8DP/9/DnP4wpgzbVz3wyosLC4trxRX7bX1jc2t0vZOQ8tEUaxTyaVqhUQjZwLrhhmOrVghiUKOzXB4Nembd6g0k+LWjGIMItIXrMcoMVnk+1Eo79NYManGnVLZrbi5nHnjzUy5WoRctU7p0+9KmkQoDOVE67bnxiZIiTKMchzbfqIxJnRI+tjOrCAR6iDNbx47h1nSdXpSZU8YJ09/bqQk0noUhdlkRMxA/+0m4X9dOzG9iyBlIk4MCjr9qJdwx0hnAsDpMoXU8FFmCFUsu9WhA6IINRkm288XUyFNDqgzQNJFNbZzOJcTnX6jmDeN44p3VvFuTsrVgyklKMIe7MMReHAOVbiGGtSBQgyP8ATP1oP1Yr1ab9PRgjXb2YVfst6/ANF7nNs=</latexit>

prior

<latexit sha1_base64="Gp1DCmbwOtMsi6yoWu3Yyr8O4yE=">AAACFHicbVDLSgNBEOz1GeMrmqOXwSh4Crvi8xbw4lHBGCEJYXbSSYbMY5mZFcOS3/DqVf/Bm3j17i/4Fe5uRNRYMFBT1UU3FUaCW+f7797M7Nz8wmJhqbi8srq2XtrYvLY6NgzrTAttbkJqUXCFdcedwJvIIJWhwEY4PMv8xi0ay7W6cqMI25L2Fe9xRl0qdUrllgz1XSJ19iWR4dqMO6WKX/VzkGkSfJFKrQA5Ljqlj1ZXs1iickxQa5uBH7l2Qo3jTOC42IotRpQNaR+bKVVUom0n+fFjspsqXdLTJn3KkVz9mUiotHYkw3RSUjewf71M/M9rxq530k64imKHik0W9WJBnCZZE6TLDTInRimhzPD0VsIG1FDm0r6KrTyYKO0mTQ2QdtGMi3k5pxkOv6uYJtf71eCoGlweVGo7k5agAFuwDXsQwDHU4BwuoA4MRvAAj/Dk3XvP3ov3Ohmd8b4yZfgF7+0T2K2gCA==</latexit>

motion prior

<latexit sha1_base64="ACt9Z2ln8ntfZS9GhpVYaWod1cs=">AAACF3icbZDLSgNBEEVrfMb4igpu3AxGwY1hRnzuAm5cKhgVkhB6OhXT2I+hu0YMYz7ErVv9B3fi1qW/4Fc4mYj4utBwubeKLk4US+EoCN68kdGx8YnJwlRxemZ2br60sHjmTGI51riRxl5EzKEUGmskSOJFbJGpSOJ5dHU46M+v0Tph9Cn1YmwqdqlFR3BGWdQqLTdUZG5SbjQJnZjEbZJQ2G+VykElyOX/NeGnKVcLkOu4VXpvtA1PFGrikjlXD4OYmimzJLjEfrGROIwZv2KXWM+sZgpdM83v7/vrWdL2O8ZmT5Ofp983Uqac66kom1SMuu53Nwj/6+oJdfabqdBxQqj58KNOIn0y/gCG3xYWOcleZhi3IrvV511mGacMWbGRL6ba0BBWF1kbbb+YwzkYaOcLxV9ztlUJdyvhyXa5ujakBAVYgVXYgBD2oApHcAw14HAL9/AAj96d9+Q9ey/D0RHvc2cJfsh7/QCBIqF3</latexit>

continuous-time

<latexit sha1_base64="UjHjxjjNnihlDN+YL7je8bmFNVQ=">AAACCnicbVDLSsNAFL2prxpfVZduglVwVRLxuSu4cVnBPqAtZTK9bYdOZsLMRCwhf+DWrf6DO3HrT/gLfoVJWkStBwYO59zDvXP8kDNtXPfDKiwsLi2vFFfttfWNza3S9k5Dy0hRrFPJpWr5RCNnAuuGGY6tUCEJfI5Nf3yV+c07VJpJcWsmIXYDMhRswCgxqdTuBL68j7mUYdIrld2Km8OZJ96MlKtFyFHrlT47fUmjAIWhnGjd9tzQdGOiDKMcE7sTaQwJHZMhtlMqSIC6G+cnJ85hqvSdgVTpE8bJ1Z+JmARaTwI/nQyIGem/Xib+57UjM7joxkyEkUFBp4sGEXeMdLL/O32mkBo+SQmhiqW3OnREFKEmbcnu5MFYSJP30xsh6aNK7Lycywyn31XMk8ZxxTureDcn5erBtCUowh7swxF4cA5VuIYa1IGChEd4gmfrwXqxXq236WjBmmV24Res9y/wH5xf</latexit>

loop<latexit sha1_base64="RAy4UoAOA9HkVwW+H5wjVP/K+JE=">AAACDXicbZDLSsNAFIZPvNZ4q7p0E6yCq5KI113BjcsK9gJtLJPpaTt0MhNmJmIJeQa3bvUd3Ilbn8FX8ClM0yJq/WHg5//PYQ5fEHGmjet+WHPzC4tLy4UVe3VtfWOzuLVd1zJWFGtUcqmaAdHImcCaYYZjM1JIwoBjIxhejvvGHSrNpLgxowj9kPQF6zFKTBbdtsNA3ieUSx0rTDvFklt2czmzxpuaUqUAuaqd4me7K2kcojCUE61bnhsZPyHKMMoxtduxxojQIeljK7OChKj9JL86dQ6ypOv0pMqeME6e/txISKj1KAyyyZCYgf7bjcP/ulZseud+wkQUGxR08lEv5o6RzhiB02UKqeGjzBCqWHarQwdEEWoyUHY7X0yENDmizgBJF1Vq53Auxjr5RjFr6kdl77TsXR+XKvsTSlCAXdiDQ/DgDCpwBVWoAQUFj/AEz9aD9WK9Wm+T0TlrurMDv2S9fwF2jp3A</latexit>
closure

<latexit sha1_base64="5pg8PDsTOkhDaw+spFKGXXVogCM=">AAACEHicbZDLSgNBEEVrfMb4SNSlm8EouAoz4nMXcONSwaiQhNDTUzGN/Ri6a8Qw5CfcutV/cCdu/QN/wa9wMhHxdaHhcm8VXZwokcJRELx5E5NT0zOzpbny/MLiUqW6vHLuTGo5NrmRxl5GzKEUGpskSOJlYpGpSOJFdH006i9u0Dph9BkNEuwodqVFT3BGedStVtoqMreZiY1CsoNht1oL6kEh/68JP02tUYJCJ93qezs2PFWoiUvmXCsMEupkzJLgEoflduowYfyaXWErt5opdJ2sOHzob+ZJ7PeMzZ8mv0i/b2RMOTdQUT6pGPXd724U/te1UuoddDKhk5RQ8/FHvVT6ZPwRBT8WFjnJQW4YtyK/1ed9ZhmnnFW5XSxm2tCYUh9ZjHZYLuAcjrT7heKvOd+uh3v18HSn1tgYU4ISrME6bEEI+9CAYziBJnBI4R4e4NG78568Z+9lPDrhfe6swg95rx/aJZ5x</latexit>

odometry

<latexit sha1_base64="5pg8PDsTOkhDaw+spFKGXXVogCM=">AAACEHicbZDLSgNBEEVrfMb4SNSlm8EouAoz4nMXcONSwaiQhNDTUzGN/Ri6a8Qw5CfcutV/cCdu/QN/wa9wMhHxdaHhcm8VXZwokcJRELx5E5NT0zOzpbny/MLiUqW6vHLuTGo5NrmRxl5GzKEUGpskSOJlYpGpSOJFdH006i9u0Dph9BkNEuwodqVFT3BGedStVtoqMreZiY1CsoNht1oL6kEh/68JP02tUYJCJ93qezs2PFWoiUvmXCsMEupkzJLgEoflduowYfyaXWErt5opdJ2sOHzob+ZJ7PeMzZ8mv0i/b2RMOTdQUT6pGPXd724U/te1UuoddDKhk5RQ8/FHvVT6ZPwRBT8WFjnJQW4YtyK/1ed9ZhmnnFW5XSxm2tCYUh9ZjHZYLuAcjrT7heKvOd+uh3v18HSn1tgYU4ISrME6bEEI+9CAYziBJnBI4R4e4NG78568Z+9lPDrhfe6swg95rx/aJZ5x</latexit>

odometry

Figure 1.3 A few variants of SLAM problems that can all be viewed through the factor-
graph lens. Canonical landmark-based SLAM has both pose and landmark variables; land-
marks are measured from poses and there is some motion prior between poses typically
based on odometry. BA is the same but without the motion prior. STEAM is similar but
now poses can be replaced by higher-order states and a smooth continuous-time motion
prior is used. PGO does not have landmark variables but enjoys extra loop-closure mea-
surements between poses.

many assignments of a 2D location to the landmark will be equally ‘correct’. This is

the same as saying that we have infinite uncertainty in some subset of the domain

of the unknowns, which is where prior knowledge should come to the rescue.

1.2 From MAP Inference to Least Squares

In SLAM, maximum a posteriori (MAP) inference is the process of determining the

values for the unknowns x that maximally agree with the information present in the

uncertain measurements. In real life we are not given the ground-truth locations for

the landmarks, nor the time-varying pose of the robot, although in many practical

cases we might have a good initial estimate. Below we review how to model both

prior knowledge and measurements using probability densities, how the posterior

1.2 From MAP Inference to Least Squares 27

<latexit sha1_base64="c2peMPeVPvUSy8RewgFjN9zoU1c=">AAACEXicbVDLSgMxFM3UV62vUUEEN4NFcFVmBF+7ghuXFewD2lIymds2NJMMSaZQhn6FW7f6Ae7c+Vj6Bf6CP6GZaRG1Hgg5nHsP93D8iFGlXffdys3NLywu5ZcLK6tr6xv25lZNiVgSqBLBhGz4WAGjHKqaagaNSAIOfQZ1f3CRzutDkIoKfq1HEbRD3OO0SwnWRurYdssXLFCj0HxJNO54HbvoltwMzizxpqRY3n19qH0+71Q69kcrECQOgWvCsFJNz410O8FSU8JgXGjFCiJMBrgHTUM5DkG1kyz52DkwSuB0hTSPaydTfzoSHKo0nNkMse6rv7NU/G/WjHX3rJ1QHsUaOJkc6sbM0cJJa3ACKoFoNjIEE0lNVof0scREm7IKrcyYcKEnNfUBByDHhayc8xTH31XMktpRyTspeVdeseyiCfJoD+2jQ+ShU1RGl6iCqoigIbpFd+jeurEerSfrZbKas6aebfQL1tsXbLGiQw==</latexit>

p1

<latexit sha1_base64="phrtd3Xp7cwooxJyO7tk7KttQOM=">AAACEXicbVDLSgMxFM34rPU1KojgZrAIrspMwdeu4MZlBfuAtpRM5rYNzSRDkimUoV/h1q1+gDt3PpZ+gb/gT2hmWkStB0IO597DPRw/YlRp13235uYXFpeWcyv51bX1jU17a7umRCwJVIlgQjZ8rIBRDlVNNYNGJAGHPoO6P7hI5/UhSEUFv9ajCNoh7nHapQRrI3Vsu+ULFqhRaL4kGndKHbvgFt0MzizxpqRQ3nt9qH0+71Y69kcrECQOgWvCsFJNz410O8FSU8JgnG/FCiJMBrgHTUM5DkG1kyz52Dk0SuB0hTSPaydTfzoSHKo0nNkMse6rv7NU/G/WjHX3rJ1QHsUaOJkc6sbM0cJJa3ACKoFoNjIEE0lNVof0scREm7LyrcyYcKEnNfUBByDH+ayc8xTH31XMklqp6J0UvSuvUHbRBDm0jw7QEfLQKSqjS1RBVUTQEN2iO3Rv3ViP1pP1Mlmds6aeHfQL1tsXbk2iRA==</latexit>

p2

<latexit sha1_base64="gh4kf8/VH0qi50vub22NJ+SNqfo=">AAACEXicbVDLSgMxFM34rPU1KojgZrAIrsqM4mtXcOOygn1AW0omc9uGZpIhyRTK0K9w61Y/wJ07H0u/wF/wJzQzLaLWAyGHc+/hHo4fMaq0675bM7Nz8wuLuaX88srq2rq9sVlVIpYEKkQwIes+VsAoh4qmmkE9koBDn0HN71+k89oApKKCX+thBK0QdzntUIK1kdq23fQFC9QwNF8SjdpHbbvgFt0MzjTxJqRQ2nl9qH4+b5fb9kczECQOgWvCsFINz410K8FSU8JglG/GCiJM+rgLDUM5DkG1kiz5yNk3SuB0hDSPaydTfzoSHKo0nNkMse6pv7NU/G/WiHXnrJVQHsUaOBkf6sTM0cJJa3ACKoFoNjQEE0lNVof0sMREm7LyzcyYcKHHNfUAByBH+ayc8xTH31VMk+ph0TspeldeoeSiMXJoF+2hA+ShU1RCl6iMKoigAbpFd+jeurEerSfrZbw6Y008W+gXrLcvb+miRQ==</latexit>

p3

<latexit sha1_base64="6gDH420vd7LbG+VvekO2O3wewhw=">AAACEXicbVDLSgMxFM34rPU1KojgZrAIrsqM+NwV3LisYB/QlpLJ3LahmWRIMoUy9CvcutUPcOfOx9Iv8Bf8Cc1Mi6j1QMjh3Hu4h+NHjCrtuu/WzOzc/MJibim/vLK6tm5vbFaViCWBChFMyLqPFTDKoaKpZlCPJODQZ1Dz+xfpvDYAqajg13oYQSvEXU47lGBtpLZtN33BAjUMzZdEo/ZR2y64RTeDM028CSmUdl4fqp/P2+W2/dEMBIlD4JowrFTDcyPdSrDUlDAY5ZuxggiTPu5Cw1COQ1CtJEs+cvaNEjgdIc3j2snUn44EhyoNZzZDrHvq7ywV/5s1Yt05ayWUR7EGTsaHOjFztHDSGpyASiCaDQ3BRFKT1SE9LDHRpqx8MzMmXOhxTT3AAchRPivnPMXxdxXTpHpY9E6K3pVXKLlojBzaRXvoAHnoFJXQJSqjCiJogG7RHbq3bqxH68l6Ga/OWBPPFvoF6+0LcYWiRg==</latexit>

p4

<latexit sha1_base64="clXRegnHg7LXSCriWybj2yujQ28=">AAACFHicbVC7SgNBFJ31GeMrGqxsFoNgFXYFX13AxjKCeUA2hNnZm2TI7MwyMyuEJdj7Aba2Wtvaia29nbUW/oKzmyBqPDDM4dx7uIfjR4wq7Tiv1szs3PzCYm4pv7yyurZe2NisKxFLAjUimJBNHytglENNU82gGUnAoc+g4Q9O03njEqSigl/oYQTtEPc47VKCtZE6haLnCxaoYWi+xAPGRh23Uyg5ZSeDPU3cCSlVtj6u3q4/H6qdwrsXCBKHwDVhWKmW60S6nWCpKWEwynuxggiTAe5By1COQ1DtJAs/sneNEthdIc3j2s7Un44EhyrNZzZDrPvq7ywV/5u1Yt09bieUR7EGTsaHujGztbDTJuyASiCaDQ3BRFKT1SZ9LDHRpq+8lxkTLvS4qT7gAOQon5VzkuLgu4ppUt8vu4dl99wtVRw0Rg5tox20h1x0hCroDFVRDRE0RLfoDt1bN9aj9WQ9j1dnrImniH7BevkC+7CkXA==</latexit>

`1
<latexit sha1_base64="w8yJ7CrK0Bsi8YFKYFo4XpqSpX0=">AAACFHicbVC7SgNBFJ31GeMrGqxsFoNgFXYFX13AxjKCiUI2hNnZm2TI7MwyMyuEZbH3A2xttba1E1t7O2st/AVnd0V8HRjmcO493MPxI0aVdpxna2JyanpmtjRXnl9YXFqurKy2lYglgRYRTMgzHytglENLU83gLJKAQ5/BqT86zOan5yAVFfxEjyPohnjAaZ8SrI3Uq1Q9X7BAjUPzJR4wlva2e5WaU3dy2H+J+0lqjbW3i5fL97tmr/LqBYLEIXBNGFaq4zqR7iZYakoYpGUvVhBhMsID6BjKcQiqm+ThU3vTKIHdF9I8ru1c/e5IcKiyfGYzxHqofs8y8b9ZJ9b9/W5CeRRr4KQ41I+ZrYWdNWEHVALRbGwIJpKarDYZYomJNn2VvdyYcKGLpoaAA5BpOS/nIMPOVxV/SXu77u7W3WO31nBQgRJaRxtoC7loDzXQEWqiFiJojK7RDbq1rqx768F6LFYnrE9PFf2A9fQB/UykXQ==</latexit>

`2
<latexit sha1_base64="ODSV+eXCaEvOBru2vgngDIcQy6A=">AAACFHicbVC7SgNBFJ2Nrxhf0WBlsxgEq7Cr+OoCNpYRzAOyIczO3pghszPLzKwQlmDvB9jaam1rJ7b2dtZa+AvOboL4OjDM4dx7uIfjR4wq7TgvVm5qemZ2Lj9fWFhcWl4prq41lIglgToRTMiWjxUwyqGuqWbQiiTg0GfQ9AfH6bx5AVJRwc/0MIJOiM857VGCtZG6xZLnCxaoYWi+xAPGRt3dbrHsVJwM9l/iTki5uv5++Xr1cV/rFt+8QJA4BK4Jw0q1XSfSnQRLTQmDUcGLFUSYDPA5tA3lOATVSbLwI3vLKIHdE9I8ru1M/e5IcKjSfGYzxLqvfs9S8b9ZO9a9w05CeRRr4GR8qBczWws7bcIOqASi2dAQTCQ1WW3SxxITbfoqeJkx4UKPm+oDDkCOClk5Ryn2vqr4Sxo7FXe/4p665aqDxsijDbSJtpGLDlAVnaAaqiOChugG3aI769p6sB6tp/Fqzpp4SugHrOdP/uikXg==</latexit>

`3

Figure 1.4 Factor graph for a larger, simulated SLAM example.

density given measurements is most conveniently represented as a factor graph, and

how given Gaussian priors and Gaussian noise models the corresponding optimiza-

tion problem is nothing but the familiar nonlinear least-squares problem.

1.2.1 Factor Graphs for MAP Inference

We are interested in the unknown state variables x, such as poses and/or landmarks,

given the measurements z. The most-often-used estimator for these unknown state

variables x is the maximum a posteriori (MAP) estimate, so named because it

maximizes the posterior density p(x|z) of the states x given the measurements z:

xMAP = arg max
x

p(x|z) (1.6a)

= arg max
x

p(z|x)p(x)

p(z)
(1.6b)

= arg max
x

p(z|x)p(x) (1.6c)

The second equation above is Bayes’ law, and expresses the posterior as the product

of the measurement density p(z|x) and the prior p(x) over the states, appropriately

normalized by the factor p(z). The third equation drops the p(z) since this does

not depend on the x and therefore will not impact the arg max operation.

We use factor graphs to express the unnormalized posterior p(z|x)p(x). Formally

a factor graph is a bipartite graph F = (U ,V, E) with two types of nodes: factors

28 Factor Graphs for SLAM

ϕi ∈ U and variables xj ∈ V. Edges eij ∈ E are always between factor nodes and

variables nodes. The set of variable nodes adjacent to a factor ϕi is written as X (ϕi),

and we write xi for an assignment to this set. With these definitions, a factor graph

F defines the factorization of a global function ϕ(x) as

ϕ(x) =
∏

i

ϕi(xi). (1.7)

In other words, the independence relationships are encoded by the edges eij of the

factor graph, with each factor ϕi a function of only the variables xi in its adjacency

set X (ϕi).

In the rest of this chapter, we show how to find an optimal assignment, the MAP

estimate, through optimization over the unknown variables in the factor graph.

Indeed, for an arbitrary factor graph, MAP inference comes down to maximizing

the product (1.7) of all factor-graph potentials:

xMAP = arg max
x

ϕ(x) (1.8a)

= arg max
x

∏

i

ϕi(xi). (1.8b)

What is left now is to derive the exact form of the factors ϕi(xi), which depends

very much on how we model the measurement models p(z|x) and the prior densities

p(x). We discuss this in detail next.

1.2.2 Specifying Probability Densities

The exact form of the densities p(z|x) and p(x) above depends very much on

the application and the sensors used. The most often used densities involve the

multivariate Gaussian density, with probability density

N (θ;µ,Σ) =
1√
|2πΣ|

exp

(
−1

2
∥θ − µ∥2Σ

)
, (1.9)

where µ ∈ Rn is the mean, Σ is an n× n covariance matrix, and

∥θ − µ∥2Σ
∆
= (θ − µ)

⊤
Σ−1 (θ − µ) (1.10)

denotes the squared Mahalanobis distance. The normalization constant
√
|2πΣ| =

(2π)
n/2 |Σ|1/2, where |.| denotes the matrix determinant, ensures the multivariate

Gaussian density integrates to 1.0 over its domain.

Priors on unknown quantities are often specified using a Gaussian density, and in

many cases it is both justified and convenient to model measurements as corrupted

by zero-mean Gaussian noise. For example, a bearing measurement2 from a given

2 As a reminder, there are some subtleties associated with rotational state variables that we will
discuss more thoroughly in the next chapter.

1.2 From MAP Inference to Least Squares 29

pose p to a given landmark ℓ would be modeled as

z = h(p, ℓ) + η, (1.11)

where h(·) is a measurement prediction function, and the noise η is drawn from

a zero-mean Gaussian density with measurement covariance ΣR. This yields the

following conditional density p(z|p, ℓ) on the measurement z:

p(z|p, ℓ) = N (z;h(p, ℓ),ΣR) =
1√
|2πΣR|

exp

(
−1

2
∥z − h(p, ℓ)∥2ΣR

)
. (1.12)

The measurement functions h(·) are often nonlinear in practical robotics appli-

cations. Still, while they depend on the sensor used and the SLAM front-end, they

are typically not difficult to reason about or write down. The measurement function

for a 2D bearing measurement is simply

h(p, ℓ) = atan2(ℓy − py, ℓx − px), (1.13)

where atan2 is the well-known two-argument arctangent variant. Hence, the final

probabilistic measurement model p(z|p, ℓ) is obtained as

p(z|p, ℓ) =
1√
|2πΣR|

exp

(
−1

2
∥z − atan2(ℓy − py, ℓx − px)∥2ΣR

)
. (1.14)

Note that we will not always assume Gaussian measurement noise: to cope with the

occasional data association mistake, for example, many authors have proposed the

use of robust measurement densities, with heavier tails than a Gaussian density;

these are discussed in Chapter 3.

Not all probability densities involved are derived from measurements. For exam-

ple, in the toy SLAM problem the prior p(x) on the trajectory is made up of a prior

p(p1) and conditional densities p(pt+1|pt), specifying a probabilistic motion model

that the robot is assumed to obey given known control inputs ut. In practice, we

often use a conditional Gaussian assumption,

p(pt+1|pt,ut) =
1√
|2πΣQ|

exp

(
−1

2
∥pt+1 − g(pt,ut)∥2ΣQ

)
, (1.15)

where g(·) is a motion model, and ΣQ a covariance matrix of the appropriate

dimensionality, e.g., 3× 3 in the case of robots operating in the plane.

Often we have no known control inputs ut but instead we measure how the

robot moved, e.g., via an odometry measurement ot. For example, if we assume the

odometry simply measures the difference between poses, subject to Gaussian noise

with covariance ΣS , we obtain

p(ot|pt+1,pt) =
1√
|2πΣS |

exp

(
−1

2
∥ot − (pt+1 − pt)∥2ΣS

)
. (1.16)

If we have both known control inputs ut and odometry measurements ot we can

combine (1.15) and (1.16).

30 Factor Graphs for SLAM

Note that for robots operating in three-dimensional space, we will need slightly

more sophisticated machinery to specify densities on nonlinear manifolds such as

SE(3), as discussed in the next chapter.

1.2.3 Nonlinear Least Squares

We now show that MAP inference for SLAM problems with Gaussian noise models

as above is equivalent to solving a nonlinear least-squares problem. If we assume

that all factors are of the form

ϕi(xi) ∝ exp

(
−1

2
∥zi − hi(xi)∥2Σi

)
, (1.17)

which include both simple Gaussian priors and likelihood factors derived from mea-

surements corrupted by zero-mean, normally distributed noise. Taking the negative

log of (1.8b) and dropping the factor 1
2 allows us to instead minimize a sum of

nonlinear least-squares terms:

xMAP = arg min
x

∑

i

∥zi − hi(xi)∥2Σi
. (1.18)

Minimizing this objective function performs sensor fusion through the process

of combining several measurement-derived factors, and possibly several priors, to

uniquely determine the MAP solution for the unknowns.

An important and non-obvious observation is that the factors in (1.18) typi-

cally represent rather under-specified densities on the involved unknown variables

xi. Indeed, except for simple prior factors, the measurements zi are typically of

lower dimension than the unknowns xi. In those cases, the factor by itself accords

the same likelihood to an infinite subset of the domain of xi. For example, a 2D

measurement in a camera image is consistent with an entire ray of 3D points that

project to the same image location.

Even though the functions hi are nonlinear, if we have a decent initial guess

available, then the nonlinear optimization methods we discuss in this chapter will

be able to converge to the global minimum of (1.18). We should caution, however,

that as our objective in (1.18) is non-convex, there is no guarantee that we will

not get stuck in a local minimum if our initial guess is poor. This has led to so-

called certifiably optimal solvers, which are the subject of a later chapter. Below,

however, we focus on local methods rather than global solvers. We start off below

by considering the the easier problem of solving a linearized version of the problem.

1.3 Solving Linear Least Squares

Before tackling the more difficult problem of nonlinear least squares, in this section

we first show to linearize the problem, show how this leads to a linear least squares

1.3 Solving Linear Least Squares 31

problem, and review matrix factorization as computationally efficient way to solve

the corresponding normal equations. A seminal reference for these methods is the

book by Golub and Loan [397].

1.3.1 Linearization

We can linearize all measurement functions hi(·) in the nonlinear least-squares

objective function (1.18) using a simple Taylor expansion,

hi(xi) = hi(x
0
i + δi) ≈ hi(x

0
i) +Hiδi, (1.19)

where the measurement JacobianHi is defined as the (multivariate) partial deriva-

tive of hi(·) at a given linearization point x0
i ,

Hi
∆
=
∂hi(xi)

∂xi

∣∣∣∣
x0

i

, (1.20)

and δi
∆
= xi−x0

i is the state update vector. Note that we make an assumption that

xi lives in a vector space or, equivalently, can be represented by a vector. This is not

always the case, e.g., when some of the unknown states in x represent 3D rotations

or other more complex manifold types. We will revisit this issue in Chapter 2.

Substituting the Taylor expansion (1.19) into the nonlinear least-squares expres-

sion (1.18) we obtain a linear least-squares problem in the state update vector δ,

δ∗ = arg min
δ

∑

i

∥∥zi − hi(x
0
i)−Hiδi

∥∥2
Σi

(1.21a)

= arg min
δ

∑

i

∥∥(zi − hi(x
0
i)
)
−Hiδi

∥∥2
Σi
, (1.21b)

where zi−hi(x
0
i) is the prediction error at the linearization point, i.e., the difference

between actual and predicted measurement. Above, δ∗ denotes the solution to the

locally linearized problem.

By a simple change of variables we can drop the covariance matrices Σi from

this point forward: defining Σ1/2 as the matrix square root of Σ, we can rewrite

the square Mahalanobis norm as follows:

∥e∥2Σ
∆
= e⊤Σ−1e =

(
Σ−1/2e

)⊤ (
Σ−1/2e

)
=
∥∥∥Σ−1/2e

∥∥∥
2

2
. (1.22)

Hence, we can eliminate the covariances Σi by pre-multiplying the Jacobian Hi

and the prediction error in each term in (1.21b) with Σ
−1/2
i :

Ai = Σ
−1/2
i Hi (1.23a)

bi = Σ
−1/2
i

(
zi − hi(x

0
i)
)
. (1.23b)

This process is a form of whitening. For example, in the case of scalar measurements

32 Factor Graphs for SLAM

it simply means dividing each term by the measurement standard deviation σi. Note

that this eliminates the units of the measurements (e.g., length, angles) so that the

different rows can be combined into a single cost function.

1.3.2 SLAM as Least-Squares

After linearization, we finally obtain the following standard least-squares problem:

δ∗ = arg min
δ

∑

i

∥Aiδi − bi∥22 (1.24a)

= arg min
δ

∥Aδ − b∥22 , (1.24b)

Above A and b are obtained by collecting all whitened Jacobian matrices Ai and

whitened prediction errors bi into one large matrix A and right-hand-side (RHS)

vector b, respectively.

The Jacobian A is a large-but-sparse matrix, with a block structure that mirrors

the structure of the underlying factor graph. We will examine this sparsity structure

in detail below. First, however, we review the the classical linear algebra approach

to solving this least-squares problem.

1.3.3 Matrix Factorization for Least-Squares

For a full-rank m × n matrix A, with m ≥ n, the unique least-squares solution to

(1.24b) can be found by solving the normal equations:

(
A⊤A

)
δ∗ = A⊤b. (1.25)

This is normally done by factoring the information matrixΛ (also called the Hessian

matrix), defined and factored as follows:

Λ
∆
= A⊤A = R⊤R. (1.26)

Above, the Cholesky triangle R is an upper-triangular n × n matrix3 and is com-

puted using Cholesky factorization, a variant of lower-upper (LU) factorization for

symmetric positive-definite matrices. After this, δ∗ can be found by solving first

R⊤y = A⊤b (1.27)

for y and then

Rδ∗ = y (1.28)

3 Some treatments, including [397], define the Cholesky triangle as the lower-triangular matrix

L = R⊤, but the other convention is more convenient here.

1.3 Solving Linear Least Squares 33

for δ∗ by forward and backward substitution, respectively. For dense matrices,

Cholesky factorization requires n3/3 flops, and the entire algorithm, including com-

puting half of the symmetric A⊤A, requires (m+ n/3)n2 flops. One could also use

lower-diagonal-upper (LDU) factorization, a variant of Cholesky decomposition that

avoids the computation of square roots.

An alternative to Cholesky factorization that is more accurate and more numeri-

cally stable is to proceed via QR-factorization, which works without computing the

information matrix Λ. Instead, we compute the QR-factorization of A itself along

with its corresponding RHS:

A = Q

[
R

0

]
,

[
d

e

]
= Q⊤b. (1.29)

Here Q is an m × m orthogonal matrix, d ∈ Rn, e ∈ Rm−n, and R is the same

upper-triangular Cholesky triangle. The preferred method for factorizing a dense

matrixA is to computeR column by column, proceeding from left to right. For each

column j, all nonzero elements below the diagonal are zeroed out by multiplying

A on the left with a Householder reflection matrix Hj . After n iterations A is

completely factorized:

Hn · · ·H2H1A = Q⊤A =

[
R

0

]
. (1.30)

The orthogonal matrix Q is not usually formed: instead, the transformed RHS

Q⊤b is computed by appending b as an extra column to A. Because the Q factor

is orthogonal, we have

∥Aδ − b∥22 =
∥∥Q⊤Aδ −Q⊤b

∥∥2
2

= ∥Rδ − d∥22 + ∥e∥22 , (1.31)

where we made use of the equalities from (1.29). Clearly, ∥e∥22 will be the least-

squares sum of squared residuals, and the least-squares solution δ∗ can be obtained

by solving the triangular system

Rδ∗ = d (1.32)

via back-substitution. Note that the upper-triangular factor R obtained using QR

factorization is the same (up to possible sign changes on the diagonal) as would be

obtained by Cholesky factorization, since

A⊤A =

[
R

0

]⊤
Q⊤Q

[
R

0

]
= R⊤R, (1.33)

where we again made use of the fact that Q is orthogonal. The cost of QR is domi-

nated by the cost of the Householder reflections, which is 2(m−n/3)n2. Comparing

this with Cholesky, we see that both algorithms require O(mn2) operations when

m≫ n, but that QR-factorization is slower by a factor of 2.

In summary, the linearized optimization problem associated with SLAM can be

34 Factor Graphs for SLAM

concisely stated in terms of basic linear algebra. It comes down to factorizing either

the information matrix Λ or the measurement Jacobian A into square-root form.

Because they are based on matrix square roots derived from the SAM problem, we

have referred to this family of approaches as square-root SAM, or
√

SAM for short

[258, 262].

1.4 Nonlinear Optimization

In this section, we discuss some classic optimization approaches to the nonlinear

least-squares problem defined in (1.18). As a reminder, in SLAM the nonlinear

least-squares objective function is given by

J(x)
∆
=
∑

i

∥zi − hi(xi)∥2Σi
(1.34)

and corresponds to a nonlinear factor graph derived from the measurements along

with prior densities on some or all unknowns.

Nonlinear least-squares problems cannot be solved directly in general, but require

an iterative solution starting from a suitable initial estimate. Nonlinear optimization

methods do so by solving a succession of linear approximations to (1.18) in order

to approach the minimum [272]. A variety of algorithms exist that differ in how

they locally approximate the cost function, and in how they find an improved esti-

mate based on that local approximation. A general in-depth treatment of nonlinear

solvers is provided by [820], while [397] focuses on the linear-algebra perspective.

All of the algorithms share the following basic structure: they start from an initial

estimate x0. In each iteration, an update step δ is calculated and applied to obtain

the next estimate xt+1 = xt+δ. This process ends when certain convergence criteria

are reached, such as the norm of the change δ falling below a small threshold.

1.4.1 Steepest Descent

Steepest Descent (SD) uses the direction of steepest descent at the current estimate

to calculate the following update step:

δsd = −α ∇J (x)|x=xt . (1.35)

Here the negative gradient is used to identify the direction of steepest descent. For

the nonlinear least-squares objective function (1.34), we locally approximate the

objective function as a quadratic, J(x) ≈ ∥A(x− xt)− b∥22, and obtain the exact

gradient ∇J (x)|x=xt = −2A⊤b at the linearization point xt.

The step size α needs to be carefully chosen to balance between safe updates and

reasonable convergence speed. An explicit line search can be performed to find a

minimum in the given direction. SD is a simple algorithm, but suffers from slow

convergence near the minimum.

1.4 Nonlinear Optimization 35

1.4.2 Gauss-Newton

Gauss-Newton (GN) provides faster convergence by using a second-order update.

GN exploits the special structure of the nonlinear least-squares problem to approx-

imate the Hessian using the Jacobian as A⊤A. The GN update step is obtained by

solving the normal equations (1.25),

A⊤Aδgn = A⊤b, (1.36)

by any of the methods in Section 1.3.3. For a well-behaved (i.e., nearly quadratic)

objective function and a good initial estimate, Gauss-Newton exhibits nearly quadratic

convergence. If the quadratic fit is poor, a GN step can lead to a new estimate that

is further from the minimum and subsequent divergence.

1.4.3 Levenberg-Marquardt

The Levenberg-Marquardt (LM) algorithm allows for iterating multiple times to

convergence while controlling in which region one is willing to trust the quadratic

approximation made by Gauss-Newton. Hence, such a method is often called a

trust-region method.

To combine the advantages of both the SD and GN methods, Levenberg [653]

proposed to modify the normal equations (1.25) by adding a non-negative constant

λ ∈ R+ ∪ {0} to the diagonal
(
A⊤A+ λI

)
δlm = A⊤b. (1.37)

Note that for λ = 0 we obtain GN, and for large λ we approximately obtain δ∗ ≈
1
λA

⊤b, an update in the negative gradient direction of the cost function J (1.34).

Hence, LM can be seen to blend naturally between the GN and SD methods.

Marquardt [738] later proposed to take into account the scaling of the diagonal

entries to provide faster convergence:
(
A⊤A+ λdiag(A⊤A)

)
δlm = A⊤b. (1.38)

This modification causes larger steps in the steepest-descent direction if the gra-

dient is small (nearly flat directions of the objective function), because there the

inverse of the diagonal entries will be large. Conversely, in steep directions of the

objective function the algorithm becomes more cautious and takes smaller steps.

Both modifications of the normal equations can be interpreted in Bayesian terms

as adding a zero-mean prior to the system.

A key difference between GN and LM is that the latter rejects updates that

would lead to a higher sum of squared residuals. A rejected update means that the

nonlinear function is locally not well-behaved, and smaller steps are needed. This

is achieved by heuristically increasing the value of λ, for example by multiplying

its current value by a factor of 10, and resolving the modified normal equations.

36 Factor Graphs for SLAM

Gauss-Newton update

Gradient descent update

Dog leg update

Current

estimate

Trust region

Figure 1.5 Powell’s dogleg algorithm combines the separately computed Gauss-Newton
and gradient descent update steps.

On the other hand, if a step leads to a reduction of the sum of squared residuals,

it is accepted, and the state estimate is updated accordingly. In this case, λ is

reduced (e.g., by dividing by a factor of 10), and the algorithm repeats with a new

linearization point, until convergence.

1.4.4 Dogleg Minimization

Powell’s dogleg (PDL) algorithm [892] can be a more efficient alternative to LM

[704]. A major disadvantage of the Levenberg-Marquardt algorithm is that in case

a step gets rejected, the modified information matrix has to be refactored, which is

the most expensive component of the algorithm. Hence, the key idea behind PDL

is to separately compute the GN and SD steps, and then combine appropriately. If

the LM step gets rejected, the directions of the GN and SD steps are still valid, and

they can be combined in a different way until a reduction in the cost is achieved.

Hence, each update of the state estimate only involves one matrix factorization, as

opposed to several.

Figure 1.5 shows how the GN and SD steps are combined. The combined step

starts with the SD update, followed by a sharp bend (hence the term dogleg) to-

wards the GN update, but stopping at the trust region boundary. Unlike LM, PDL

maintains an explicit trust region within which we trust the linear assumption. The

appropriateness of the linear approximation is determined by the gain ratio

ρ =
J(xt)− J(xt + δ)

L(0)− L(δ)
, (1.39)

where L(δ) = A⊤Aδ − A⊤b is the linearization of the nonlinear quadratic cost

function J from (1.34) at the current estimate xt. If ρ is small (i.e., ρ < 0.25)

then the cost has not reduced as predicted by the linearization and the trust region

is reduced. On the other hand, if the reduction is as predicted (or better, i.e.,

ρ > 0.75), then the trust region is increased depending on the magnitude of the

update vector, and the step is accepted.

1.5 Factor Graphs and Sparsity 37

1.5 Factor Graphs and Sparsity

The solvers presented so far assume that the matrices involved may be dense. Dense

methods will not scale to realistic problem sizes in SLAM. For the toy problem in

Figure 1.1 a dense method will work fine. The larger simulation example, with its

factor graph shown in Figure 1.4, is more representative of real-world problems.

However, it is still relatively small as real SLAM problems go, where problems with

thousands or even millions of unknowns are common. Yet, we are able to handle

these without a problem because of sparsity.

The sparsity can be appreciated directly from looking at the factor graph. It is

clear from Figure 1.4 that the graph is sparse (i.e., it is by no means a fully connected

graph). The odometry chain linking the 100 unknown poses is a linear structure

of 100 binary factors, instead of the possible 1002 (binary) factors. In addition,

with 20 landmarks we could have up to 2000 factors linking each landmark to each

pose: the true number is closer to 400. And finally, there are no factors between

landmarks at all. This reflects that we have not been given any information about

their relative position. This structure is typical of most SLAM problems.

1.5.1 The Sparse Jacobian and its Factor Graph

The key to modern SLAM algorithms is exploiting sparsity, and an important prop-

erty of factor graphs in SLAM is that they represent the sparse block structure in

the resulting sparse Jacobian matrix A. To see this, let us revisit the least-squares

problem that is the key computation in the inner loop of the nonlinear SLAM

problem:

δ∗ = arg min
δ

∑

i

∥Ai δi − bi∥22 . (1.40)

Each term above is derived from a factor in the original, nonlinear SLAM problem,

linearized around the current linearization point (1.21b). The matrices Ai can be

broken up in blocks corresponding to each variable, and collected in a large, block-

sparse Jacobian whose sparsity structure is given exactly by the factor graph.

Even though these linear problems typically arise as inner iterations in nonlinear

optimization, we drop the δ notation below, as everything holds for general linear

problems regardless of their origin.

Consider the factor graph for the small toy example in Figure 1.1. After lin-

earization, we obtain a sparse system [A|b] with the block structure in Figure 1.6.

Comparing this with the factor graph, it is obvious that every factor corresponds to

a block-row, and every variable corresponds to a block-column of A. In total there

are nine block-rows, one for every factor in the factorization of ϕ(p1,p2,p3, ℓ1, ℓ2).

38 Factor Graphs for SLAM

[A|b] =

δℓ1 δℓ2 δp1 δp2 δp3 b

ϕ1

ϕ2

ϕ3

ϕ4

ϕ5

ϕ6

ϕ7

ϕ8

ϕ9

A13 b1
A23 A24 b2

A34 A35 b3
A41 b4

A52 b5
A63 b6

A71 A73 b7
A81 A84 b8

A92 A95 b9

Figure 1.6 Block structure of the sparse Jacobian A for the toy SLAM example in Figure

1.1 with δ =
[
δℓ⊤1 δℓ⊤2 δp⊤

1 δp⊤
2 δp⊤

3

]⊤
. Blank entries are zeros.

Λ11 Λ13 Λ14

Λ22 Λ25

Λ31 Λ33 Λ34

Λ41 Λ43 Λ44 Λ45

Λ52 Λ54 Λ55

Figure 1.7 The information matrix Λ

∆
= A⊤A for the toy SLAM problem.

1.5.2 The Sparse Information Matrix and its Graph

When using Cholesky factorization for solving the normal equations, as explained

in Section 1.3.3, we first form the Hessian or information matrix Λ = A⊤A. 4

In general, since the Jacobian A is block-sparse, the Hessian Λ is expected to be

sparse as well. By construction, the Hessian is a symmetric matrix, and if a unique

MAP solution to the problem exists, it is also positive definite.

The information matrix Λ can be associated with another, undirected graphical

model for the SLAM problem, namely a Markov random field (MRF). In contrast

to a factor graph, an MRF is a graphical model that involves only the variables.

The graph G of an MRF is an undirected graph: the edges only indicate that there

is some interaction between the variables involved. At the block level, the sparsity

pattern of Λ = A⊤A is exactly the adjacency matrix of G.

Figure 1.7 shows the information matrix Λ associated with our running toy ex-

ample. In this case, there are five variables that partition the Hessian as shown.

The zero blocks indicate which variables do not interact (e.g., ℓ1 and ℓ2 have no

direct interaction). Figure 1.8 shows the corresponding MRF.

In what follows, we will frequently refer to the undirected graph G of the MRF

associated with an inference problem. However, we will not use the MRF graphical

4 Note that A⊤A is not true Hessian, but is often used to approximate Hessian by truncating a
Taylor series of the residual.

1.5 Factor Graphs and Sparsity 39

x1 x2 x3

l1 l2

<latexit sha1_base64="kXx44wnjqLe/qAbLMONIjGgtM5U=">AAACEXicbVDLSsNAFL2pr1pfUZduglVwVRLxuSu4calgW6EtZTK5tUMnM2FmIpTQr3DrVv/Bnbj1C/wFv8JJWkStB4Y5nHsP93DChDNtfP/DKc3NLywulZcrK6tr6xvu5lZTy1RRbFDJpboNiUbOBDYMMxxvE4UkDjm2wuFFPm/do9JMihszSrAbkzvB+owSY6We63ZCySM9iu2XJeNe0HOrfs0v4M2SYEqq9TIUuOq5n51I0jRGYSgnWrcDPzHdjCjDKMdxpZNqTAgdkjtsWypIjLqbFcnH3r5VIq8vlX3CeIX605GRWOfh7GZMzED/neXif7N2avpn3YyJJDUo6ORQP+WekV5egxcxhdTwkSWEKmazenRAFKHGllXpFMZMSDOpaYAkQjWuFOWc5zj+rmKWNA9rwUktuD6q1vcmLUEZdmAXDiCAU6jDJVxBAyjcwyM8wbPz4Lw4r87bZLXkTD3b8AvO+xcbpZ6J</latexit>

p1

<latexit sha1_base64="i1LTsi0pXgXYdlkAuqdoH9DYknI=">AAACEXicbVDLSsNAFL3xWesr6tJNsAquSiI+dwU3LivYWmhLmUxu7eBkJsxMCiX0K9y61X9wJ279An/Br3CSFlHrgWEO597DPZww4Uwb3/9w5uYXFpeWSyvl1bX1jU13a7upZaooNqjkUrVCopEzgQ3DDMdWopDEIcfb8P4yn98OUWkmxY0ZJdiNyZ1gfUaJsVLPdTuh5JEexfbLknHvqOdW/KpfwJslwZRUaiUoUO+5n51I0jRGYSgnWrcDPzHdjCjDKMdxuZNqTAi9J3fYtlSQGHU3K5KPvQOrRF5fKvuE8Qr1pyMjsc7D2c2YmIH+O8vF/2bt1PTPuxkTSWpQ0Mmhfso9I728Bi9iCqnhI0sIVcxm9eiAKEKNLavcKYyZkGZS0wBJhGpcLsq5yHHyXcUsaR5Vg9NqcH1cqe1PWoIS7MIeHEIAZ1CDK6hDAygM4RGe4Nl5cF6cV+dtsjrnTD078AvO+xcdQZ6K</latexit>

p2

<latexit sha1_base64="xa47ISr24vnFk6T52/jxFM/EsFA=">AAACEXicbVDLSsNAFL3xWesr6tJNsAquSuLbXcGNSwVbhbaUyeS2HTqZCTOTQgn9Crdu9R/ciVu/wF/wK5ykImo9MMzh3Hu4hxMmnGnj++/OzOzc/MJiaam8vLK6tu5ubDa0TBXFOpVcqruQaORMYN0ww/EuUUjikONtOLjI57dDVJpJcWNGCbZj0hOsyygxVuq4biuUPNKj2H5ZMu4cdtyKX/ULeNMk+CKVWgkKXHXcj1YkaRqjMJQTrZuBn5h2RpRhlOO43Eo1JoQOSA+blgoSo25nRfKxt2eVyOtKZZ8wXqH+dGQk1nk4uxkT09d/Z7n436yZmu5ZO2MiSQ0KOjnUTblnpJfX4EVMITV8ZAmhitmsHu0TRaixZZVbhTET0kxq6iOJUI3LRTnnOY6/q5gmjYNqcFINro8qtd1JS1CCbdiBfQjgFGpwCVdQBwpDeIBHeHLunWfnxXmdrM44X54t+AXn7RMe3Z6L</latexit>

p3

<latexit sha1_base64="Tbii+PtKXnyJ7OyYW5J5YpVAs/I=">AAACFHicbVDLSsNAFL2pr1pfVZduglVwVRLxuSu4calgW6EpZTK5tUMnM2FmIpTQ33DrVv/Bnbh17y/4FU7SImo9MMzh3Hu4hxMmnGnjeR9OaW5+YXGpvFxZWV1b36hubrW0TBXFJpVcqtuQaORMYNMww/E2UUjikGM7HF7k8/Y9Ks2kuDGjBLsxuROszygxVupVt4NQ8kiPYvtlAXI+7vm9as2rewXcWeJPSa1RhgJXvepnEEmaxigM5UTrju8lppsRZRjlOK4EqcaE0CG5w46lgsSou1kRfuzuWyVy+1LZJ4xbqD8dGYl1ns9uxsQM9N9ZLv4366Smf9bNmEhSg4JODvVT7hrp5k24EVNIDR9ZQqhiNqtLB0QRamxflaAwZkKaSVMDJBGqcaUo5zzH8XcVs6R1WPdP6v71Ua2xN2kJyrADu3AAPpxCAy7hCppAYQSP8ATPzoPz4rw6b5PVkjP1bMMvOO9ffl+f0A==</latexit>

`1
<latexit sha1_base64="SQ47TFOWkZBwNsNyfERGuUiTcQY=">AAACFHicbVDLSsNAFL3xWeur2qWbYBVclUR87gpuXFawtdCUMpnc2sHJTJiZCCX0N9y61X9wJ27d+wt+hZO0iFoPDHM49x7u4YQJZ9p43oczN7+wuLRcWimvrq1vbFa2tttapopii0ouVSckGjkT2DLMcOwkCkkccrwJ7y7y+c09Ks2kuDajBHsxuRVswCgxVupXqkEoeaRHsf2yADkf9w/7lZpX9wq4s8SfklqjBAWa/cpnEEmaxigM5UTrru8lppcRZRjlOC4HqcaE0Dtyi11LBYlR97Ii/Njdt0rkDqSyTxi3UH86MhLrPJ/djIkZ6r+zXPxv1k3N4KyXMZGkBgWdHBqk3DXSzZtwI6aQGj6yhFDFbFaXDoki1Ni+ykFhzIQ0k6aGSCJU43JRznmO4+8qZkn7sO6f1P2ro1pjb9ISlGAHduEAfDiFBlxCE1pAYQSP8ATPzoPz4rw6b5PVOWfqqcIvOO9ff/uf0Q==</latexit>

`2

Figure 1.8 The Hessian matrix Λ can be interpreted as the matrix associated with the
Markov random field representation for the problem.

model much beyond that as factor graphs are better suited to our needs. They are

able to express a finer-grained factorization, and are more closely related to the

original problem formulation. For example, if there exist ternary (or higher) factors

in the factor graph, the graph G of the equivalent MRF connects those nodes in

an undirected clique (a group of fully connected variables), but the origin of the

corresponding clique potential is lost. In linear algebra, this reflects the fact that

many matrices A can yield the same Λ = A⊤A matrix: important information on

the sparsity is lost.

1.5.3 Sparse Factorization

We have seen MAP estimation amounts to solving a linear system of equations as

described in Section 1.3.3. In the case of nonlinear least-squares problems, we solve

such a system repeatedly in an iterative setup. We have seen in the previous two

sections that both A and A⊤A enjoy sparsity determined by the factor graph and

MRF connectivity, respectively. Without going into detail, this known sparsity pat-

tern can be used to greatly speed up either Cholesky factorization (in the case of

working with A⊤A) or QR-factorization (in the case of working with A). Efficient

software implementations are available, e.g., CHOLMOD [196] and SuiteSparseQR

[249], which are also used under the hood by several software packages. In prac-

tice, sparse Cholesky or LDU factorization outperform QR factorization on sparse

problems as well, and not just by a constant factor.

The flop count for sparse factorization will be much lower than for a dense ma-

trix. Crucially, the column ordering chosen for the sparse matrices can dramatically

influence the total flop-count. While any order will ultimately produce an identical

MAP estimate, the variable order determines the fill-in of matrix factors (i.e., the

extra nonzero entries beyond the sparsity pattern of the matrix being factored). It

is known that finding the variable ordering that minimizes fill-in during matrix fac-

40 Factor Graphs for SLAM

torization is an NP-hard problem [1234], so we must resort to using good heuristics.

This will in turn affect the computational complexity of the factorization algorithm.

We demonstrate this by way of an example. Recall the larger simulation example,

with its factor graph shown in Figure 1.4. The sparsity patterns for the correspond-

ing sparse Jacobian matrix A is shown in Figure 1.9. Also shown is the pattern for

the information matrix Λ ≜ A⊤A, in the top-right corner. On the right of Figure

1.9, we show the resulting upper triangular Choleksy factor R for two different

orderings. Both of them are sparse, and both of them satisfy R⊤R = A⊤A (up

to a permutation of the variables), but they differ in the amount of sparsity they

exhibit. It is exactly this that will determine how expensive it is to factorize A.

The first version of the ordering comes naturally: the poses come first and then

the landmarks, leading to a sparse R factor with 9399 nonzero entries. In contrast,

the sparse factor R in the bottom right was obtained by reordering the variables

according to the Column approximate minimum degree permutation (COLAMD)

heuristic [36, 250] and only has 4168 nonzero entries. Yet back-substitution gives

exactly the same solution for both versions.

It is worth mentioning that other tools, like pre-conditioned conjugate gradient,

can solve the normal equations iteratively. In visual SLAM, which has a very specific

sparsity pattern, power iterations have also been used successfully [1169]. However,

sparse factorization is still the method of choice for most SLAM problems and has

a nice graphical model interpretation, which we discuss next.

1.6 Elimination

We have so far restricted ourselves to a linear-algebra explanation of performing

inference for SLAM. In this section, we expand our worldview by thinking about

inference more abstractly using graphical models directly. This will ultimately lead

us to current state-of-the-art SLAM solvers based on a concept called the Bayes

tree for incremental smoothing and mapping in the next section.

1.6.1 Variable Elimination Algorithm

There exists a general algorithm that can, given any (preferably sparse) factor

graph, compute the corresponding posterior density p(x|z) on the unknown vari-

ables x in a form that allows easy recovery of the MAP solution to the problem.

As we saw, a factor graph represents the unnormalized posterior ϕ(x) ∝ p(x|z)

as a product of factors, and in SLAM problems this graph is typically generated

directly from the measurements. The variable elimination algorithm is a recipe for

converting a factor graph into another graphical model called a Bayes net, which

depends only on the unknown variables x. This then allows for easy MAP inference

(as well as other operations such as sampling and/or marginalization).

1.6 Elimination 41

Figure 1.9 On the left, the measurement JacobianA associated with the problem in Figure
1.4, which has 3× 95+2× 24 = 333 unknowns. The number of rows, 1126, is equal to the
number of (scalar) measurements. Also given is the number of nonzero entries “nnz”. On
the right: (top) the information matrix Λ ≜ A⊤A; (middle) its upper triangular Cholesky
triangle R; (bottom) an alternative factor amdR obtained with a better variable ordering
(COLAMD).

42 Factor Graphs for SLAM

In particular, the variable elimination algorithm is a way to factorize any factor

graph of the form

ϕ(x) = ϕ(x1, . . . ,xn) (1.41)

into a factored Bayes net probability density of the form

p(x) = p(x1|s1)p(x2|s2) . . . p(xn) =
∏

j

p(xj |sj), (1.42)

where sj denotes an assignment to the separator s(xj) associated with variable xj

under the chosen variable ordering x1, . . . ,xn. The separator is defined as the set

of variables on which xj is conditioned, after elimination. While this factorization

is akin to the chain rule, eliminating a sparse factor graph will typically lead to

small separators.

The elimination algorithm proceeds by eliminating one variable xj at a time,

starting with the complete factor graph ϕ1:n. As we eliminate each variable xj ,

we generate a single conditional p(xj |sj), as well as a reduced factor graph ϕj+1:n

on the remaining variables. After all variables have been eliminated, the algorithm

returns the resulting Bayes net with the desired factorization.

To eliminate a single variable xj given a partially eliminated factor graph ϕj:n,

we first remove all factors ϕi(xi) that are adjacent to xj and multiply them into the

product factor ψ(xj , sj). We then factorize ψ(xj , sj) into a conditional distribution

p(xj |sj) on the eliminated variable xj , and a new factor τ(sj) on the separator sj :

ψ(xj , sj) = p(xj |sj)τ(sj). (1.43)

Hence, the entire factorization from ϕ(x) to p(x) is seen to be a succession of n

local factorization steps. When eliminating the last variable xn the separator sn
will be empty, and the conditional produced will simply be a prior p(xn) on xn.

One possible elimination sequence for the toy example is shown in Figure 1.10, for

the ordering ℓ1, ℓ2, p1, p2, p3. In each step, the variable being eliminated is shaded

gray, and the new factor τ(sj) on the separator sj is shown in red. Taken as a whole,

the variable elimination algorithm factorizes the factor graph ϕ(ℓ1, ℓ2,p1,p2,p3)

into the Bayes net in Figure 1.10 (bottom right), corresponding to the factorization

p(ℓ1, ℓ2,p1,p2,p3) = p(ℓ1|p1,p2) p(ℓ2|p3) p(p1|p2) p(p2|p3) p(p3). (1.44)

1.6.2 Linear-Gaussian Elimination

In the case of linear measurement functions and additive normally distributed noise,

the elimination algorithm is equivalent to sparse matrix factorization. Both sparse

Cholesky and QR factorization are a special case of the general algorithm.

As explained before, the elimination algorithm proceeds one variable at a time.

For every variable xj we remove all factors ϕi(xi) adjacent to xj and form the

1.6 Elimination 43

x1 x2 x3

l1 l2l1

x1 x2 x3

l1 l2l2

x1 x2 x3x1

l1 l2

x1 x2 x3x2

l1 l2

x1 x2 x3x3

l1 l2

x1 x2 x3

l1 l2l2

<latexit sha1_base64="kXx44wnjqLe/qAbLMONIjGgtM5U=">AAACEXicbVDLSsNAFL2pr1pfUZduglVwVRLxuSu4calgW6EtZTK5tUMnM2FmIpTQr3DrVv/Bnbj1C/wFv8JJWkStB4Y5nHsP93DChDNtfP/DKc3NLywulZcrK6tr6xvu5lZTy1RRbFDJpboNiUbOBDYMMxxvE4UkDjm2wuFFPm/do9JMihszSrAbkzvB+owSY6We63ZCySM9iu2XJeNe0HOrfs0v4M2SYEqq9TIUuOq5n51I0jRGYSgnWrcDPzHdjCjDKMdxpZNqTAgdkjtsWypIjLqbFcnH3r5VIq8vlX3CeIX605GRWOfh7GZMzED/neXif7N2avpn3YyJJDUo6ORQP+WekV5egxcxhdTwkSWEKmazenRAFKHGllXpFMZMSDOpaYAkQjWuFOWc5zj+rmKWNA9rwUktuD6q1vcmLUEZdmAXDiCAU6jDJVxBAyjcwyM8wbPz4Lw4r87bZLXkTD3b8AvO+xcbpZ6J</latexit>

p1

<latexit sha1_base64="i1LTsi0pXgXYdlkAuqdoH9DYknI=">AAACEXicbVDLSsNAFL3xWesr6tJNsAquSiI+dwU3LivYWmhLmUxu7eBkJsxMCiX0K9y61X9wJ279An/Br3CSFlHrgWEO597DPZww4Uwb3/9w5uYXFpeWSyvl1bX1jU13a7upZaooNqjkUrVCopEzgQ3DDMdWopDEIcfb8P4yn98OUWkmxY0ZJdiNyZ1gfUaJsVLPdTuh5JEexfbLknHvqOdW/KpfwJslwZRUaiUoUO+5n51I0jRGYSgnWrcDPzHdjCjDKMdxuZNqTAi9J3fYtlSQGHU3K5KPvQOrRF5fKvuE8Qr1pyMjsc7D2c2YmIH+O8vF/2bt1PTPuxkTSWpQ0Mmhfso9I728Bi9iCqnhI0sIVcxm9eiAKEKNLavcKYyZkGZS0wBJhGpcLsq5yHHyXcUsaR5Vg9NqcH1cqe1PWoIS7MIeHEIAZ1CDK6hDAygM4RGe4Nl5cF6cV+dtsjrnTD078AvO+xcdQZ6K</latexit>

p2

<latexit sha1_base64="xa47ISr24vnFk6T52/jxFM/EsFA=">AAACEXicbVDLSsNAFL3xWesr6tJNsAquSuLbXcGNSwVbhbaUyeS2HTqZCTOTQgn9Crdu9R/ciVu/wF/wK5ykImo9MMzh3Hu4hxMmnGnj++/OzOzc/MJiaam8vLK6tu5ubDa0TBXFOpVcqruQaORMYN0ww/EuUUjikONtOLjI57dDVJpJcWNGCbZj0hOsyygxVuq4biuUPNKj2H5ZMu4cdtyKX/ULeNMk+CKVWgkKXHXcj1YkaRqjMJQTrZuBn5h2RpRhlOO43Eo1JoQOSA+blgoSo25nRfKxt2eVyOtKZZ8wXqH+dGQk1nk4uxkT09d/Z7n436yZmu5ZO2MiSQ0KOjnUTblnpJfX4EVMITV8ZAmhitmsHu0TRaixZZVbhTET0kxq6iOJUI3LRTnnOY6/q5gmjYNqcFINro8qtd1JS1CCbdiBfQjgFGpwCVdQBwpDeIBHeHLunWfnxXmdrM44X54t+AXn7RMe3Z6L</latexit>

p3

<latexit sha1_base64="SQ47TFOWkZBwNsNyfERGuUiTcQY=">AAACFHicbVDLSsNAFL3xWeur2qWbYBVclUR87gpuXFawtdCUMpnc2sHJTJiZCCX0N9y61X9wJ27d+wt+hZO0iFoPDHM49x7u4YQJZ9p43oczN7+wuLRcWimvrq1vbFa2tttapopii0ouVSckGjkT2DLMcOwkCkkccrwJ7y7y+c09Ks2kuDajBHsxuRVswCgxVupXqkEoeaRHsf2yADkf9w/7lZpX9wq4s8SfklqjBAWa/cpnEEmaxigM5UTrru8lppcRZRjlOC4HqcaE0Dtyi11LBYlR97Ii/Njdt0rkDqSyTxi3UH86MhLrPJ/djIkZ6r+zXPxv1k3N4KyXMZGkBgWdHBqk3DXSzZtwI6aQGj6yhFDFbFaXDoki1Ni+ykFhzIQ0k6aGSCJU43JRznmO4+8qZkn7sO6f1P2ro1pjb9ISlGAHduEAfDiFBlxCE1pAYQSP8ATPzoPz4rw6b5PVOWfqqcIvOO9ff/uf0Q==</latexit>

`2

<latexit sha1_base64="kXx44wnjqLe/qAbLMONIjGgtM5U=">AAACEXicbVDLSsNAFL2pr1pfUZduglVwVRLxuSu4calgW6EtZTK5tUMnM2FmIpTQr3DrVv/Bnbj1C/wFv8JJWkStB4Y5nHsP93DChDNtfP/DKc3NLywulZcrK6tr6xvu5lZTy1RRbFDJpboNiUbOBDYMMxxvE4UkDjm2wuFFPm/do9JMihszSrAbkzvB+owSY6We63ZCySM9iu2XJeNe0HOrfs0v4M2SYEqq9TIUuOq5n51I0jRGYSgnWrcDPzHdjCjDKMdxpZNqTAgdkjtsWypIjLqbFcnH3r5VIq8vlX3CeIX605GRWOfh7GZMzED/neXif7N2avpn3YyJJDUo6ORQP+WekV5egxcxhdTwkSWEKmazenRAFKHGllXpFMZMSDOpaYAkQjWuFOWc5zj+rmKWNA9rwUktuD6q1vcmLUEZdmAXDiCAU6jDJVxBAyjcwyM8wbPz4Lw4r87bZLXkTD3b8AvO+xcbpZ6J</latexit>

p1

<latexit sha1_base64="i1LTsi0pXgXYdlkAuqdoH9DYknI=">AAACEXicbVDLSsNAFL3xWesr6tJNsAquSiI+dwU3LivYWmhLmUxu7eBkJsxMCiX0K9y61X9wJ279An/Br3CSFlHrgWEO597DPZww4Uwb3/9w5uYXFpeWSyvl1bX1jU13a7upZaooNqjkUrVCopEzgQ3DDMdWopDEIcfb8P4yn98OUWkmxY0ZJdiNyZ1gfUaJsVLPdTuh5JEexfbLknHvqOdW/KpfwJslwZRUaiUoUO+5n51I0jRGYSgnWrcDPzHdjCjDKMdxuZNqTAi9J3fYtlSQGHU3K5KPvQOrRF5fKvuE8Qr1pyMjsc7D2c2YmIH+O8vF/2bt1PTPuxkTSWpQ0Mmhfso9I728Bi9iCqnhI0sIVcxm9eiAKEKNLavcKYyZkGZS0wBJhGpcLsq5yHHyXcUsaR5Vg9NqcH1cqe1PWoIS7MIeHEIAZ1CDK6hDAygM4RGe4Nl5cF6cV+dtsjrnTD078AvO+xcdQZ6K</latexit>

p2

<latexit sha1_base64="xa47ISr24vnFk6T52/jxFM/EsFA=">AAACEXicbVDLSsNAFL3xWesr6tJNsAquSuLbXcGNSwVbhbaUyeS2HTqZCTOTQgn9Crdu9R/ciVu/wF/wK5ykImo9MMzh3Hu4hxMmnGnj++/OzOzc/MJiaam8vLK6tu5ubDa0TBXFOpVcqruQaORMYN0ww/EuUUjikONtOLjI57dDVJpJcWNGCbZj0hOsyygxVuq4biuUPNKj2H5ZMu4cdtyKX/ULeNMk+CKVWgkKXHXcj1YkaRqjMJQTrZuBn5h2RpRhlOO43Eo1JoQOSA+blgoSo25nRfKxt2eVyOtKZZ8wXqH+dGQk1nk4uxkT09d/Z7n436yZmu5ZO2MiSQ0KOjnUTblnpJfX4EVMITV8ZAmhitmsHu0TRaixZZVbhTET0kxq6iOJUI3LRTnnOY6/q5gmjYNqcFINro8qtd1JS1CCbdiBfQjgFGpwCVdQBwpDeIBHeHLunWfnxXmdrM44X54t+AXn7RMe3Z6L</latexit>

p3

<latexit sha1_base64="Tbii+PtKXnyJ7OyYW5J5YpVAs/I=">AAACFHicbVDLSsNAFL2pr1pfVZduglVwVRLxuSu4calgW6EpZTK5tUMnM2FmIpTQ33DrVv/Bnbh17y/4FU7SImo9MMzh3Hu4hxMmnGnjeR9OaW5+YXGpvFxZWV1b36hubrW0TBXFJpVcqtuQaORMYNMww/E2UUjikGM7HF7k8/Y9Ks2kuDGjBLsxuROszygxVupVt4NQ8kiPYvtlAXI+7vm9as2rewXcWeJPSa1RhgJXvepnEEmaxigM5UTrju8lppsRZRjlOK4EqcaE0CG5w46lgsSou1kRfuzuWyVy+1LZJ4xbqD8dGYl1ns9uxsQM9N9ZLv4366Smf9bNmEhSg4JODvVT7hrp5k24EVNIDR9ZQqhiNqtLB0QRamxflaAwZkKaSVMDJBGqcaUo5zzH8XcVs6R1WPdP6v71Ua2xN2kJyrADu3AAPpxCAy7hCppAYQSP8ATPzoPz4rw6b5PVkjP1bMMvOO9ffl+f0A==</latexit>

`1

<latexit sha1_base64="i1LTsi0pXgXYdlkAuqdoH9DYknI=">AAACEXicbVDLSsNAFL3xWesr6tJNsAquSiI+dwU3LivYWmhLmUxu7eBkJsxMCiX0K9y61X9wJ279An/Br3CSFlHrgWEO597DPZww4Uwb3/9w5uYXFpeWSyvl1bX1jU13a7upZaooNqjkUrVCopEzgQ3DDMdWopDEIcfb8P4yn98OUWkmxY0ZJdiNyZ1gfUaJsVLPdTuh5JEexfbLknHvqOdW/KpfwJslwZRUaiUoUO+5n51I0jRGYSgnWrcDPzHdjCjDKMdxuZNqTAi9J3fYtlSQGHU3K5KPvQOrRF5fKvuE8Qr1pyMjsc7D2c2YmIH+O8vF/2bt1PTPuxkTSWpQ0Mmhfso9I728Bi9iCqnhI0sIVcxm9eiAKEKNLavcKYyZkGZS0wBJhGpcLsq5yHHyXcUsaR5Vg9NqcH1cqe1PWoIS7MIeHEIAZ1CDK6hDAygM4RGe4Nl5cF6cV+dtsjrnTD078AvO+xcdQZ6K</latexit>

p2

<latexit sha1_base64="xa47ISr24vnFk6T52/jxFM/EsFA=">AAACEXicbVDLSsNAFL3xWesr6tJNsAquSuLbXcGNSwVbhbaUyeS2HTqZCTOTQgn9Crdu9R/ciVu/wF/wK5ykImo9MMzh3Hu4hxMmnGnj++/OzOzc/MJiaam8vLK6tu5ubDa0TBXFOpVcqruQaORMYN0ww/EuUUjikONtOLjI57dDVJpJcWNGCbZj0hOsyygxVuq4biuUPNKj2H5ZMu4cdtyKX/ULeNMk+CKVWgkKXHXcj1YkaRqjMJQTrZuBn5h2RpRhlOO43Eo1JoQOSA+blgoSo25nRfKxt2eVyOtKZZ8wXqH+dGQk1nk4uxkT09d/Z7n436yZmu5ZO2MiSQ0KOjnUTblnpJfX4EVMITV8ZAmhitmsHu0TRaixZZVbhTET0kxq6iOJUI3LRTnnOY6/q5gmjYNqcFINro8qtd1JS1CCbdiBfQjgFGpwCVdQBwpDeIBHeHLunWfnxXmdrM44X54t+AXn7RMe3Z6L</latexit>

p3

<latexit sha1_base64="Tbii+PtKXnyJ7OyYW5J5YpVAs/I=">AAACFHicbVDLSsNAFL2pr1pfVZduglVwVRLxuSu4calgW6EpZTK5tUMnM2FmIpTQ33DrVv/Bnbh17y/4FU7SImo9MMzh3Hu4hxMmnGnjeR9OaW5+YXGpvFxZWV1b36hubrW0TBXFJpVcqtuQaORMYNMww/E2UUjikGM7HF7k8/Y9Ks2kuDGjBLsxuROszygxVupVt4NQ8kiPYvtlAXI+7vm9as2rewXcWeJPSa1RhgJXvepnEEmaxigM5UTrju8lppsRZRjlOK4EqcaE0CG5w46lgsSou1kRfuzuWyVy+1LZJ4xbqD8dGYl1ns9uxsQM9N9ZLv4366Smf9bNmEhSg4JODvVT7hrp5k24EVNIDR9ZQqhiNqtLB0QRamxflaAwZkKaSVMDJBGqcaUo5zzH8XcVs6R1WPdP6v71Ua2xN2kJyrADu3AAPpxCAy7hCppAYQSP8ATPzoPz4rw6b5PVkjP1bMMvOO9ffl+f0A==</latexit>

`1
<latexit sha1_base64="SQ47TFOWkZBwNsNyfERGuUiTcQY=">AAACFHicbVDLSsNAFL3xWeur2qWbYBVclUR87gpuXFawtdCUMpnc2sHJTJiZCCX0N9y61X9wJ27d+wt+hZO0iFoPDHM49x7u4YQJZ9p43oczN7+wuLRcWimvrq1vbFa2tttapopii0ouVSckGjkT2DLMcOwkCkkccrwJ7y7y+c09Ks2kuDajBHsxuRVswCgxVupXqkEoeaRHsf2yADkf9w/7lZpX9wq4s8SfklqjBAWa/cpnEEmaxigM5UTrru8lppcRZRjlOC4HqcaE0Dtyi11LBYlR97Ii/Njdt0rkDqSyTxi3UH86MhLrPJ/djIkZ6r+zXPxv1k3N4KyXMZGkBgWdHBqk3DXSzZtwI6aQGj6yhFDFbFaXDoki1Ni+ykFhzIQ0k6aGSCJU43JRznmO4+8qZkn7sO6f1P2ro1pjb9ISlGAHduEAfDiFBlxCE1pAYQSP8ATPzoPz4rw6b5PVOWfqqcIvOO9ff/uf0Q==</latexit>

`2

<latexit sha1_base64="kXx44wnjqLe/qAbLMONIjGgtM5U=">AAACEXicbVDLSsNAFL2pr1pfUZduglVwVRLxuSu4calgW6EtZTK5tUMnM2FmIpTQr3DrVv/Bnbj1C/wFv8JJWkStB4Y5nHsP93DChDNtfP/DKc3NLywulZcrK6tr6xvu5lZTy1RRbFDJpboNiUbOBDYMMxxvE4UkDjm2wuFFPm/do9JMihszSrAbkzvB+owSY6We63ZCySM9iu2XJeNe0HOrfs0v4M2SYEqq9TIUuOq5n51I0jRGYSgnWrcDPzHdjCjDKMdxpZNqTAgdkjtsWypIjLqbFcnH3r5VIq8vlX3CeIX605GRWOfh7GZMzED/neXif7N2avpn3YyJJDUo6ORQP+WekV5egxcxhdTwkSWEKmazenRAFKHGllXpFMZMSDOpaYAkQjWuFOWc5zj+rmKWNA9rwUktuD6q1vcmLUEZdmAXDiCAU6jDJVxBAyjcwyM8wbPz4Lw4r87bZLXkTD3b8AvO+xcbpZ6J</latexit>

p1

<latexit sha1_base64="xa47ISr24vnFk6T52/jxFM/EsFA=">AAACEXicbVDLSsNAFL3xWesr6tJNsAquSuLbXcGNSwVbhbaUyeS2HTqZCTOTQgn9Crdu9R/ciVu/wF/wK5ykImo9MMzh3Hu4hxMmnGnj++/OzOzc/MJiaam8vLK6tu5ubDa0TBXFOpVcqruQaORMYN0ww/EuUUjikONtOLjI57dDVJpJcWNGCbZj0hOsyygxVuq4biuUPNKj2H5ZMu4cdtyKX/ULeNMk+CKVWgkKXHXcj1YkaRqjMJQTrZuBn5h2RpRhlOO43Eo1JoQOSA+blgoSo25nRfKxt2eVyOtKZZ8wXqH+dGQk1nk4uxkT09d/Z7n436yZmu5ZO2MiSQ0KOjnUTblnpJfX4EVMITV8ZAmhitmsHu0TRaixZZVbhTET0kxq6iOJUI3LRTnnOY6/q5gmjYNqcFINro8qtd1JS1CCbdiBfQjgFGpwCVdQBwpDeIBHeHLunWfnxXmdrM44X54t+AXn7RMe3Z6L</latexit>

p3

<latexit sha1_base64="Tbii+PtKXnyJ7OyYW5J5YpVAs/I=">AAACFHicbVDLSsNAFL2pr1pfVZduglVwVRLxuSu4calgW6EpZTK5tUMnM2FmIpTQ33DrVv/Bnbh17y/4FU7SImo9MMzh3Hu4hxMmnGnjeR9OaW5+YXGpvFxZWV1b36hubrW0TBXFJpVcqtuQaORMYNMww/E2UUjikGM7HF7k8/Y9Ks2kuDGjBLsxuROszygxVupVt4NQ8kiPYvtlAXI+7vm9as2rewXcWeJPSa1RhgJXvepnEEmaxigM5UTrju8lppsRZRjlOK4EqcaE0CG5w46lgsSou1kRfuzuWyVy+1LZJ4xbqD8dGYl1ns9uxsQM9N9ZLv4366Smf9bNmEhSg4JODvVT7hrp5k24EVNIDR9ZQqhiNqtLB0QRamxflaAwZkKaSVMDJBGqcaUo5zzH8XcVs6R1WPdP6v71Ua2xN2kJyrADu3AAPpxCAy7hCppAYQSP8ATPzoPz4rw6b5PVkjP1bMMvOO9ffl+f0A==</latexit>

`1
<latexit sha1_base64="SQ47TFOWkZBwNsNyfERGuUiTcQY=">AAACFHicbVDLSsNAFL3xWeur2qWbYBVclUR87gpuXFawtdCUMpnc2sHJTJiZCCX0N9y61X9wJ27d+wt+hZO0iFoPDHM49x7u4YQJZ9p43oczN7+wuLRcWimvrq1vbFa2tttapopii0ouVSckGjkT2DLMcOwkCkkccrwJ7y7y+c09Ks2kuDajBHsxuRVswCgxVupXqkEoeaRHsf2yADkf9w/7lZpX9wq4s8SfklqjBAWa/cpnEEmaxigM5UTrru8lppcRZRjlOC4HqcaE0Dtyi11LBYlR97Ii/Njdt0rkDqSyTxi3UH86MhLrPJ/djIkZ6r+zXPxv1k3N4KyXMZGkBgWdHBqk3DXSzZtwI6aQGj6yhFDFbFaXDoki1Ni+ykFhzIQ0k6aGSCJU43JRznmO4+8qZkn7sO6f1P2ro1pjb9ISlGAHduEAfDiFBlxCE1pAYQSP8ATPzoPz4rw6b5PVOWfqqcIvOO9ff/uf0Q==</latexit>

`2

<latexit sha1_base64="kXx44wnjqLe/qAbLMONIjGgtM5U=">AAACEXicbVDLSsNAFL2pr1pfUZduglVwVRLxuSu4calgW6EtZTK5tUMnM2FmIpTQr3DrVv/Bnbj1C/wFv8JJWkStB4Y5nHsP93DChDNtfP/DKc3NLywulZcrK6tr6xvu5lZTy1RRbFDJpboNiUbOBDYMMxxvE4UkDjm2wuFFPm/do9JMihszSrAbkzvB+owSY6We63ZCySM9iu2XJeNe0HOrfs0v4M2SYEqq9TIUuOq5n51I0jRGYSgnWrcDPzHdjCjDKMdxpZNqTAgdkjtsWypIjLqbFcnH3r5VIq8vlX3CeIX605GRWOfh7GZMzED/neXif7N2avpn3YyJJDUo6ORQP+WekV5egxcxhdTwkSWEKmazenRAFKHGllXpFMZMSDOpaYAkQjWuFOWc5zj+rmKWNA9rwUktuD6q1vcmLUEZdmAXDiCAU6jDJVxBAyjcwyM8wbPz4Lw4r87bZLXkTD3b8AvO+xcbpZ6J</latexit>

p1

<latexit sha1_base64="i1LTsi0pXgXYdlkAuqdoH9DYknI=">AAACEXicbVDLSsNAFL3xWesr6tJNsAquSiI+dwU3LivYWmhLmUxu7eBkJsxMCiX0K9y61X9wJ279An/Br3CSFlHrgWEO597DPZww4Uwb3/9w5uYXFpeWSyvl1bX1jU13a7upZaooNqjkUrVCopEzgQ3DDMdWopDEIcfb8P4yn98OUWkmxY0ZJdiNyZ1gfUaJsVLPdTuh5JEexfbLknHvqOdW/KpfwJslwZRUaiUoUO+5n51I0jRGYSgnWrcDPzHdjCjDKMdxuZNqTAi9J3fYtlSQGHU3K5KPvQOrRF5fKvuE8Qr1pyMjsc7D2c2YmIH+O8vF/2bt1PTPuxkTSWpQ0Mmhfso9I728Bi9iCqnhI0sIVcxm9eiAKEKNLavcKYyZkGZS0wBJhGpcLsq5yHHyXcUsaR5Vg9NqcH1cqe1PWoIS7MIeHEIAZ1CDK6hDAygM4RGe4Nl5cF6cV+dtsjrnTD078AvO+xcdQZ6K</latexit>

p2

<latexit sha1_base64="Tbii+PtKXnyJ7OyYW5J5YpVAs/I=">AAACFHicbVDLSsNAFL2pr1pfVZduglVwVRLxuSu4calgW6EpZTK5tUMnM2FmIpTQ33DrVv/Bnbh17y/4FU7SImo9MMzh3Hu4hxMmnGnjeR9OaW5+YXGpvFxZWV1b36hubrW0TBXFJpVcqtuQaORMYNMww/E2UUjikGM7HF7k8/Y9Ks2kuDGjBLsxuROszygxVupVt4NQ8kiPYvtlAXI+7vm9as2rewXcWeJPSa1RhgJXvepnEEmaxigM5UTrju8lppsRZRjlOK4EqcaE0CG5w46lgsSou1kRfuzuWyVy+1LZJ4xbqD8dGYl1ns9uxsQM9N9ZLv4366Smf9bNmEhSg4JODvVT7hrp5k24EVNIDR9ZQqhiNqtLB0QRamxflaAwZkKaSVMDJBGqcaUo5zzH8XcVs6R1WPdP6v71Ua2xN2kJyrADu3AAPpxCAy7hCppAYQSP8ATPzoPz4rw6b5PVkjP1bMMvOO9ffl+f0A==</latexit>

`1
<latexit sha1_base64="SQ47TFOWkZBwNsNyfERGuUiTcQY=">AAACFHicbVDLSsNAFL3xWeur2qWbYBVclUR87gpuXFawtdCUMpnc2sHJTJiZCCX0N9y61X9wJ27d+wt+hZO0iFoPDHM49x7u4YQJZ9p43oczN7+wuLRcWimvrq1vbFa2tttapopii0ouVSckGjkT2DLMcOwkCkkccrwJ7y7y+c09Ks2kuDajBHsxuRVswCgxVupXqkEoeaRHsf2yADkf9w/7lZpX9wq4s8SfklqjBAWa/cpnEEmaxigM5UTrru8lppcRZRjlOC4HqcaE0Dtyi11LBYlR97Ii/Njdt0rkDqSyTxi3UH86MhLrPJ/djIkZ6r+zXPxv1k3N4KyXMZGkBgWdHBqk3DXSzZtwI6aQGj6yhFDFbFaXDoki1Ni+ykFhzIQ0k6aGSCJU43JRznmO4+8qZkn7sO6f1P2ro1pjb9ISlGAHduEAfDiFBlxCE1pAYQSP8ATPzoPz4rw6b5PVOWfqqcIvOO9ff/uf0Q==</latexit>

`2

<latexit sha1_base64="xa47ISr24vnFk6T52/jxFM/EsFA=">AAACEXicbVDLSsNAFL3xWesr6tJNsAquSuLbXcGNSwVbhbaUyeS2HTqZCTOTQgn9Crdu9R/ciVu/wF/wK5ykImo9MMzh3Hu4hxMmnGnj++/OzOzc/MJiaam8vLK6tu5ubDa0TBXFOpVcqruQaORMYN0ww/EuUUjikONtOLjI57dDVJpJcWNGCbZj0hOsyygxVuq4biuUPNKj2H5ZMu4cdtyKX/ULeNMk+CKVWgkKXHXcj1YkaRqjMJQTrZuBn5h2RpRhlOO43Eo1JoQOSA+blgoSo25nRfKxt2eVyOtKZZ8wXqH+dGQk1nk4uxkT09d/Z7n436yZmu5ZO2MiSQ0KOjnUTblnpJfX4EVMITV8ZAmhitmsHu0TRaixZZVbhTET0kxq6iOJUI3LRTnnOY6/q5gmjYNqcFINro8qtd1JS1CCbdiBfQjgFGpwCVdQBwpDeIBHeHLunWfnxXmdrM44X54t+AXn7RMe3Z6L</latexit>

p3

<latexit sha1_base64="kXx44wnjqLe/qAbLMONIjGgtM5U=">AAACEXicbVDLSsNAFL2pr1pfUZduglVwVRLxuSu4calgW6EtZTK5tUMnM2FmIpTQr3DrVv/Bnbj1C/wFv8JJWkStB4Y5nHsP93DChDNtfP/DKc3NLywulZcrK6tr6xvu5lZTy1RRbFDJpboNiUbOBDYMMxxvE4UkDjm2wuFFPm/do9JMihszSrAbkzvB+owSY6We63ZCySM9iu2XJeNe0HOrfs0v4M2SYEqq9TIUuOq5n51I0jRGYSgnWrcDPzHdjCjDKMdxpZNqTAgdkjtsWypIjLqbFcnH3r5VIq8vlX3CeIX605GRWOfh7GZMzED/neXif7N2avpn3YyJJDUo6ORQP+WekV5egxcxhdTwkSWEKmazenRAFKHGllXpFMZMSDOpaYAkQjWuFOWc5zj+rmKWNA9rwUktuD6q1vcmLUEZdmAXDiCAU6jDJVxBAyjcwyM8wbPz4Lw4r87bZLXkTD3b8AvO+xcbpZ6J</latexit>

p1

<latexit sha1_base64="i1LTsi0pXgXYdlkAuqdoH9DYknI=">AAACEXicbVDLSsNAFL3xWesr6tJNsAquSiI+dwU3LivYWmhLmUxu7eBkJsxMCiX0K9y61X9wJ279An/Br3CSFlHrgWEO597DPZww4Uwb3/9w5uYXFpeWSyvl1bX1jU13a7upZaooNqjkUrVCopEzgQ3DDMdWopDEIcfb8P4yn98OUWkmxY0ZJdiNyZ1gfUaJsVLPdTuh5JEexfbLknHvqOdW/KpfwJslwZRUaiUoUO+5n51I0jRGYSgnWrcDPzHdjCjDKMdxuZNqTAi9J3fYtlSQGHU3K5KPvQOrRF5fKvuE8Qr1pyMjsc7D2c2YmIH+O8vF/2bt1PTPuxkTSWpQ0Mmhfso9I728Bi9iCqnhI0sIVcxm9eiAKEKNLavcKYyZkGZS0wBJhGpcLsq5yHHyXcUsaR5Vg9NqcH1cqe1PWoIS7MIeHEIAZ1CDK6hDAygM4RGe4Nl5cF6cV+dtsjrnTD078AvO+xcdQZ6K</latexit>

p2

<latexit sha1_base64="SQ47TFOWkZBwNsNyfERGuUiTcQY=">AAACFHicbVDLSsNAFL3xWeur2qWbYBVclUR87gpuXFawtdCUMpnc2sHJTJiZCCX0N9y61X9wJ27d+wt+hZO0iFoPDHM49x7u4YQJZ9p43oczN7+wuLRcWimvrq1vbFa2tttapopii0ouVSckGjkT2DLMcOwkCkkccrwJ7y7y+c09Ks2kuDajBHsxuRVswCgxVupXqkEoeaRHsf2yADkf9w/7lZpX9wq4s8SfklqjBAWa/cpnEEmaxigM5UTrru8lppcRZRjlOC4HqcaE0Dtyi11LBYlR97Ii/Njdt0rkDqSyTxi3UH86MhLrPJ/djIkZ6r+zXPxv1k3N4KyXMZGkBgWdHBqk3DXSzZtwI6aQGj6yhFDFbFaXDoki1Ni+ykFhzIQ0k6aGSCJU43JRznmO4+8qZkn7sO6f1P2ro1pjb9ISlGAHduEAfDiFBlxCE1pAYQSP8ATPzoPz4rw6b5PVOWfqqcIvOO9ff/uf0Q==</latexit>

`2
<latexit sha1_base64="Tbii+PtKXnyJ7OyYW5J5YpVAs/I=">AAACFHicbVDLSsNAFL2pr1pfVZduglVwVRLxuSu4calgW6EpZTK5tUMnM2FmIpTQ33DrVv/Bnbh17y/4FU7SImo9MMzh3Hu4hxMmnGnjeR9OaW5+YXGpvFxZWV1b36hubrW0TBXFJpVcqtuQaORMYNMww/E2UUjikGM7HF7k8/Y9Ks2kuDGjBLsxuROszygxVupVt4NQ8kiPYvtlAXI+7vm9as2rewXcWeJPSa1RhgJXvepnEEmaxigM5UTrju8lppsRZRjlOK4EqcaE0CG5w46lgsSou1kRfuzuWyVy+1LZJ4xbqD8dGYl1ns9uxsQM9N9ZLv4366Smf9bNmEhSg4JODvVT7hrp5k24EVNIDR9ZQqhiNqtLB0QRamxflaAwZkKaSVMDJBGqcaUo5zzH8XcVs6R1WPdP6v71Ua2xN2kJyrADu3AAPpxCAy7hCppAYQSP8ATPzoPz4rw6b5PVkjP1bMMvOO9ffl+f0A==</latexit>

`1

Figure 1.10 Variable elimination for the toy SLAM example, transforming the factor graph
from Figure 1.2 into a Bayes net (bottom right), using the ordering ℓ1, ℓ2, p1, p2, p3.

intermediate product factor ψ(xj , sj). This can be done by accumulating all the

matrices Ai into a new, larger block-matrix Āj , as we can write

ψ(xj , sj)←
∏

i∈Nj

ϕi(xi) (1.45a)

= exp

(
−1

2

∑

i

∥Aixi − bi∥22

)
(1.45b)

= exp

(
−1

2

∥∥Āj [xj ; sj]− b̄j
∥∥2
2

)
, (1.45c)

where the new RHS vector b̄j stacks all bi and ‘;’ also denotes vertical stacking.

Consider eliminating the variable ℓ1 in the toy example. The adjacent factors are

ϕ4, ϕ7, and ϕ8, in turn inducing the separator s1 = [p1;p2]. The product factor is

44 Factor Graphs for SLAM

x1 x2 x3

l1 l2l1

x1 x2 x3

l1 l2l2

<latexit sha1_base64="kXx44wnjqLe/qAbLMONIjGgtM5U=">AAACEXicbVDLSsNAFL2pr1pfUZduglVwVRLxuSu4calgW6EtZTK5tUMnM2FmIpTQr3DrVv/Bnbj1C/wFv8JJWkStB4Y5nHsP93DChDNtfP/DKc3NLywulZcrK6tr6xvu5lZTy1RRbFDJpboNiUbOBDYMMxxvE4UkDjm2wuFFPm/do9JMihszSrAbkzvB+owSY6We63ZCySM9iu2XJeNe0HOrfs0v4M2SYEqq9TIUuOq5n51I0jRGYSgnWrcDPzHdjCjDKMdxpZNqTAgdkjtsWypIjLqbFcnH3r5VIq8vlX3CeIX605GRWOfh7GZMzED/neXif7N2avpn3YyJJDUo6ORQP+WekV5egxcxhdTwkSWEKmazenRAFKHGllXpFMZMSDOpaYAkQjWuFOWc5zj+rmKWNA9rwUktuD6q1vcmLUEZdmAXDiCAU6jDJVxBAyjcwyM8wbPz4Lw4r87bZLXkTD3b8AvO+xcbpZ6J</latexit>

p1

<latexit sha1_base64="i1LTsi0pXgXYdlkAuqdoH9DYknI=">AAACEXicbVDLSsNAFL3xWesr6tJNsAquSiI+dwU3LivYWmhLmUxu7eBkJsxMCiX0K9y61X9wJ279An/Br3CSFlHrgWEO597DPZww4Uwb3/9w5uYXFpeWSyvl1bX1jU13a7upZaooNqjkUrVCopEzgQ3DDMdWopDEIcfb8P4yn98OUWkmxY0ZJdiNyZ1gfUaJsVLPdTuh5JEexfbLknHvqOdW/KpfwJslwZRUaiUoUO+5n51I0jRGYSgnWrcDPzHdjCjDKMdxuZNqTAi9J3fYtlSQGHU3K5KPvQOrRF5fKvuE8Qr1pyMjsc7D2c2YmIH+O8vF/2bt1PTPuxkTSWpQ0Mmhfso9I728Bi9iCqnhI0sIVcxm9eiAKEKNLavcKYyZkGZS0wBJhGpcLsq5yHHyXcUsaR5Vg9NqcH1cqe1PWoIS7MIeHEIAZ1CDK6hDAygM4RGe4Nl5cF6cV+dtsjrnTD078AvO+xcdQZ6K</latexit>

p2

<latexit sha1_base64="xa47ISr24vnFk6T52/jxFM/EsFA=">AAACEXicbVDLSsNAFL3xWesr6tJNsAquSuLbXcGNSwVbhbaUyeS2HTqZCTOTQgn9Crdu9R/ciVu/wF/wK5ykImo9MMzh3Hu4hxMmnGnj++/OzOzc/MJiaam8vLK6tu5ubDa0TBXFOpVcqruQaORMYN0ww/EuUUjikONtOLjI57dDVJpJcWNGCbZj0hOsyygxVuq4biuUPNKj2H5ZMu4cdtyKX/ULeNMk+CKVWgkKXHXcj1YkaRqjMJQTrZuBn5h2RpRhlOO43Eo1JoQOSA+blgoSo25nRfKxt2eVyOtKZZ8wXqH+dGQk1nk4uxkT09d/Z7n436yZmu5ZO2MiSQ0KOjnUTblnpJfX4EVMITV8ZAmhitmsHu0TRaixZZVbhTET0kxq6iOJUI3LRTnnOY6/q5gmjYNqcFINro8qtd1JS1CCbdiBfQjgFGpwCVdQBwpDeIBHeHLunWfnxXmdrM44X54t+AXn7RMe3Z6L</latexit>

p3

<latexit sha1_base64="SQ47TFOWkZBwNsNyfERGuUiTcQY=">AAACFHicbVDLSsNAFL3xWeur2qWbYBVclUR87gpuXFawtdCUMpnc2sHJTJiZCCX0N9y61X9wJ27d+wt+hZO0iFoPDHM49x7u4YQJZ9p43oczN7+wuLRcWimvrq1vbFa2tttapopii0ouVSckGjkT2DLMcOwkCkkccrwJ7y7y+c09Ks2kuDajBHsxuRVswCgxVupXqkEoeaRHsf2yADkf9w/7lZpX9wq4s8SfklqjBAWa/cpnEEmaxigM5UTrru8lppcRZRjlOC4HqcaE0Dtyi11LBYlR97Ii/Njdt0rkDqSyTxi3UH86MhLrPJ/djIkZ6r+zXPxv1k3N4KyXMZGkBgWdHBqk3DXSzZtwI6aQGj6yhFDFbFaXDoki1Ni+ykFhzIQ0k6aGSCJU43JRznmO4+8qZkn7sO6f1P2ro1pjb9ISlGAHduEAfDiFBlxCE1pAYQSP8ATPzoPz4rw6b5PVOWfqqcIvOO9ff/uf0Q==</latexit>

`2
<latexit sha1_base64="Tbii+PtKXnyJ7OyYW5J5YpVAs/I=">AAACFHicbVDLSsNAFL2pr1pfVZduglVwVRLxuSu4calgW6EpZTK5tUMnM2FmIpTQ33DrVv/Bnbh17y/4FU7SImo9MMzh3Hu4hxMmnGnjeR9OaW5+YXGpvFxZWV1b36hubrW0TBXFJpVcqtuQaORMYNMww/E2UUjikGM7HF7k8/Y9Ks2kuDGjBLsxuROszygxVupVt4NQ8kiPYvtlAXI+7vm9as2rewXcWeJPSa1RhgJXvepnEEmaxigM5UTrju8lppsRZRjlOK4EqcaE0CG5w46lgsSou1kRfuzuWyVy+1LZJ4xbqD8dGYl1ns9uxsQM9N9ZLv4366Smf9bNmEhSg4JODvVT7hrp5k24EVNIDR9ZQqhiNqtLB0QRamxflaAwZkKaSVMDJBGqcaUo5zzH8XcVs6R1WPdP6v71Ua2xN2kJyrADu3AAPpxCAy7hCppAYQSP8ATPzoPz4rw6b5PVkjP1bMMvOO9ffl+f0A==</latexit>

`1

x1 x2 x3

l1 l2

<latexit sha1_base64="kXx44wnjqLe/qAbLMONIjGgtM5U=">AAACEXicbVDLSsNAFL2pr1pfUZduglVwVRLxuSu4calgW6EtZTK5tUMnM2FmIpTQr3DrVv/Bnbj1C/wFv8JJWkStB4Y5nHsP93DChDNtfP/DKc3NLywulZcrK6tr6xvu5lZTy1RRbFDJpboNiUbOBDYMMxxvE4UkDjm2wuFFPm/do9JMihszSrAbkzvB+owSY6We63ZCySM9iu2XJeNe0HOrfs0v4M2SYEqq9TIUuOq5n51I0jRGYSgnWrcDPzHdjCjDKMdxpZNqTAgdkjtsWypIjLqbFcnH3r5VIq8vlX3CeIX605GRWOfh7GZMzED/neXif7N2avpn3YyJJDUo6ORQP+WekV5egxcxhdTwkSWEKmazenRAFKHGllXpFMZMSDOpaYAkQjWuFOWc5zj+rmKWNA9rwUktuD6q1vcmLUEZdmAXDiCAU6jDJVxBAyjcwyM8wbPz4Lw4r87bZLXkTD3b8AvO+xcbpZ6J</latexit>

p1

<latexit sha1_base64="i1LTsi0pXgXYdlkAuqdoH9DYknI=">AAACEXicbVDLSsNAFL3xWesr6tJNsAquSiI+dwU3LivYWmhLmUxu7eBkJsxMCiX0K9y61X9wJ279An/Br3CSFlHrgWEO597DPZww4Uwb3/9w5uYXFpeWSyvl1bX1jU13a7upZaooNqjkUrVCopEzgQ3DDMdWopDEIcfb8P4yn98OUWkmxY0ZJdiNyZ1gfUaJsVLPdTuh5JEexfbLknHvqOdW/KpfwJslwZRUaiUoUO+5n51I0jRGYSgnWrcDPzHdjCjDKMdxuZNqTAi9J3fYtlSQGHU3K5KPvQOrRF5fKvuE8Qr1pyMjsc7D2c2YmIH+O8vF/2bt1PTPuxkTSWpQ0Mmhfso9I728Bi9iCqnhI0sIVcxm9eiAKEKNLavcKYyZkGZS0wBJhGpcLsq5yHHyXcUsaR5Vg9NqcH1cqe1PWoIS7MIeHEIAZ1CDK6hDAygM4RGe4Nl5cF6cV+dtsjrnTD078AvO+xcdQZ6K</latexit>

p2

<latexit sha1_base64="xa47ISr24vnFk6T52/jxFM/EsFA=">AAACEXicbVDLSsNAFL3xWesr6tJNsAquSuLbXcGNSwVbhbaUyeS2HTqZCTOTQgn9Crdu9R/ciVu/wF/wK5ykImo9MMzh3Hu4hxMmnGnj++/OzOzc/MJiaam8vLK6tu5ubDa0TBXFOpVcqruQaORMYN0ww/EuUUjikONtOLjI57dDVJpJcWNGCbZj0hOsyygxVuq4biuUPNKj2H5ZMu4cdtyKX/ULeNMk+CKVWgkKXHXcj1YkaRqjMJQTrZuBn5h2RpRhlOO43Eo1JoQOSA+blgoSo25nRfKxt2eVyOtKZZ8wXqH+dGQk1nk4uxkT09d/Z7n436yZmu5ZO2MiSQ0KOjnUTblnpJfX4EVMITV8ZAmhitmsHu0TRaixZZVbhTET0kxq6iOJUI3LRTnnOY6/q5gmjYNqcFINro8qtd1JS1CCbdiBfQjgFGpwCVdQBwpDeIBHeHLunWfnxXmdrM44X54t+AXn7RMe3Z6L</latexit>

p3

<latexit sha1_base64="Tbii+PtKXnyJ7OyYW5J5YpVAs/I=">AAACFHicbVDLSsNAFL2pr1pfVZduglVwVRLxuSu4calgW6EpZTK5tUMnM2FmIpTQ33DrVv/Bnbh17y/4FU7SImo9MMzh3Hu4hxMmnGnjeR9OaW5+YXGpvFxZWV1b36hubrW0TBXFJpVcqtuQaORMYNMww/E2UUjikGM7HF7k8/Y9Ks2kuDGjBLsxuROszygxVupVt4NQ8kiPYvtlAXI+7vm9as2rewXcWeJPSa1RhgJXvepnEEmaxigM5UTrju8lppsRZRjlOK4EqcaE0CG5w46lgsSou1kRfuzuWyVy+1LZJ4xbqD8dGYl1ns9uxsQM9N9ZLv4366Smf9bNmEhSg4JODvVT7hrp5k24EVNIDR9ZQqhiNqtLB0QRamxflaAwZkKaSVMDJBGqcaUo5zzH8XcVs6R1WPdP6v71Ua2xN2kJyrADu3AAPpxCAy7hCppAYQSP8ATPzoPz4rw6b5PVkjP1bMMvOO9ffl+f0A==</latexit>

`1
<latexit sha1_base64="SQ47TFOWkZBwNsNyfERGuUiTcQY=">AAACFHicbVDLSsNAFL3xWeur2qWbYBVclUR87gpuXFawtdCUMpnc2sHJTJiZCCX0N9y61X9wJ27d+wt+hZO0iFoPDHM49x7u4YQJZ9p43oczN7+wuLRcWimvrq1vbFa2tttapopii0ouVSckGjkT2DLMcOwkCkkccrwJ7y7y+c09Ks2kuDajBHsxuRVswCgxVupXqkEoeaRHsf2yADkf9w/7lZpX9wq4s8SfklqjBAWa/cpnEEmaxigM5UTrru8lppcRZRjlOC4HqcaE0Dtyi11LBYlR97Ii/Njdt0rkDqSyTxi3UH86MhLrPJ/djIkZ6r+zXPxv1k3N4KyXMZGkBgWdHBqk3DXSzZtwI6aQGj6yhFDFbFaXDoki1Ni+ykFhzIQ0k6aGSCJU43JRznmO4+8qZkn7sO6f1P2ro1pjb9ISlGAHduEAfDiFBlxCE1pAYQSP8ATPzoPz4rw6b5PVOWfqqcIvOO9ff/uf0Q==</latexit>

`2

x1x2x3

l1l2

A13

A23 A24

A34 A35

A41

A52

A63

A71 A73

A81 A84

A92 A95

R1 T13 T14

A13

A23 A24

A34 A35

A52

A63

A92 A95

Ã13 Ã14

Figure 1.11 Eliminating the variable ℓ1 as a partial sparse factorization step.

then equal to

ψ (ℓ1,p1,p2) = exp

(
−1

2

∥∥Ā1[ℓ1;p1;p2]− b̄1
∥∥2
2

)
, (1.46)

with

Ā1
∆
=

A41

A71 A73

A81 A84

 , b̄1

∆
=

b4
b7
b8

 . (1.47)

Looking at the sparse Jacobian in Figure 1.6, this simply boils down to taking out

the block-rows with nonzero blocks in the first column, corresponding to the three

factors adjacent to ℓ1.

Next, factorizing the product ψ(xj , sj) can be done in several different ways.

We discuss the QR variant, as it more directly connects to the linearized factors.

In particular, the augmented matrix [Āj |b̄j] corresponding to the product factor

ψ(xj , sj) can be rewritten using partial QR-factorization [397] as follows:

[Āj |b̄j] = Q

[
Rj Tj dj

Ãτ b̃τ

]
, (1.48)

whereRj is an upper-triangular matrix. This allows us to factor ψ(xj , sj) as follows:

1.6 Elimination 45

ψ(xj , sj) = exp

{
−1

2

∥∥Āj [xj ; sj]− b̄j
∥∥2
2

}
(1.49a)

= exp

{
−1

2
∥Rjxj + Tjsj − dj∥22

}
exp

{
−1

2

∥∥∥Ãτsj − b̃τ
∥∥∥
2

2

}

= p(xj |sj)τ(sj), (1.49b)

where we used the fact that the rotation matrix Q does not alter the value of the

norms involved.

In the toy example, Figure 1.11 shows the result of eliminating the first variable

in the example, the landmark ℓ1 with separator [p1;p2]. We show the operation

on the factor graph and the corresponding effect on the sparse Jacobian from Fig-

ure 1.6, omitting the RHS. The partition above the line corresponds to a sparse,

upper-triangular matrix R that is being formed. New contributions to the matrix

are shown: blue for the contributions to R, and red for newly created factors. For

completeness, we show the four remaining variable elimination steps in Figure 1.12,

showing an end-to-end example of how QR factorization proceeds on a small exam-

ple. The final step shows the equivalence between the resulting Bayes net and the

sparse upper-triangular factor R.

The entire elimination algorithm, using partial QR to eliminate a single vari-

able, is equivalent to sparse QR factorization. As the treatment above considers

multi-dimensional variables xj ∈ Rnj , this is in fact an instance of multi-frontal

QR factorization [296], as we eliminate several scalar variables at a time, which

is beneficial for processor utilization. While in our case the scalar variables are

grouped because of their semantic meaning in the inference problem, sparse linear

algebra codes typically analyze the problem to group for maximum computational

efficiency. In many cases these two strategies are closely aligned.

1.6.3 Sparse Cholesky Factor as a Bayes Net

The equivalence between variable elimination and sparse matrix factorization re-

veals that the graphical model associated with an upper triangular matrix is a Bayes

net! Just like a factor graph is the graphical embodiment of a sparse Jacobian, and

an MRF can be associated with the Hessian, a Bayes net reveals the sparsity struc-

ture of a Cholesky factor. In hindsight, this perhaps is not too surprising: a Bayes

net is a directed acyclic graph (DAG), and that is exactly the ‘upper-triangular’

property for matrices.

What’s more, the Cholesky factor corresponds to a Gaussian Bayes net, which

we define as one made up of linear-Gaussian conditionals. The variable elimination

algorithm holds for general densities, but in case the factor graph only contains

linear measurement functions and Gaussian additive noise, the resulting Bayes net

46 Factor Graphs for SLAM

x1 x2 x3

l1 l2l2

<latexit sha1_base64="kXx44wnjqLe/qAbLMONIjGgtM5U=">AAACEXicbVDLSsNAFL2pr1pfUZduglVwVRLxuSu4calgW6EtZTK5tUMnM2FmIpTQr3DrVv/Bnbj1C/wFv8JJWkStB4Y5nHsP93DChDNtfP/DKc3NLywulZcrK6tr6xvu5lZTy1RRbFDJpboNiUbOBDYMMxxvE4UkDjm2wuFFPm/do9JMihszSrAbkzvB+owSY6We63ZCySM9iu2XJeNe0HOrfs0v4M2SYEqq9TIUuOq5n51I0jRGYSgnWrcDPzHdjCjDKMdxpZNqTAgdkjtsWypIjLqbFcnH3r5VIq8vlX3CeIX605GRWOfh7GZMzED/neXif7N2avpn3YyJJDUo6ORQP+WekV5egxcxhdTwkSWEKmazenRAFKHGllXpFMZMSDOpaYAkQjWuFOWc5zj+rmKWNA9rwUktuD6q1vcmLUEZdmAXDiCAU6jDJVxBAyjcwyM8wbPz4Lw4r87bZLXkTD3b8AvO+xcbpZ6J</latexit>

p1

<latexit sha1_base64="i1LTsi0pXgXYdlkAuqdoH9DYknI=">AAACEXicbVDLSsNAFL3xWesr6tJNsAquSiI+dwU3LivYWmhLmUxu7eBkJsxMCiX0K9y61X9wJ279An/Br3CSFlHrgWEO597DPZww4Uwb3/9w5uYXFpeWSyvl1bX1jU13a7upZaooNqjkUrVCopEzgQ3DDMdWopDEIcfb8P4yn98OUWkmxY0ZJdiNyZ1gfUaJsVLPdTuh5JEexfbLknHvqOdW/KpfwJslwZRUaiUoUO+5n51I0jRGYSgnWrcDPzHdjCjDKMdxuZNqTAi9J3fYtlSQGHU3K5KPvQOrRF5fKvuE8Qr1pyMjsc7D2c2YmIH+O8vF/2bt1PTPuxkTSWpQ0Mmhfso9I728Bi9iCqnhI0sIVcxm9eiAKEKNLavcKYyZkGZS0wBJhGpcLsq5yHHyXcUsaR5Vg9NqcH1cqe1PWoIS7MIeHEIAZ1CDK6hDAygM4RGe4Nl5cF6cV+dtsjrnTD078AvO+xcdQZ6K</latexit>

p2

<latexit sha1_base64="xa47ISr24vnFk6T52/jxFM/EsFA=">AAACEXicbVDLSsNAFL3xWesr6tJNsAquSuLbXcGNSwVbhbaUyeS2HTqZCTOTQgn9Crdu9R/ciVu/wF/wK5ykImo9MMzh3Hu4hxMmnGnj++/OzOzc/MJiaam8vLK6tu5ubDa0TBXFOpVcqruQaORMYN0ww/EuUUjikONtOLjI57dDVJpJcWNGCbZj0hOsyygxVuq4biuUPNKj2H5ZMu4cdtyKX/ULeNMk+CKVWgkKXHXcj1YkaRqjMJQTrZuBn5h2RpRhlOO43Eo1JoQOSA+blgoSo25nRfKxt2eVyOtKZZ8wXqH+dGQk1nk4uxkT09d/Z7n436yZmu5ZO2MiSQ0KOjnUTblnpJfX4EVMITV8ZAmhitmsHu0TRaixZZVbhTET0kxq6iOJUI3LRTnnOY6/q5gmjYNqcFINro8qtd1JS1CCbdiBfQjgFGpwCVdQBwpDeIBHeHLunWfnxXmdrM44X54t+AXn7RMe3Z6L</latexit>

p3

<latexit sha1_base64="Tbii+PtKXnyJ7OyYW5J5YpVAs/I=">AAACFHicbVDLSsNAFL2pr1pfVZduglVwVRLxuSu4calgW6EpZTK5tUMnM2FmIpTQ33DrVv/Bnbh17y/4FU7SImo9MMzh3Hu4hxMmnGnjeR9OaW5+YXGpvFxZWV1b36hubrW0TBXFJpVcqtuQaORMYNMww/E2UUjikGM7HF7k8/Y9Ks2kuDGjBLsxuROszygxVupVt4NQ8kiPYvtlAXI+7vm9as2rewXcWeJPSa1RhgJXvepnEEmaxigM5UTrju8lppsRZRjlOK4EqcaE0CG5w46lgsSou1kRfuzuWyVy+1LZJ4xbqD8dGYl1ns9uxsQM9N9ZLv4366Smf9bNmEhSg4JODvVT7hrp5k24EVNIDR9ZQqhiNqtLB0QRamxflaAwZkKaSVMDJBGqcaUo5zzH8XcVs6R1WPdP6v71Ua2xN2kJyrADu3AAPpxCAy7hCppAYQSP8ATPzoPz4rw6b5PVkjP1bMMvOO9ffl+f0A==</latexit>

`1
<latexit sha1_base64="SQ47TFOWkZBwNsNyfERGuUiTcQY=">AAACFHicbVDLSsNAFL3xWeur2qWbYBVclUR87gpuXFawtdCUMpnc2sHJTJiZCCX0N9y61X9wJ27d+wt+hZO0iFoPDHM49x7u4YQJZ9p43oczN7+wuLRcWimvrq1vbFa2tttapopii0ouVSckGjkT2DLMcOwkCkkccrwJ7y7y+c09Ks2kuDajBHsxuRVswCgxVupXqkEoeaRHsf2yADkf9w/7lZpX9wq4s8SfklqjBAWa/cpnEEmaxigM5UTrru8lppcRZRjlOC4HqcaE0Dtyi11LBYlR97Ii/Njdt0rkDqSyTxi3UH86MhLrPJ/djIkZ6r+zXPxv1k3N4KyXMZGkBgWdHBqk3DXSzZtwI6aQGj6yhFDFbFaXDoki1Ni+ykFhzIQ0k6aGSCJU43JRznmO4+8qZkn7sO6f1P2ro1pjb9ISlGAHduEAfDiFBlxCE1pAYQSP8ATPzoPz4rw6b5PVOWfqqcIvOO9ff/uf0Q==</latexit>

`2

x1 x2 x3x1

l1 l2

<latexit sha1_base64="i1LTsi0pXgXYdlkAuqdoH9DYknI=">AAACEXicbVDLSsNAFL3xWesr6tJNsAquSiI+dwU3LivYWmhLmUxu7eBkJsxMCiX0K9y61X9wJ279An/Br3CSFlHrgWEO597DPZww4Uwb3/9w5uYXFpeWSyvl1bX1jU13a7upZaooNqjkUrVCopEzgQ3DDMdWopDEIcfb8P4yn98OUWkmxY0ZJdiNyZ1gfUaJsVLPdTuh5JEexfbLknHvqOdW/KpfwJslwZRUaiUoUO+5n51I0jRGYSgnWrcDPzHdjCjDKMdxuZNqTAi9J3fYtlSQGHU3K5KPvQOrRF5fKvuE8Qr1pyMjsc7D2c2YmIH+O8vF/2bt1PTPuxkTSWpQ0Mmhfso9I728Bi9iCqnhI0sIVcxm9eiAKEKNLavcKYyZkGZS0wBJhGpcLsq5yHHyXcUsaR5Vg9NqcH1cqe1PWoIS7MIeHEIAZ1CDK6hDAygM4RGe4Nl5cF6cV+dtsjrnTD078AvO+xcdQZ6K</latexit>

p2

<latexit sha1_base64="xa47ISr24vnFk6T52/jxFM/EsFA=">AAACEXicbVDLSsNAFL3xWesr6tJNsAquSuLbXcGNSwVbhbaUyeS2HTqZCTOTQgn9Crdu9R/ciVu/wF/wK5ykImo9MMzh3Hu4hxMmnGnj++/OzOzc/MJiaam8vLK6tu5ubDa0TBXFOpVcqruQaORMYN0ww/EuUUjikONtOLjI57dDVJpJcWNGCbZj0hOsyygxVuq4biuUPNKj2H5ZMu4cdtyKX/ULeNMk+CKVWgkKXHXcj1YkaRqjMJQTrZuBn5h2RpRhlOO43Eo1JoQOSA+blgoSo25nRfKxt2eVyOtKZZ8wXqH+dGQk1nk4uxkT09d/Z7n436yZmu5ZO2MiSQ0KOjnUTblnpJfX4EVMITV8ZAmhitmsHu0TRaixZZVbhTET0kxq6iOJUI3LRTnnOY6/q5gmjYNqcFINro8qtd1JS1CCbdiBfQjgFGpwCVdQBwpDeIBHeHLunWfnxXmdrM44X54t+AXn7RMe3Z6L</latexit>

p3

<latexit sha1_base64="Tbii+PtKXnyJ7OyYW5J5YpVAs/I=">AAACFHicbVDLSsNAFL2pr1pfVZduglVwVRLxuSu4calgW6EpZTK5tUMnM2FmIpTQ33DrVv/Bnbh17y/4FU7SImo9MMzh3Hu4hxMmnGnjeR9OaW5+YXGpvFxZWV1b36hubrW0TBXFJpVcqtuQaORMYNMww/E2UUjikGM7HF7k8/Y9Ks2kuDGjBLsxuROszygxVupVt4NQ8kiPYvtlAXI+7vm9as2rewXcWeJPSa1RhgJXvepnEEmaxigM5UTrju8lppsRZRjlOK4EqcaE0CG5w46lgsSou1kRfuzuWyVy+1LZJ4xbqD8dGYl1ns9uxsQM9N9ZLv4366Smf9bNmEhSg4JODvVT7hrp5k24EVNIDR9ZQqhiNqtLB0QRamxflaAwZkKaSVMDJBGqcaUo5zzH8XcVs6R1WPdP6v71Ua2xN2kJyrADu3AAPpxCAy7hCppAYQSP8ATPzoPz4rw6b5PVkjP1bMMvOO9ffl+f0A==</latexit>

`1
<latexit sha1_base64="SQ47TFOWkZBwNsNyfERGuUiTcQY=">AAACFHicbVDLSsNAFL3xWeur2qWbYBVclUR87gpuXFawtdCUMpnc2sHJTJiZCCX0N9y61X9wJ27d+wt+hZO0iFoPDHM49x7u4YQJZ9p43oczN7+wuLRcWimvrq1vbFa2tttapopii0ouVSckGjkT2DLMcOwkCkkccrwJ7y7y+c09Ks2kuDajBHsxuRVswCgxVupXqkEoeaRHsf2yADkf9w/7lZpX9wq4s8SfklqjBAWa/cpnEEmaxigM5UTrru8lppcRZRjlOC4HqcaE0Dtyi11LBYlR97Ii/Njdt0rkDqSyTxi3UH86MhLrPJ/djIkZ6r+zXPxv1k3N4KyXMZGkBgWdHBqk3DXSzZtwI6aQGj6yhFDFbFaXDoki1Ni+ykFhzIQ0k6aGSCJU43JRznmO4+8qZkn7sO6f1P2ro1pjb9ISlGAHduEAfDiFBlxCE1pAYQSP8ATPzoPz4rw6b5PVOWfqqcIvOO9ff/uf0Q==</latexit>

`2

<latexit sha1_base64="kXx44wnjqLe/qAbLMONIjGgtM5U=">AAACEXicbVDLSsNAFL2pr1pfUZduglVwVRLxuSu4calgW6EtZTK5tUMnM2FmIpTQr3DrVv/Bnbj1C/wFv8JJWkStB4Y5nHsP93DChDNtfP/DKc3NLywulZcrK6tr6xvu5lZTy1RRbFDJpboNiUbOBDYMMxxvE4UkDjm2wuFFPm/do9JMihszSrAbkzvB+owSY6We63ZCySM9iu2XJeNe0HOrfs0v4M2SYEqq9TIUuOq5n51I0jRGYSgnWrcDPzHdjCjDKMdxpZNqTAgdkjtsWypIjLqbFcnH3r5VIq8vlX3CeIX605GRWOfh7GZMzED/neXif7N2avpn3YyJJDUo6ORQP+WekV5egxcxhdTwkSWEKmazenRAFKHGllXpFMZMSDOpaYAkQjWuFOWc5zj+rmKWNA9rwUktuD6q1vcmLUEZdmAXDiCAU6jDJVxBAyjcwyM8wbPz4Lw4r87bZLXkTD3b8AvO+xcbpZ6J</latexit>

p1

R1 T13 T14

R2 T25

A13

A23 A24

A34 A35

A63

Ã13 Ã14

Ã25

R1 T13 T14

R2 T25

R3 T34

A34 A35

Ã25

Ã34

x1 x2 x3x2

l1 l2

<latexit sha1_base64="kXx44wnjqLe/qAbLMONIjGgtM5U=">AAACEXicbVDLSsNAFL2pr1pfUZduglVwVRLxuSu4calgW6EtZTK5tUMnM2FmIpTQr3DrVv/Bnbj1C/wFv8JJWkStB4Y5nHsP93DChDNtfP/DKc3NLywulZcrK6tr6xvu5lZTy1RRbFDJpboNiUbOBDYMMxxvE4UkDjm2wuFFPm/do9JMihszSrAbkzvB+owSY6We63ZCySM9iu2XJeNe0HOrfs0v4M2SYEqq9TIUuOq5n51I0jRGYSgnWrcDPzHdjCjDKMdxpZNqTAgdkjtsWypIjLqbFcnH3r5VIq8vlX3CeIX605GRWOfh7GZMzED/neXif7N2avpn3YyJJDUo6ORQP+WekV5egxcxhdTwkSWEKmazenRAFKHGllXpFMZMSDOpaYAkQjWuFOWc5zj+rmKWNA9rwUktuD6q1vcmLUEZdmAXDiCAU6jDJVxBAyjcwyM8wbPz4Lw4r87bZLXkTD3b8AvO+xcbpZ6J</latexit>

p1

<latexit sha1_base64="xa47ISr24vnFk6T52/jxFM/EsFA=">AAACEXicbVDLSsNAFL3xWesr6tJNsAquSuLbXcGNSwVbhbaUyeS2HTqZCTOTQgn9Crdu9R/ciVu/wF/wK5ykImo9MMzh3Hu4hxMmnGnj++/OzOzc/MJiaam8vLK6tu5ubDa0TBXFOpVcqruQaORMYN0ww/EuUUjikONtOLjI57dDVJpJcWNGCbZj0hOsyygxVuq4biuUPNKj2H5ZMu4cdtyKX/ULeNMk+CKVWgkKXHXcj1YkaRqjMJQTrZuBn5h2RpRhlOO43Eo1JoQOSA+blgoSo25nRfKxt2eVyOtKZZ8wXqH+dGQk1nk4uxkT09d/Z7n436yZmu5ZO2MiSQ0KOjnUTblnpJfX4EVMITV8ZAmhitmsHu0TRaixZZVbhTET0kxq6iOJUI3LRTnnOY6/q5gmjYNqcFINro8qtd1JS1CCbdiBfQjgFGpwCVdQBwpDeIBHeHLunWfnxXmdrM44X54t+AXn7RMe3Z6L</latexit>

p3

<latexit sha1_base64="Tbii+PtKXnyJ7OyYW5J5YpVAs/I=">AAACFHicbVDLSsNAFL2pr1pfVZduglVwVRLxuSu4calgW6EpZTK5tUMnM2FmIpTQ33DrVv/Bnbh17y/4FU7SImo9MMzh3Hu4hxMmnGnjeR9OaW5+YXGpvFxZWV1b36hubrW0TBXFJpVcqtuQaORMYNMww/E2UUjikGM7HF7k8/Y9Ks2kuDGjBLsxuROszygxVupVt4NQ8kiPYvtlAXI+7vm9as2rewXcWeJPSa1RhgJXvepnEEmaxigM5UTrju8lppsRZRjlOK4EqcaE0CG5w46lgsSou1kRfuzuWyVy+1LZJ4xbqD8dGYl1ns9uxsQM9N9ZLv4366Smf9bNmEhSg4JODvVT7hrp5k24EVNIDR9ZQqhiNqtLB0QRamxflaAwZkKaSVMDJBGqcaUo5zzH8XcVs6R1WPdP6v71Ua2xN2kJyrADu3AAPpxCAy7hCppAYQSP8ATPzoPz4rw6b5PVkjP1bMMvOO9ffl+f0A==</latexit>

`1
<latexit sha1_base64="SQ47TFOWkZBwNsNyfERGuUiTcQY=">AAACFHicbVDLSsNAFL3xWeur2qWbYBVclUR87gpuXFawtdCUMpnc2sHJTJiZCCX0N9y61X9wJ27d+wt+hZO0iFoPDHM49x7u4YQJZ9p43oczN7+wuLRcWimvrq1vbFa2tttapopii0ouVSckGjkT2DLMcOwkCkkccrwJ7y7y+c09Ks2kuDajBHsxuRVswCgxVupXqkEoeaRHsf2yADkf9w/7lZpX9wq4s8SfklqjBAWa/cpnEEmaxigM5UTrru8lppcRZRjlOC4HqcaE0Dtyi11LBYlR97Ii/Njdt0rkDqSyTxi3UH86MhLrPJ/djIkZ6r+zXPxv1k3N4KyXMZGkBgWdHBqk3DXSzZtwI6aQGj6yhFDFbFaXDoki1Ni+ykFhzIQ0k6aGSCJU43JRznmO4+8qZkn7sO6f1P2ro1pjb9ISlGAHduEAfDiFBlxCE1pAYQSP8ATPzoPz4rw6b5PVOWfqqcIvOO9ff/uf0Q==</latexit>

`2

<latexit sha1_base64="i1LTsi0pXgXYdlkAuqdoH9DYknI=">AAACEXicbVDLSsNAFL3xWesr6tJNsAquSiI+dwU3LivYWmhLmUxu7eBkJsxMCiX0K9y61X9wJ279An/Br3CSFlHrgWEO597DPZww4Uwb3/9w5uYXFpeWSyvl1bX1jU13a7upZaooNqjkUrVCopEzgQ3DDMdWopDEIcfb8P4yn98OUWkmxY0ZJdiNyZ1gfUaJsVLPdTuh5JEexfbLknHvqOdW/KpfwJslwZRUaiUoUO+5n51I0jRGYSgnWrcDPzHdjCjDKMdxuZNqTAi9J3fYtlSQGHU3K5KPvQOrRF5fKvuE8Qr1pyMjsc7D2c2YmIH+O8vF/2bt1PTPuxkTSWpQ0Mmhfso9I728Bi9iCqnhI0sIVcxm9eiAKEKNLavcKYyZkGZS0wBJhGpcLsq5yHHyXcUsaR5Vg9NqcH1cqe1PWoIS7MIeHEIAZ1CDK6hDAygM4RGe4Nl5cF6cV+dtsjrnTD078AvO+xcdQZ6K</latexit>

p2 x1 x2 x3x3

l1 l2

<latexit sha1_base64="kXx44wnjqLe/qAbLMONIjGgtM5U=">AAACEXicbVDLSsNAFL2pr1pfUZduglVwVRLxuSu4calgW6EtZTK5tUMnM2FmIpTQr3DrVv/Bnbj1C/wFv8JJWkStB4Y5nHsP93DChDNtfP/DKc3NLywulZcrK6tr6xvu5lZTy1RRbFDJpboNiUbOBDYMMxxvE4UkDjm2wuFFPm/do9JMihszSrAbkzvB+owSY6We63ZCySM9iu2XJeNe0HOrfs0v4M2SYEqq9TIUuOq5n51I0jRGYSgnWrcDPzHdjCjDKMdxpZNqTAgdkjtsWypIjLqbFcnH3r5VIq8vlX3CeIX605GRWOfh7GZMzED/neXif7N2avpn3YyJJDUo6ORQP+WekV5egxcxhdTwkSWEKmazenRAFKHGllXpFMZMSDOpaYAkQjWuFOWc5zj+rmKWNA9rwUktuD6q1vcmLUEZdmAXDiCAU6jDJVxBAyjcwyM8wbPz4Lw4r87bZLXkTD3b8AvO+xcbpZ6J</latexit>

p1

<latexit sha1_base64="i1LTsi0pXgXYdlkAuqdoH9DYknI=">AAACEXicbVDLSsNAFL3xWesr6tJNsAquSiI+dwU3LivYWmhLmUxu7eBkJsxMCiX0K9y61X9wJ279An/Br3CSFlHrgWEO597DPZww4Uwb3/9w5uYXFpeWSyvl1bX1jU13a7upZaooNqjkUrVCopEzgQ3DDMdWopDEIcfb8P4yn98OUWkmxY0ZJdiNyZ1gfUaJsVLPdTuh5JEexfbLknHvqOdW/KpfwJslwZRUaiUoUO+5n51I0jRGYSgnWrcDPzHdjCjDKMdxuZNqTAi9J3fYtlSQGHU3K5KPvQOrRF5fKvuE8Qr1pyMjsc7D2c2YmIH+O8vF/2bt1PTPuxkTSWpQ0Mmhfso9I728Bi9iCqnhI0sIVcxm9eiAKEKNLavcKYyZkGZS0wBJhGpcLsq5yHHyXcUsaR5Vg9NqcH1cqe1PWoIS7MIeHEIAZ1CDK6hDAygM4RGe4Nl5cF6cV+dtsjrnTD078AvO+xcdQZ6K</latexit>

p2

<latexit sha1_base64="Tbii+PtKXnyJ7OyYW5J5YpVAs/I=">AAACFHicbVDLSsNAFL2pr1pfVZduglVwVRLxuSu4calgW6EpZTK5tUMnM2FmIpTQ33DrVv/Bnbh17y/4FU7SImo9MMzh3Hu4hxMmnGnjeR9OaW5+YXGpvFxZWV1b36hubrW0TBXFJpVcqtuQaORMYNMww/E2UUjikGM7HF7k8/Y9Ks2kuDGjBLsxuROszygxVupVt4NQ8kiPYvtlAXI+7vm9as2rewXcWeJPSa1RhgJXvepnEEmaxigM5UTrju8lppsRZRjlOK4EqcaE0CG5w46lgsSou1kRfuzuWyVy+1LZJ4xbqD8dGYl1ns9uxsQM9N9ZLv4366Smf9bNmEhSg4JODvVT7hrp5k24EVNIDR9ZQqhiNqtLB0QRamxflaAwZkKaSVMDJBGqcaUo5zzH8XcVs6R1WPdP6v71Ua2xN2kJyrADu3AAPpxCAy7hCppAYQSP8ATPzoPz4rw6b5PVkjP1bMMvOO9ffl+f0A==</latexit>

`1
<latexit sha1_base64="SQ47TFOWkZBwNsNyfERGuUiTcQY=">AAACFHicbVDLSsNAFL3xWeur2qWbYBVclUR87gpuXFawtdCUMpnc2sHJTJiZCCX0N9y61X9wJ27d+wt+hZO0iFoPDHM49x7u4YQJZ9p43oczN7+wuLRcWimvrq1vbFa2tttapopii0ouVSckGjkT2DLMcOwkCkkccrwJ7y7y+c09Ks2kuDajBHsxuRVswCgxVupXqkEoeaRHsf2yADkf9w/7lZpX9wq4s8SfklqjBAWa/cpnEEmaxigM5UTrru8lppcRZRjlOC4HqcaE0Dtyi11LBYlR97Ii/Njdt0rkDqSyTxi3UH86MhLrPJ/djIkZ6r+zXPxv1k3N4KyXMZGkBgWdHBqk3DXSzZtwI6aQGj6yhFDFbFaXDoki1Ni+ykFhzIQ0k6aGSCJU43JRznmO4+8qZkn7sO6f1P2ro1pjb9ISlGAHduEAfDiFBlxCE1pAYQSP8ATPzoPz4rw6b5PVOWfqqcIvOO9ff/uf0Q==</latexit>

`2

<latexit sha1_base64="xa47ISr24vnFk6T52/jxFM/EsFA=">AAACEXicbVDLSsNAFL3xWesr6tJNsAquSuLbXcGNSwVbhbaUyeS2HTqZCTOTQgn9Crdu9R/ciVu/wF/wK5ykImo9MMzh3Hu4hxMmnGnj++/OzOzc/MJiaam8vLK6tu5ubDa0TBXFOpVcqruQaORMYN0ww/EuUUjikONtOLjI57dDVJpJcWNGCbZj0hOsyygxVuq4biuUPNKj2H5ZMu4cdtyKX/ULeNMk+CKVWgkKXHXcj1YkaRqjMJQTrZuBn5h2RpRhlOO43Eo1JoQOSA+blgoSo25nRfKxt2eVyOtKZZ8wXqH+dGQk1nk4uxkT09d/Z7n436yZmu5ZO2MiSQ0KOjnUTblnpJfX4EVMITV8ZAmhitmsHu0TRaixZZVbhTET0kxq6iOJUI3LRTnnOY6/q5gmjYNqcFINro8qtd1JS1CCbdiBfQjgFGpwCVdQBwpDeIBHeHLunWfnxXmdrM44X54t+AXn7RMe3Z6L</latexit>

p3

R1 T13 T14

R2 T25

R3 T34

R4 T45

Ã25

Ã45

R1 T13 T14

R2 T25

R3 T34

R4 T45

R5

Figure 1.12 The remaining elimination steps for the toy example, completing a full QR
factorization. The last step in the bottom right shows the equivalence between the resulting
Bayes net and the sparse Cholesky factor R.

has a very specific form. We discuss the details below, as well as how to solve for

the MAP estimate in the linear case.

As we discussed, the Gaussian factor graph corresponding to the linearized non-

linear problem is transformed by elimination into the density p(x) given by the

1.7 Incremental SLAM 47

now-familiar Bayes-net factorization:

p(x) =
∏

j

p(xj |sj). (1.50)

In both QR and Cholesky variants, the conditional densities p(xj |sj) are given by

p(xj |sj) = k exp

(
−1

2
∥Rjxj + Tjsj − dj∥22

)
, (1.51)

which is a linear-Gaussian density on the eliminated variable xj . Indeed, we have

∥Rjxj + Tjsj − dj∥22 = (xj − µj)
⊤
R⊤

j Rj (xj − µj)
∆
= ∥xj − µj∥2Σj

, (1.52)

where the mean µj = R−1
j (dj−Tjsj) depends linearly on the separator sj , and the

covariance matrix is given by Σj = (R⊤
j Rj)

−1. Hence, the normalization constant

k = |2πΣj |−
1
2 .

After the elimination step is complete, back-substitution is used to obtain the

MAP estimate of each variable. As seen in Figure 1.12, the last variable eliminated

does not depend on any other variables. Thus, the MAP estimate of the last variable

can be directly extracted from the Bayes net. By proceeding in reverse elimination

order, the values of all the separator variables for each conditional will always

be available from the previous steps, allowing the estimate for the current frontal

variable to be computed.

At every step, the MAP estimate for the variable xj is the conditional mean,

x∗
j = R−1

j (dj − Tjs
∗
j), (1.53)

since by construction the MAP estimate for the separator s∗j is fully known by this

point.

1.7 Incremental SLAM

In an incremental SLAM setting, we want to compute the optimal trajectory and

map whenever we receive new measurements while traversing the environment, or

at least at regular intervals. One way to do so is to update the most recent matrix

factorization with the new measurements, to reuse the computation that already

incorporated all previous measurements. In the linear case, this is possible through

incremental factorization methods, the dense versions of which are also discussed

at length in Golub and Loan [397]. However, matrix factorization operates on lin-

ear systems, but most SLAM problems of practical interest are nonlinear. Using

incremental matrix factorization, it is far from obvious how re-linearization can be

performed incrementally without refactoring the complete matrix. To overcome this

problem we once again resort to graphical models, and introduce a new graphical

model, the Bayes tree. We then show how to incrementally update the Bayes tree as

48 Factor Graphs for SLAM

new measurements and states are added to the system, leading to the incremental

smoothing and mapping (iSAM) algorithm.

1.7.1 The Bayes Tree

It is well known that inference in a tree-structured graph is efficient. In contrast,

the factor graphs associated with typical robotics problems contain many loops.

Still, we can construct a tree-structured graphical model in a two-step process:

first, perform variable elimination on the factor graph to obtain a Bayes net with a

special property. Second, exploit that special property to find a tree structure over

cliques in this Bayes net.

In particular, a Bayes net obtained by running the elimination algorithm on a

factor graph satisfies a special property: it is chordal, meaning that any undirected

cycle of length greater than three has a chord, i.e., an edge connecting two non-

consecutive vertices on the cycle. In AI and machine learning, a chordal graph is

more commonly said to be triangulated. Because it is still a Bayes net, the cor-

responding joint density p(x) is given by factorizing over the individual variables

xj ,

p(x) =
∏

j

p(xj |πj), (1.54)

where πj are the parent nodes of xj . However, although the Bayes net is chordal, at

this variable level it is still a non-trivial graph: neither chain-like nor tree-structured.

The chordal Bayes net for our running toy SLAM example is shown in the last step

of Figure 1.10, and it is clear that there is an undirected cycle p1−p2−ℓ1, implying

it does not have a tree-structured form.

By identifying cliques in this chordal graph, the Bayes net may be rewritten as

a Bayes tree. We introduce this new, tree-structured graphical model to capture

the clique structure of the Bayes net. It is not obvious that cliques in the Bayes

net should form a tree. They do so because of the chordal property, although we

will not attempt to prove that here. Listing all these cliques in an undirected tree

yields a clique tree, also known as a junction tree in AI and machine learning. The

Bayes tree is just a directed version of this that preserves information about the

elimination order.

More formally, a Bayes tree is a directed tree where the nodes represent cliques ck
of the underlying chordal Bayes net. In particular, we define one conditional density

p(fk|sk) per node, with the separator sk as the intersection ck ∩ϖk of the clique

ck and its parent clique ϖk. The frontal variables fk are the remaining variables,

i.e., fk
∆
= ck \ sk. Notationally, we write ck = fk : sk for a clique. The following

expression gives the joint density p(x) on the variables x defined by a Bayes tree:

p(x) =
∏

k

p(fk|sk). (1.55)

1.7 Incremental SLAM 49

x1 x2 x3x3

l1 l2

<latexit sha1_base64="kXx44wnjqLe/qAbLMONIjGgtM5U=">AAACEXicbVDLSsNAFL2pr1pfUZduglVwVRLxuSu4calgW6EtZTK5tUMnM2FmIpTQr3DrVv/Bnbj1C/wFv8JJWkStB4Y5nHsP93DChDNtfP/DKc3NLywulZcrK6tr6xvu5lZTy1RRbFDJpboNiUbOBDYMMxxvE4UkDjm2wuFFPm/do9JMihszSrAbkzvB+owSY6We63ZCySM9iu2XJeNe0HOrfs0v4M2SYEqq9TIUuOq5n51I0jRGYSgnWrcDPzHdjCjDKMdxpZNqTAgdkjtsWypIjLqbFcnH3r5VIq8vlX3CeIX605GRWOfh7GZMzED/neXif7N2avpn3YyJJDUo6ORQP+WekV5egxcxhdTwkSWEKmazenRAFKHGllXpFMZMSDOpaYAkQjWuFOWc5zj+rmKWNA9rwUktuD6q1vcmLUEZdmAXDiCAU6jDJVxBAyjcwyM8wbPz4Lw4r87bZLXkTD3b8AvO+xcbpZ6J</latexit>

p1

<latexit sha1_base64="i1LTsi0pXgXYdlkAuqdoH9DYknI=">AAACEXicbVDLSsNAFL3xWesr6tJNsAquSiI+dwU3LivYWmhLmUxu7eBkJsxMCiX0K9y61X9wJ279An/Br3CSFlHrgWEO597DPZww4Uwb3/9w5uYXFpeWSyvl1bX1jU13a7upZaooNqjkUrVCopEzgQ3DDMdWopDEIcfb8P4yn98OUWkmxY0ZJdiNyZ1gfUaJsVLPdTuh5JEexfbLknHvqOdW/KpfwJslwZRUaiUoUO+5n51I0jRGYSgnWrcDPzHdjCjDKMdxuZNqTAi9J3fYtlSQGHU3K5KPvQOrRF5fKvuE8Qr1pyMjsc7D2c2YmIH+O8vF/2bt1PTPuxkTSWpQ0Mmhfso9I728Bi9iCqnhI0sIVcxm9eiAKEKNLavcKYyZkGZS0wBJhGpcLsq5yHHyXcUsaR5Vg9NqcH1cqe1PWoIS7MIeHEIAZ1CDK6hDAygM4RGe4Nl5cF6cV+dtsjrnTD078AvO+xcdQZ6K</latexit>

p2

<latexit sha1_base64="Tbii+PtKXnyJ7OyYW5J5YpVAs/I=">AAACFHicbVDLSsNAFL2pr1pfVZduglVwVRLxuSu4calgW6EpZTK5tUMnM2FmIpTQ33DrVv/Bnbh17y/4FU7SImo9MMzh3Hu4hxMmnGnjeR9OaW5+YXGpvFxZWV1b36hubrW0TBXFJpVcqtuQaORMYNMww/E2UUjikGM7HF7k8/Y9Ks2kuDGjBLsxuROszygxVupVt4NQ8kiPYvtlAXI+7vm9as2rewXcWeJPSa1RhgJXvepnEEmaxigM5UTrju8lppsRZRjlOK4EqcaE0CG5w46lgsSou1kRfuzuWyVy+1LZJ4xbqD8dGYl1ns9uxsQM9N9ZLv4366Smf9bNmEhSg4JODvVT7hrp5k24EVNIDR9ZQqhiNqtLB0QRamxflaAwZkKaSVMDJBGqcaUo5zzH8XcVs6R1WPdP6v71Ua2xN2kJyrADu3AAPpxCAy7hCppAYQSP8ATPzoPz4rw6b5PVkjP1bMMvOO9ffl+f0A==</latexit>

`1
<latexit sha1_base64="SQ47TFOWkZBwNsNyfERGuUiTcQY=">AAACFHicbVDLSsNAFL3xWeur2qWbYBVclUR87gpuXFawtdCUMpnc2sHJTJiZCCX0N9y61X9wJ27d+wt+hZO0iFoPDHM49x7u4YQJZ9p43oczN7+wuLRcWimvrq1vbFa2tttapopii0ouVSckGjkT2DLMcOwkCkkccrwJ7y7y+c09Ks2kuDajBHsxuRVswCgxVupXqkEoeaRHsf2yADkf9w/7lZpX9wq4s8SfklqjBAWa/cpnEEmaxigM5UTrru8lppcRZRjlOC4HqcaE0Dtyi11LBYlR97Ii/Njdt0rkDqSyTxi3UH86MhLrPJ/djIkZ6r+zXPxv1k3N4KyXMZGkBgWdHBqk3DXSzZtwI6aQGj6yhFDFbFaXDoki1Ni+ykFhzIQ0k6aGSCJU43JRznmO4+8qZkn7sO6f1P2ro1pjb9ISlGAHduEAfDiFBlxCE1pAYQSP8ATPzoPz4rw6b5PVOWfqqcIvOO9ff/uf0Q==</latexit>

`2

<latexit sha1_base64="xa47ISr24vnFk6T52/jxFM/EsFA=">AAACEXicbVDLSsNAFL3xWesr6tJNsAquSuLbXcGNSwVbhbaUyeS2HTqZCTOTQgn9Crdu9R/ciVu/wF/wK5ykImo9MMzh3Hu4hxMmnGnj++/OzOzc/MJiaam8vLK6tu5ubDa0TBXFOpVcqruQaORMYN0ww/EuUUjikONtOLjI57dDVJpJcWNGCbZj0hOsyygxVuq4biuUPNKj2H5ZMu4cdtyKX/ULeNMk+CKVWgkKXHXcj1YkaRqjMJQTrZuBn5h2RpRhlOO43Eo1JoQOSA+blgoSo25nRfKxt2eVyOtKZZ8wXqH+dGQk1nk4uxkT09d/Z7n436yZmu5ZO2MiSQ0KOjnUTblnpJfX4EVMITV8ZAmhitmsHu0TRaixZZVbhTET0kxq6iOJUI3LRTnnOY6/q5gmjYNqcFINro8qtd1JS1CCbdiBfQjgFGpwCVdQBwpDeIBHeHLunWfnxXmdrM44X54t+AXn7RMe3Z6L</latexit>

p3

<latexit sha1_base64="SQ47TFOWkZBwNsNyfERGuUiTcQY=">AAACFHicbVDLSsNAFL3xWeur2qWbYBVclUR87gpuXFawtdCUMpnc2sHJTJiZCCX0N9y61X9wJ27d+wt+hZO0iFoPDHM49x7u4YQJZ9p43oczN7+wuLRcWimvrq1vbFa2tttapopii0ouVSckGjkT2DLMcOwkCkkccrwJ7y7y+c09Ks2kuDajBHsxuRVswCgxVupXqkEoeaRHsf2yADkf9w/7lZpX9wq4s8SfklqjBAWa/cpnEEmaxigM5UTrru8lppcRZRjlOC4HqcaE0Dtyi11LBYlR97Ii/Njdt0rkDqSyTxi3UH86MhLrPJ/djIkZ6r+zXPxv1k3N4KyXMZGkBgWdHBqk3DXSzZtwI6aQGj6yhFDFbFaXDoki1Ni+ykFhzIQ0k6aGSCJU43JRznmO4+8qZkn7sO6f1P2ro1pjb9ISlGAHduEAfDiFBlxCE1pAYQSP8ATPzoPz4rw6b5PVOWfqqcIvOO9ff/uf0Q==</latexit>

`2

X X X

 X
 X X
 X X
 X X

<latexit sha1_base64="EeFO+nWrzOhju+/zckPqZS2ESkA=">AAACDXicbVDLSgMxFL3js9ZX1aWbwSK4KjPic1dw47KKrYW2lkzmtg3NJEOSEcrQb3DrVv/Bnbj1G/wFv8LMtIhaD4Qczr2HezhBzJk2nvfhzM0vLC4tF1aKq2vrG5ulre2GlomiWKeSS9UMiEbOBNYNMxybsUISBRxvg+FFNr+9R6WZFDdmFGMnIn3BeowSY6W7diB5qEeR/dLrcbdU9ipeDneW+FNSrhYgR61b+myHkiYRCkM50brle7HppEQZRjmOi+1EY0zokPSxZakgEepOmqceu/tWCd2eVPYJ4+bqT0dKIp1Fs5sRMQP9d5aJ/81aiemddVIm4sSgoJNDvYS7RrpZBW7IFFLDR5YQqpjN6tIBUYQaW1SxnRtTIU1eUXeAJEQ1LublnGc4/q5iljQOK/5Jxb86KlcPJi1BAXZhDw7Ah1OowiXUoA4UFDzCEzw7D86L8+q8TVbnnKlnB37Bef8CM1admg==</latexit>

R

<latexit sha1_base64="Tbii+PtKXnyJ7OyYW5J5YpVAs/I=">AAACFHicbVDLSsNAFL2pr1pfVZduglVwVRLxuSu4calgW6EpZTK5tUMnM2FmIpTQ33DrVv/Bnbh17y/4FU7SImo9MMzh3Hu4hxMmnGnjeR9OaW5+YXGpvFxZWV1b36hubrW0TBXFJpVcqtuQaORMYNMww/E2UUjikGM7HF7k8/Y9Ks2kuDGjBLsxuROszygxVupVt4NQ8kiPYvtlAXI+7vm9as2rewXcWeJPSa1RhgJXvepnEEmaxigM5UTrju8lppsRZRjlOK4EqcaE0CG5w46lgsSou1kRfuzuWyVy+1LZJ4xbqD8dGYl1ns9uxsQM9N9ZLv4366Smf9bNmEhSg4JODvVT7hrp5k24EVNIDR9ZQqhiNqtLB0QRamxflaAwZkKaSVMDJBGqcaUo5zzH8XcVs6R1WPdP6v71Ua2xN2kJyrADu3AAPpxCAy7hCppAYQSP8ATPzoPz4rw6b5PVkjP1bMMvOO9ffl+f0A==</latexit>

`1
<latexit sha1_base64="SQ47TFOWkZBwNsNyfERGuUiTcQY=">AAACFHicbVDLSsNAFL3xWeur2qWbYBVclUR87gpuXFawtdCUMpnc2sHJTJiZCCX0N9y61X9wJ27d+wt+hZO0iFoPDHM49x7u4YQJZ9p43oczN7+wuLRcWimvrq1vbFa2tttapopii0ouVSckGjkT2DLMcOwkCkkccrwJ7y7y+c09Ks2kuDajBHsxuRVswCgxVupXqkEoeaRHsf2yADkf9w/7lZpX9wq4s8SfklqjBAWa/cpnEEmaxigM5UTrru8lppcRZRjlOC4HqcaE0Dtyi11LBYlR97Ii/Njdt0rkDqSyTxi3UH86MhLrPJ/djIkZ6r+zXPxv1k3N4KyXMZGkBgWdHBqk3DXSzZtwI6aQGj6yhFDFbFaXDoki1Ni+ykFhzIQ0k6aGSCJU43JRznmO4+8qZkn7sO6f1P2ro1pjb9ISlGAHduEAfDiFBlxCE1pAYQSP8ATPzoPz4rw6b5PVOWfqqcIvOO9ff/uf0Q==</latexit>

`2
<latexit sha1_base64="kXx44wnjqLe/qAbLMONIjGgtM5U=">AAACEXicbVDLSsNAFL2pr1pfUZduglVwVRLxuSu4calgW6EtZTK5tUMnM2FmIpTQr3DrVv/Bnbj1C/wFv8JJWkStB4Y5nHsP93DChDNtfP/DKc3NLywulZcrK6tr6xvu5lZTy1RRbFDJpboNiUbOBDYMMxxvE4UkDjm2wuFFPm/do9JMihszSrAbkzvB+owSY6We63ZCySM9iu2XJeNe0HOrfs0v4M2SYEqq9TIUuOq5n51I0jRGYSgnWrcDPzHdjCjDKMdxpZNqTAgdkjtsWypIjLqbFcnH3r5VIq8vlX3CeIX605GRWOfh7GZMzED/neXif7N2avpn3YyJJDUo6ORQP+WekV5egxcxhdTwkSWEKmazenRAFKHGllXpFMZMSDOpaYAkQjWuFOWc5zj+rmKWNA9rwUktuD6q1vcmLUEZdmAXDiCAU6jDJVxBAyjcwyM8wbPz4Lw4r87bZLXkTD3b8AvO+xcbpZ6J</latexit>

p1

<latexit sha1_base64="i1LTsi0pXgXYdlkAuqdoH9DYknI=">AAACEXicbVDLSsNAFL3xWesr6tJNsAquSiI+dwU3LivYWmhLmUxu7eBkJsxMCiX0K9y61X9wJ279An/Br3CSFlHrgWEO597DPZww4Uwb3/9w5uYXFpeWSyvl1bX1jU13a7upZaooNqjkUrVCopEzgQ3DDMdWopDEIcfb8P4yn98OUWkmxY0ZJdiNyZ1gfUaJsVLPdTuh5JEexfbLknHvqOdW/KpfwJslwZRUaiUoUO+5n51I0jRGYSgnWrcDPzHdjCjDKMdxuZNqTAi9J3fYtlSQGHU3K5KPvQOrRF5fKvuE8Qr1pyMjsc7D2c2YmIH+O8vF/2bt1PTPuxkTSWpQ0Mmhfso9I728Bi9iCqnhI0sIVcxm9eiAKEKNLavcKYyZkGZS0wBJhGpcLsq5yHHyXcUsaR5Vg9NqcH1cqe1PWoIS7MIeHEIAZ1CDK6hDAygM4RGe4Nl5cF6cV+dtsjrnTD078AvO+xcdQZ6K</latexit>

p2

<latexit sha1_base64="xa47ISr24vnFk6T52/jxFM/EsFA=">AAACEXicbVDLSsNAFL3xWesr6tJNsAquSuLbXcGNSwVbhbaUyeS2HTqZCTOTQgn9Crdu9R/ciVu/wF/wK5ykImo9MMzh3Hu4hxMmnGnj++/OzOzc/MJiaam8vLK6tu5ubDa0TBXFOpVcqruQaORMYN0ww/EuUUjikONtOLjI57dDVJpJcWNGCbZj0hOsyygxVuq4biuUPNKj2H5ZMu4cdtyKX/ULeNMk+CKVWgkKXHXcj1YkaRqjMJQTrZuBn5h2RpRhlOO43Eo1JoQOSA+blgoSo25nRfKxt2eVyOtKZZ8wXqH+dGQk1nk4uxkT09d/Z7n436yZmu5ZO2MiSQ0KOjnUTblnpJfX4EVMITV8ZAmhitmsHu0TRaixZZVbhTET0kxq6iOJUI3LRTnnOY6/q5gmjYNqcFINro8qtd1JS1CCbdiBfQjgFGpwCVdQBwpDeIBHeHLunWfnxXmdrM44X54t+AXn7RMe3Z6L</latexit>

p3<latexit sha1_base64="GsIUnO1JWznWHmco02Iwp2yAuQU=">AAACI3icbVDLSgMxFL3js9ZX1aWb0CK4kDLj213BjUsFq4W2lEzm1gYzyZBkhDJ074+4dav/4E7cuPAH/AozUxFfB0IO59xDbk6YCG6s7796E5NT0zOzpbny/MLi0nJlZfXCqFQzbDIllG6F1KDgEpuWW4GtRCONQ4GX4fVx7l/eoDZcyXM7TLAb0yvJ+5xR66RepdoJlYjMMHZXlox621vkl7LTq9T8ul+A/CXBJ6k1SlDgtFd570SKpTFKywQ1ph34ie1mVFvOBI7KndRgQtk1vcK2o5LGaLpZ8ZcR2XBKRPpKuyMtKdTviYzGJl/OTcbUDsxvLxf/89qp7R92My6T1KJk44f6qSBWkbwYEnGNzIqhI5Rp7nYlbEA1ZdbVV+4UwUwqOy5ugDRCPSoX5Rzl2Puq4i+52K4H+/XgbLfW2By3BCVYhypsQgAH0IATOIUmMLiFe3iAR+/Oe/KevZfx6IT3mVmDH/DePgBwWqYb</latexit>
p2, p3

<latexit sha1_base64="5pOvkpgneeiBKR9i0RzzpX5NGsw=">AAACOXicbZDLSgMxFIbPeK31VnXpJlgEF1JmxEt1VXDjUsGq0Cklkzm1wUwyJBmhDH0VX8StW927dCdufQEzUxFvP4T8fOcccvJHqeDG+v6zNzE5NT0zW5mrzi8sLi3XVlYvjMo0wzZTQumriBoUXGLbcivwKtVIk0jgZXRzXNQvb1EbruS5HabYTei15H3OqHWoV2uGkRKxGSbuykMUYtQLtsl3mDpCjn6jnV6t7jf8UuSvCT5NvVWBUqe92lsYK5YlKC0T1JhO4Ke2m1NtORM4qoaZwZSyG3qNHWclTdB08/KHI7LpSEz6SrsjLSnp94mcJqZYznUm1A7M71oB/6t1MttvdnMu08yiZOOH+pkgVpEiLhJzjcyKoTOUae52JWxANWXWhVoNy8FcKjuOc4A0Rj2qluEcFtr7iuKvudhpBPuN4Gy33toapwQVWIcN2IIADqAFJ3AKbWBwBw/wCE/evffivXpv49YJ73NmDX7Ie/8ASA2vIw==</latexit>

`1, p1 : p2

<latexit sha1_base64="HRY9zc3q4l4mezF5myv/mgWD46g=">AAACJ3icbVDLahsxFL2TpK3jvpx0mY2oafHKzDh9JStDN10mEDsGjxk0mmtbWCMNkqZghvmD/Ei22Sb/kF1ol93mK6IZm5LUPSB0OOcedHXiTHBjff+3t7W98+z5i8Zu8+Wr12/etvb2h0blmuGAKaH0KKYGBZc4sNwKHGUaaRoLPI8X3yv//Cdqw5U8s8sMJymdST7ljFonRa2PYaxEYpapu4oQhSijHjkmj9WsjA6jVtvv+jXIJgnWpN1vQI2TqHUfJorlKUrLBDVmHPiZnRRUW84Els0wN5hRtqAzHDsqaYpmUtT/KckHpyRkqrQ70pJafZwoaGqq5dxkSu3c/OtV4v+8cW6n3yYFl1luUbLVQ9NcEKtIVQ5JuEZmxdIRyjR3uxI2p5oy6ypshnWwkMquypsjTVCXzbqcowqf/1axSYa9bvClG5x+avc7q5agAQfwHjoQwFfoww84gQEwuIAruIYb79K79e68X6vRLW+deQdP4P15AGK/p5o=</latexit>

`2 : p3

<latexit sha1_base64="ry59MVPTyO/Z6zeX6db+jus3Dnw=">AAACCXicbVDLSsNAFL2pr1pfVZdugkWom5KIz13BjcsK9oFNKJPpbTt0MhNmJmIJ/QK3bvUf3Ilbv8Jf8CtM0yJqPTBwOOce7p0TRJxp4zgfVm5hcWl5Jb9aWFvf2Nwqbu80tIwVxTqVXKpWQDRyJrBumOHYihSSMODYDIaXE795h0ozKW7MKEI/JH3BeowSk0q3XhjI+6RMDsedYsmpOBnseeLOSKmahwy1TvHT60oahygM5UTrtutExk+IMoxyHBe8WGNE6JD0sZ1SQULUfpJdPLYPUqVr96RKnzB2pv5MJCTUehQG6WRIzED/9Sbif147Nr1zP2Eiig0KOl3Ui7ltpD35vt1lCqnho5QQqlh6q00HRBFq0pIKXhZMhDRZPZ0Bki6qcSEr52KCk+8q5knjqOKeVtzr41K1PG0J8rAH+1AGF86gCldQgzpQEPAIT/BsPVgv1qv1Nh3NWbPMLvyC9f4FHeGbUQ==</latexit>

(a)

<latexit sha1_base64="KLbl9Kh0A6hkeMXj2W/hyqMU6OU=">AAACCXicbVDLSsNAFL2pr1pfVZdugkWom5KIz13BjcsK9oFNKJPpbTt0MhNmJmIJ/QK3bvUf3Ilbv8Jf8CtM0yJqPTBwOOce7p0TRJxp4zgfVm5hcWl5Jb9aWFvf2Nwqbu80tIwVxTqVXKpWQDRyJrBumOHYihSSMODYDIaXE795h0ozKW7MKEI/JH3BeowSk0q3XhjI+6QcHI47xZJTcTLY88SdkVI1DxlqneKn15U0DlEYyonWbdeJjJ8QZRjlOC54scaI0CHpYzulgoSo/SS7eGwfpErX7kmVPmHsTP2ZSEio9SgM0smQmIH+603E/7x2bHrnfsJEFBsUdLqoF3PbSHvyfbvLFFLDRykhVLH0VpsOiCLUpCUVvCyYCGmyejoDJF1U40JWzsUEJ99VzJPGUcU9rbjXx6VqedoS5GEP9qEMLpxBFa6gBnWgIOARnuDZerBerFfrbTqas2aZXfgF6/0LH3+bUg==</latexit>

(b)
<latexit sha1_base64="cjuMfHo7e7VEIuLK4/uxtW98yAM=">AAACCXicbVDLSsNAFL2pr1pfVZdugkWom5KIz13BjcsK9oFNKJPpbTt0MhNmJmIJ/QK3bvUf3Ilbv8Jf8CtM0yJqPTBwOOce7p0TRJxp4zgfVm5hcWl5Jb9aWFvf2Nwqbu80tIwVxTqVXKpWQDRyJrBumOHYihSSMODYDIaXE795h0ozKW7MKEI/JH3BeowSk0q3XhjI+6RMD8edYsmpOBnseeLOSKmahwy1TvHT60oahygM5UTrtutExk+IMoxyHBe8WGNE6JD0sZ1SQULUfpJdPLYPUqVr96RKnzB2pv5MJCTUehQG6WRIzED/9Sbif147Nr1zP2Eiig0KOl3Ui7ltpD35vt1lCqnho5QQqlh6q00HRBFq0pIKXhZMhDRZPZ0Bki6qcSEr52KCk+8q5knjqOKeVtzr41K1PG0J8rAH+1AGF86gCldQgzpQEPAIT/BsPVgv1qv1Nh3NWbPMLvyC9f4FIR2bUw==</latexit>

(c)

Figure 1.13 The Bayes tree (b) and the associated square root information matrix R (c)
describing the clique structure in the chordal Bayes net (a) based on our canonical example
from Figure 1.2. A Bayes tree is similar to a clique tree, but is better at capturing the
formal equivalence between sparse linear algebra and inference in graphical models. The
association of cliques with rows in the R factor is indicated by color.

For the root fr, the separator is empty, i.e., it is a simple prior p(fr) on the root

variables. The way Bayes trees are defined, the separator sk for a clique ck is always

a subset of the parent clique ϖk, and hence the directed edges in the graph have

the same semantic meaning as in a Bayes net: conditioning.

The Bayes tree associated with our canonical toy SLAM problem (Figure 1.2)

is shown in Figure 1.13. The root clique c1 = p2,p3 (shown in blue) comprises p2
and p3, which intersects with two other cliques, c2 = ℓ1,p1 : p2 shown in green,

and c3 = ℓ2 : p3 shown in red. The colors also indicate how the rows of square-

root information matrix R map to the different cliques, and how the Bayes tree

captures independence relationships between them. For example, the green and red

rows only intersect in variables that belong to the root clique, as predicted.

1.7.2 Updating the Bayes Tree

Incremental inference corresponds to a simple editing of the Bayes tree. This view

provides a better explanation and understanding of the otherwise abstract incre-

mental matrix factorization process. It also allows us to store and compute the

square-root information matrix in the form of a Bayes tree, a deeply meaningful

sparse storage scheme.

50 Factor Graphs for SLAM

x2,x3

l1,x1 : x2 l2 : x3
x1

x2 x3

l1

x1,x2,x3

l1 : x1,x2 l2 : x3 x1

x2 x3

l1

<latexit sha1_base64="kXx44wnjqLe/qAbLMONIjGgtM5U=">AAACEXicbVDLSsNAFL2pr1pfUZduglVwVRLxuSu4calgW6EtZTK5tUMnM2FmIpTQr3DrVv/Bnbj1C/wFv8JJWkStB4Y5nHsP93DChDNtfP/DKc3NLywulZcrK6tr6xvu5lZTy1RRbFDJpboNiUbOBDYMMxxvE4UkDjm2wuFFPm/do9JMihszSrAbkzvB+owSY6We63ZCySM9iu2XJeNe0HOrfs0v4M2SYEqq9TIUuOq5n51I0jRGYSgnWrcDPzHdjCjDKMdxpZNqTAgdkjtsWypIjLqbFcnH3r5VIq8vlX3CeIX605GRWOfh7GZMzED/neXif7N2avpn3YyJJDUo6ORQP+WekV5egxcxhdTwkSWEKmazenRAFKHGllXpFMZMSDOpaYAkQjWuFOWc5zj+rmKWNA9rwUktuD6q1vcmLUEZdmAXDiCAU6jDJVxBAyjcwyM8wbPz4Lw4r87bZLXkTD3b8AvO+xcbpZ6J</latexit>

p1

<latexit sha1_base64="i1LTsi0pXgXYdlkAuqdoH9DYknI=">AAACEXicbVDLSsNAFL3xWesr6tJNsAquSiI+dwU3LivYWmhLmUxu7eBkJsxMCiX0K9y61X9wJ279An/Br3CSFlHrgWEO597DPZww4Uwb3/9w5uYXFpeWSyvl1bX1jU13a7upZaooNqjkUrVCopEzgQ3DDMdWopDEIcfb8P4yn98OUWkmxY0ZJdiNyZ1gfUaJsVLPdTuh5JEexfbLknHvqOdW/KpfwJslwZRUaiUoUO+5n51I0jRGYSgnWrcDPzHdjCjDKMdxuZNqTAi9J3fYtlSQGHU3K5KPvQOrRF5fKvuE8Qr1pyMjsc7D2c2YmIH+O8vF/2bt1PTPuxkTSWpQ0Mmhfso9I728Bi9iCqnhI0sIVcxm9eiAKEKNLavcKYyZkGZS0wBJhGpcLsq5yHHyXcUsaR5Vg9NqcH1cqe1PWoIS7MIeHEIAZ1CDK6hDAygM4RGe4Nl5cF6cV+dtsjrnTD078AvO+xcdQZ6K</latexit>

p2

<latexit sha1_base64="xa47ISr24vnFk6T52/jxFM/EsFA=">AAACEXicbVDLSsNAFL3xWesr6tJNsAquSuLbXcGNSwVbhbaUyeS2HTqZCTOTQgn9Crdu9R/ciVu/wF/wK5ykImo9MMzh3Hu4hxMmnGnj++/OzOzc/MJiaam8vLK6tu5ubDa0TBXFOpVcqruQaORMYN0ww/EuUUjikONtOLjI57dDVJpJcWNGCbZj0hOsyygxVuq4biuUPNKj2H5ZMu4cdtyKX/ULeNMk+CKVWgkKXHXcj1YkaRqjMJQTrZuBn5h2RpRhlOO43Eo1JoQOSA+blgoSo25nRfKxt2eVyOtKZZ8wXqH+dGQk1nk4uxkT09d/Z7n436yZmu5ZO2MiSQ0KOjnUTblnpJfX4EVMITV8ZAmhitmsHu0TRaixZZVbhTET0kxq6iOJUI3LRTnnOY6/q5gmjYNqcFINro8qtd1JS1CCbdiBfQjgFGpwCVdQBwpDeIBHeHLunWfnxXmdrM44X54t+AXn7RMe3Z6L</latexit>

p3

<latexit sha1_base64="Tbii+PtKXnyJ7OyYW5J5YpVAs/I=">AAACFHicbVDLSsNAFL2pr1pfVZduglVwVRLxuSu4calgW6EpZTK5tUMnM2FmIpTQ33DrVv/Bnbh17y/4FU7SImo9MMzh3Hu4hxMmnGnjeR9OaW5+YXGpvFxZWV1b36hubrW0TBXFJpVcqtuQaORMYNMww/E2UUjikGM7HF7k8/Y9Ks2kuDGjBLsxuROszygxVupVt4NQ8kiPYvtlAXI+7vm9as2rewXcWeJPSa1RhgJXvepnEEmaxigM5UTrju8lppsRZRjlOK4EqcaE0CG5w46lgsSou1kRfuzuWyVy+1LZJ4xbqD8dGYl1ns9uxsQM9N9ZLv4366Smf9bNmEhSg4JODvVT7hrp5k24EVNIDR9ZQqhiNqtLB0QRamxflaAwZkKaSVMDJBGqcaUo5zzH8XcVs6R1WPdP6v71Ua2xN2kJyrADu3AAPpxCAy7hCppAYQSP8ATPzoPz4rw6b5PVkjP1bMMvOO9ffl+f0A==</latexit>

`1

<latexit sha1_base64="kXx44wnjqLe/qAbLMONIjGgtM5U=">AAACEXicbVDLSsNAFL2pr1pfUZduglVwVRLxuSu4calgW6EtZTK5tUMnM2FmIpTQr3DrVv/Bnbj1C/wFv8JJWkStB4Y5nHsP93DChDNtfP/DKc3NLywulZcrK6tr6xvu5lZTy1RRbFDJpboNiUbOBDYMMxxvE4UkDjm2wuFFPm/do9JMihszSrAbkzvB+owSY6We63ZCySM9iu2XJeNe0HOrfs0v4M2SYEqq9TIUuOq5n51I0jRGYSgnWrcDPzHdjCjDKMdxpZNqTAgdkjtsWypIjLqbFcnH3r5VIq8vlX3CeIX605GRWOfh7GZMzED/neXif7N2avpn3YyJJDUo6ORQP+WekV5egxcxhdTwkSWEKmazenRAFKHGllXpFMZMSDOpaYAkQjWuFOWc5zj+rmKWNA9rwUktuD6q1vcmLUEZdmAXDiCAU6jDJVxBAyjcwyM8wbPz4Lw4r87bZLXkTD3b8AvO+xcbpZ6J</latexit>

p1

<latexit sha1_base64="Tbii+PtKXnyJ7OyYW5J5YpVAs/I=">AAACFHicbVDLSsNAFL2pr1pfVZduglVwVRLxuSu4calgW6EpZTK5tUMnM2FmIpTQ33DrVv/Bnbh17y/4FU7SImo9MMzh3Hu4hxMmnGnjeR9OaW5+YXGpvFxZWV1b36hubrW0TBXFJpVcqtuQaORMYNMww/E2UUjikGM7HF7k8/Y9Ks2kuDGjBLsxuROszygxVupVt4NQ8kiPYvtlAXI+7vm9as2rewXcWeJPSa1RhgJXvepnEEmaxigM5UTrju8lppsRZRjlOK4EqcaE0CG5w46lgsSou1kRfuzuWyVy+1LZJ4xbqD8dGYl1ns9uxsQM9N9ZLv4366Smf9bNmEhSg4JODvVT7hrp5k24EVNIDR9ZQqhiNqtLB0QRamxflaAwZkKaSVMDJBGqcaUo5zzH8XcVs6R1WPdP6v71Ua2xN2kJyrADu3AAPpxCAy7hCppAYQSP8ATPzoPz4rw6b5PVkjP1bMMvOO9ffl+f0A==</latexit>

`1

<latexit sha1_base64="i1LTsi0pXgXYdlkAuqdoH9DYknI=">AAACEXicbVDLSsNAFL3xWesr6tJNsAquSiI+dwU3LivYWmhLmUxu7eBkJsxMCiX0K9y61X9wJ279An/Br3CSFlHrgWEO597DPZww4Uwb3/9w5uYXFpeWSyvl1bX1jU13a7upZaooNqjkUrVCopEzgQ3DDMdWopDEIcfb8P4yn98OUWkmxY0ZJdiNyZ1gfUaJsVLPdTuh5JEexfbLknHvqOdW/KpfwJslwZRUaiUoUO+5n51I0jRGYSgnWrcDPzHdjCjDKMdxuZNqTAi9J3fYtlSQGHU3K5KPvQOrRF5fKvuE8Qr1pyMjsc7D2c2YmIH+O8vF/2bt1PTPuxkTSWpQ0Mmhfso9I728Bi9iCqnhI0sIVcxm9eiAKEKNLavcKYyZkGZS0wBJhGpcLsq5yHHyXcUsaR5Vg9NqcH1cqe1PWoIS7MIeHEIAZ1CDK6hDAygM4RGe4Nl5cF6cV+dtsjrnTD078AvO+xcdQZ6K</latexit>

p2

<latexit sha1_base64="xa47ISr24vnFk6T52/jxFM/EsFA=">AAACEXicbVDLSsNAFL3xWesr6tJNsAquSuLbXcGNSwVbhbaUyeS2HTqZCTOTQgn9Crdu9R/ciVu/wF/wK5ykImo9MMzh3Hu4hxMmnGnj++/OzOzc/MJiaam8vLK6tu5ubDa0TBXFOpVcqruQaORMYN0ww/EuUUjikONtOLjI57dDVJpJcWNGCbZj0hOsyygxVuq4biuUPNKj2H5ZMu4cdtyKX/ULeNMk+CKVWgkKXHXcj1YkaRqjMJQTrZuBn5h2RpRhlOO43Eo1JoQOSA+blgoSo25nRfKxt2eVyOtKZZ8wXqH+dGQk1nk4uxkT09d/Z7n436yZmu5ZO2MiSQ0KOjnUTblnpJfX4EVMITV8ZAmhitmsHu0TRaixZZVbhTET0kxq6iOJUI3LRTnnOY6/q5gmjYNqcFINro8qtd1JS1CCbdiBfQjgFGpwCVdQBwpDeIBHeHLunWfnxXmdrM44X54t+AXn7RMe3Z6L</latexit>

p3
<latexit sha1_base64="CLFt0tlk4Wbsf86y1M06QVm0mWE=">AAACI3icbVDLSgMxFL3js9ZX1aWbYBVcSJmp713BjUsFq0JbSiZza4OZZEgyQhm690fcutV/cCduXPgDfoWZqYivAyGHc+4hNydMBDfW91+9sfGJyanp0kx5dm5+YbGytHxuVKoZNpkSSl+G1KDgEpuWW4GXiUYahwIvwuuj3L+4QW24kmd2kGAnpleS9zij1kndylo7VCIyg9hdWTLs1rfIL2W7W6n6Nb8A+UuCT1JtlKDASbfy3o4US2OUlglqTCvwE9vJqLacCRyW26nBhLJreoUtRyWN0XSy4i9DsuGUiPSUdkdaUqjfExmNTb6cm4yp7ZvfXi7+57VS2zvoZFwmqUXJRg/1UkGsInkxJOIamRUDRyjT3O1KWJ9qyqyrr9wugplUdlRcH2mEelguyjnMsftVxV9yXq8Fe7XgdKfaWB+1BCVYhTXYhAD2oQHHcAJNYHAL9/AAj96d9+Q9ey+j0THvM7MCP+C9fQBvJqYX</latexit>

p2, p3

<latexit sha1_base64="/FH+AB/Sda4hg7dTSq71nIA7ll4=">AAACNHicbVDLSgMxFL3js9ZX1aWbYBVcSJnx7a7gxqWCVaEtJZO5tcFMMiQZoQz9EH/ErVv9BMGduHHhN5iZimj1QMjhnHvIzQkTwY31/WdvbHxicmq6NFOenZtfWKwsLV8YlWqGDaaE0lchNSi4xIblVuBVopHGocDL8OY49y9vURuu5LntJ9iO6bXkXc6odVKnstMKlYhMP3ZXlgw6wdaIsL1FRpSdTqXq1/wC5C8Jvki1XoICp53KeytSLI1RWiaoMc3AT2w7o9pyJnBQbqUGE8pu6DU2HZU0RtPOis8NyIZTItJV2h1pSaH+TGQ0NvlybjKmtmdGvVz8z2umtnvYzrhMUouSDR/qpoJYRfKmSMQ1Miv6jlCmuduVsB7VlFnXZ7lVBDOp7LDJHtII9aBclHOUY++7ir/kYrsW7NeCs91qfX3YEpRgFdZgEwI4gDqcwCk0gMEdPMAjPHn33ov36r0NR8e8r8wK/IL38QnXca14</latexit>

p1, p2, p3

<latexit sha1_base64="aCwqU1X5t9v9Iu9WIjR4g88Wr3I=">AAACOHicbZDNahsxFIXvOGnjun+TdtmNiFvoopiZ0NZJV4ZuunSh/gGPMRrNtS2skQZJEzCDHyUvkm22yQNk111pl32CasamOHYOCB2+ey+6OnEmuLFBcOfVDg4fPT6qP2k8ffb8xUv/+FXfqFwz7DEllB7G1KDgEnuWW4HDTCNNY4GDePG1rA8uUBuu5A+7zHCc0pnkU86odWjit6NYicQsU3cVEQqxmoQftlnmAPlCdtDpxG8GraAS2TfhxjQ7dajUnfh/okSxPEVpmaDGjMIgs+OCasuZwFUjyg1mlC3oDEfOSpqiGRfVB1fknSMJmSrtjrSkotsTBU1NuZzrTKmdm91aCR+qjXI7PRsXXGa5RcnWD01zQawiZVok4RqZFUtnKNPc7UrYnGrKrMu0EVWDhVR2neYcaYJ61ajCOS/16X8U+6Z/2go/t8LvH5udt+uUoA5v4ATeQwht6MA36EIPGFzCNdzArXfl/fR+eb/XrTVvM/Ma7sn7+w/hg671</latexit>

`1, p1 : p2

<latexit sha1_base64="kqDd8lhccdOlhjv6GQGtdYkQRGo=">AAACOXicbZDLSgMxFIbPeK31VnXpJlgFF1JmxPuq4MalglWhU0omc2qDmWRIMkIZ+iq+iFu3unfpTtz6AmamIt5+CPn5zjnk5I9SwY31/WdvbHxicmq6MlOdnZtfWKwtLV8YlWmGLaaE0lcRNSi4xJblVuBVqpEmkcDL6Oa4qF/eojZcyXM7SLGT0GvJe5xR61C3dhBGSsRmkLgrD1GIYTcgR+Q7TR3a+k22u7W63/BLkb8m+DT1ZgVKnXZrb2GsWJagtExQY9qBn9pOTrXlTOCwGmYGU8pu6DW2nZU0QdPJyx8OyYYjMekp7Y60pKTfJ3KamGI515lQ2ze/awX8r9bObO+gk3OZZhYlGz3UywSxihRxkZhrZFYMnKFMc7crYX2qKbMu1GpYDuZS2VGcfaQx6mG1DOew0O5XFH/NxXYj2GsEZzv15vooJajAKqzBJgSwD004gVNoAYM7eIBHePLuvRfv1XsbtY55nzMr8EPe+wdDPq8f</latexit>

`1 : p1, p2

<latexit sha1_base64="V9AneALJl66wvKwGEg85HlDLfOk=">AAACJ3icbVDLThsxFL3DM4RHU1iysRpasYpmQqG0q0hsugSJAFImGnk8N8SKxx7ZHqRoNH/Aj3TLlv4DOwTLbvsV9UxQxetIlo/OuUe+PnEmuLG+/+jNzS8sLi03Vpqra+sbH1ofN8+MyjXDPlNC6YuYGhRcYt9yK/Ai00jTWOB5PDmq/PMr1IYreWqnGQ5Tein5iDNqnRS1voSxEomZpu4qQhSijLrkB3muZmW0F7XafsevQd6S4Im0ew2ocRy1/oaJYnmK0jJBjRkEfmaHBdWWM4FlM8wNZpRN6CUOHJU0RTMs6v+U5LNTEjJS2h1pSa0+TxQ0NdVybjKldmxee5X4njfI7ehwWHCZ5RYlmz00ygWxilTlkIRrZFZMHaFMc7crYWOqKbOuwmZYBwup7Ky8MdIEddmsy/leYf9/FW/JWbcTHHSCk6/t3s6sJWjANnyCXQjgG/TgJxxDHxhcww3cwm/vl3fn3XsPs9E57ymzBS/g/fkHYYunlg==</latexit>

`2 : p3

<latexit sha1_base64="V9AneALJl66wvKwGEg85HlDLfOk=">AAACJ3icbVDLThsxFL3DM4RHU1iysRpasYpmQqG0q0hsugSJAFImGnk8N8SKxx7ZHqRoNH/Aj3TLlv4DOwTLbvsV9UxQxetIlo/OuUe+PnEmuLG+/+jNzS8sLi03Vpqra+sbH1ofN8+MyjXDPlNC6YuYGhRcYt9yK/Ai00jTWOB5PDmq/PMr1IYreWqnGQ5Tein5iDNqnRS1voSxEomZpu4qQhSijLrkB3muZmW0F7XafsevQd6S4Im0ew2ocRy1/oaJYnmK0jJBjRkEfmaHBdWWM4FlM8wNZpRN6CUOHJU0RTMs6v+U5LNTEjJS2h1pSa0+TxQ0NdVybjKldmxee5X4njfI7ehwWHCZ5RYlmz00ygWxilTlkIRrZFZMHaFMc7crYWOqKbOuwmZYBwup7Ky8MdIEddmsy/leYf9/FW/JWbcTHHSCk6/t3s6sJWjANnyCXQjgG/TgJxxDHxhcww3cwm/vl3fn3XsPs9E57ymzBS/g/fkHYYunlg==</latexit>

`2 : p3

Figure 1.14 Updating a Bayes tree with a new factor, based on the example in Figure
1.13. The affected part of the Bayes tree is highlighted for the case of adding a new factor
between p1 and p3. Note that the right branch (green) is not affected by the change. (top
right) The factor graph generated from the affected part of the tree with the new factor
(dashed blue) inserted. (bottom right) The chordal Bayes net resulting from eliminating
the factor graph. (bottom left) The Bayes tree created from the chordal Bayes net, with
the unmodified right ‘orphan’ sub-tree from the original Bayes tree added back in.

To incrementally update the Bayes tree, we selectively convert part of the Bayes

tree back into factor-graph form. When a new measurement is added this corre-

sponds to adding a factor, e.g., a measurement involving two variables will induce a

new binary factor ϕ(xj ,xj′). In this case, only the paths in the Bayes tree between

the cliques containing xj and xj′ and the root will be affected. The sub-trees below

these cliques are unaffected, as are any other sub-trees not containing xj or xj′ .

Hence, to update the Bayes tree, the affected parts of the tree are converted back

into a factor graph, and the new factor associated with the new measurement is

added to it. By re-eliminating this temporary factor graph, using whatever elimina-

tion ordering is convenient, a new Bayes tree is formed and the unaffected sub-trees

can be reattached.

In order to understand why only the top part of the tree is affected, we look at

two important properties of the Bayes tree. These directly arise from the fact that

it encodes the information flow during elimination. The Bayes tree is formed from

the chordal Bayes net following the inverse elimination order. In this way, variables

in each clique collect information from their child cliques via the elimination of

1.7 Incremental SLAM 51

these children. Thus, information in any clique propagates only upwards to the

root. Second, the information from a factor enters elimination only when the first

variable connected to that factor is eliminated. Combining these two properties, we

see that a new factor cannot influence any other variables that are not successors

of the factor’s variables. However, a factor involving variables having different (i.e.,

independent) paths to the root means that these paths must now be re-eliminated

to express the new dependency between them.

Figure 1.14 shows how these incremental factorization/inference steps are applied

to our canonical SLAM example. In this example, we add a new factor between p1
and p3, affecting only the left branch of the tree, marked by the red dashed line

in to top-left figure. We then create the factor graph shown in the top-right figure

by creating a factor for each of the clique densities, p(p2,p3) and p(ℓ1,p1|p2),

and add the new factor f(p1,p3). The bottom-right figure shows the eliminated

graph using the ordering ℓ1,p1,p2,p3. And finally, in the bottom-left figure, the

reassembled Bayes tree is shown consisting of two parts: the Bayes tree derived

from the eliminated graph, and the unaffected clique from the original Bayes tree

(shown in green).

Figure 1.15 shows an example of the Bayes tree for a small SLAM sequence.

Shown is the tree for step 400 of the well-known Manhattan world simulated se-

quence by Olson et al. [830]. As a robot explores the environment, new measure-

ments only affect parts of the tree, and only those parts are re-calculated.

1.7.3 Incremental Smoothing and Mapping

Putting all of the above together and addressing some practical considerations about

re-linearization yields a state-of-the-art incremental, nonlinear approach to MAP

estimation in robotics, iSAM. The first version, iSAM1[538], used the incremental

matrix factorization methods from Golub and Loan [397]. However, linearization in

iSAM1 was handled in a sub-optimal way: it was done for the full factor graph at

periodic instances and/or when matrix fill-in became unwieldy. The second version

of the approach, iSAM2, uses a Bayes tree representation for the posterior density

[540]. It then employs Bayes tree incremental updating as each new measurement

comes in, as described above.

What variable ordering should we use in re-eliminating the affected cliques? Only

the variables in the affected part of the Bayes tree are updated. One strategy then

is to apply COLAMD locally to the affected variables. However, we can do better:

we force recently accessed variables to the end of the ordering, i.e., into the root

clique. For this incremental variable ordering strategy one can use the constrained

COLAMD algorithm [250]. This both forces the most recently accessed variables to

the end and still provides a good overall ordering. Generally, subsequent updates

will then only affect a small part of the tree, and can therefore be expected to be

efficient in most cases, except for large loop closures.

52 Factor Graphs for SLAM

x398,x399,x400

x396,x397

x395 x394

x159 x387,x388,x389,x390,x391,x392,x393 x234

x386 x275,x276 x142 x358

x384,x385

x383 x288

x382 x289

x381 x292

x379,x380 x308

x378 x303

x377 x309

x376 x311

x374,x375 x316

x373 x338 x298

x372 x346

x371

x369

x368 x359

x367

x366

x351

x319

x317 x299

x283 x254

x282

x256

x255 x370

x315

x312

x310

x314

x313

x307 x304

x306

x305

x287

x302 x296 x300

x297 x295

x294

x293

x291 x279

x281

x280 x278

x277

x286 x290

x285

x284

x274 x365 x356

x273 x233

x272 x270

x271 x135

x248,x249,x251,x257,x258,x259,x260,x261,x262,x265

x245,x246,x247 x98 x128 x114 x104

x244 x230

x241,x242,x243

x238,x239,x240 x227,x228,x229

x237 x122 x208

x236 x140

x235

x123

x226

x225 x207

x121

x224 x218

x223 x209 x132

x222

x221

x220 x161

x219 x162

x210

x204 x157,x158

x203

x164

x163

x156 x150 x144

x155 x151

x154

x153

x152

x147

x149

x143

x170 x136

x217 x213

x216 x172

x214 x100

x212

x206 x94

x205 x137

x131 x91

x130 x202

x126 x201 x95

x124,x199,x200 x92

x195,x196,x197 x120 x119

x194 x166 x215

x192

x191

x190

x189 x211

x188 x173

x187

x186

x185

x181

x180

x179

x178

x177

x176

x175

x174

x169

x198

x165

x134

x125

x193 x118

x93

x90

x96

x184 x81

x183

x182

x89 x117

x116

x115

x97 x168

x167 x148 x171

x80 x127

x78

x77

x76

x75

x74

x73

x72

x71

x70

x69

x67,x68

x65,x66

x52,x63,x64 x16 x15

x51 x27 x61,x62

x31 x22

x28

x30

x29

x21

x20

x19

x18

x0

x26

x17

x60 x59 x55 x1

x11

x10

x9 x4

x8

x7

x6

x5

x3

x2

x58 x54

x57 x50

x56 x49

x41

x40

x39

x38

x37

x36

x35

x34

x33

x32

x53

x48 x14

x47 x42

x46

x45

x44

x43

x13

x12

x25

x24

x23

x146 x101

x145 x99

x129 x106

x105

x103

x102

x84

x83

x82

x113

x112

x111 x85

x110

x109

x108

x107

x88

x87

x86

x79

x269 x349,x350

x268 x348

x347 x344

x345 x264

x320 x263

x343

x342

x341

x340 x321

x339

x337 x322

x335,x336 x323

x334

x333

x332

x331

x330 x324

x329

x328 x325

x327

x326

x266

x364 x355

x363 x354

x362 x357

x361 x360 x253 x250

x267 x301

x141

x133

x353

x252

x139 x160

x352 x318

x138

x232

x231

Figure 1.15 An example of the Bayes tree data structure for a small SLAM sequence.
The incremental nonlinear least-squares estimation algorithm iSAM2 [540] is based on
viewing incremental factorization as editing the graphical model corresponding to the
posterior probability of the solution, the Bayes tree. As a robot explores the environment,
new measurements often only affect small parts of the tree, and only those parts are re-
calculated (shown in red).

After updating the tree we also need to update the solution. Back-substitution

in the Bayes tree proceeds from the root (which does not depend on any other

variables) and proceeds to the leaves. However, it is typically not necessary to

recompute a solution for all variables: local updates to the tree often do not affect

variables in remote parts of the tree. Instead, at each clique we can check the

difference in variable estimates that is propagated downwards and stop when this

difference falls below a small threshold.

Our motivation for introducing the Bayes tree was to incrementally solve nonlin-

ear optimization problems. For this we selectively re-linearize factors that contain

variables whose deviation from the linearization point exceeds a small threshold. In

contrast to the tree modification above, we now have to redo all cliques that contain

1.7 Incremental SLAM 53

the affected variables, not just as frontal variables, but also as separator variables.

This affects larger parts of the tree, but in most cases is still significantly cheaper

than recomputing the complete tree. We also have to go back to the original factors,

instead of directly turning the cliques into a factor graph. And that requires caching

certain quantities during elimination. The overall incremental nonlinear algorithm,

iSAM2, is described in much more detail in [540].

iSAM1 and iSAM2 have been applied successfully to many different robotics

estimation problems with non-trivial constraints between variables that number

into the millions, as will be discussed subsequent chapters. Both are implemented in

the GTSAM library, which can be found at https://github.com/borglab/gtsam.

https://github.com/borglab/gtsam

2

Advanced State Variable Representations
Timothy Barfoot, Frank Dellaert, Michael Kaess, and Jose Luis Blanco-Claraco

The previous chapter detailed how to set up and solve a SLAM problem using the

factor-graph paradigm. We deliberately avoided discussing some subtleties of the

state variables we were estimating. In this chapter, we revisit the nature of our

state variables and introduce two important topics that are prevalent in modern

SLAM formulations. First and foremost, we need some better tools for handling

state variables that have certain constraints associated with them; these constraints

define a manifold for our variables, which subsequently then require special care

during optimization. There are many examples of manifolds that appear in SLAM,

the most common being those associated with the rotational aspects of a robot

(especially in three dimensions, but even in the plane). A second aspect of state

variables stems from the nature of time itself. In the previous chapter, we implicitly

assumed that our robot moved in discrete-time steps through the world. In this

chapter we introduce smooth, continuous-time representations of trajectories and

discuss how these are fully compatible with our factor-graph formulation. We use

Barfoot [54] as the primary reference with some streamlined notation from Sola

et al. [1028].

2.1 Optimization on Manifolds

While in some robotics problems we can get away with vector-valued unknowns,

in most practical situations we have to deal with three-dimensional rotations and

other non-vector manifolds. Loosely speaking, a manifold is collection of points

forming a topologically closed surface (e.g., the perimeter of a circle, or the surface

of a sphere); importantly, a manifold resembles Euclidean space locally near each

point. Manifolds require a more sophisticated machinery that takes into account

their special structure. In this section, we discuss how to perform optimization on

manifolds, which will build upon the optimization framework for vector spaces from

the previous chapter. As an example, Figure 2.1 visualizes a spherical manifold,

M, and its tangent space, TχM, which can be used as a local coordinate system

at χ ∈M for optimization.

2.1 Optimization on Manifolds 55

manifold, M

tangent space, TχM χ

Figure 2.1 For the sphere manifold,M, the local tangent plane, TχM, with a local basis
provides the notion of local coordinates.

2.1.1 Rotations and Poses

While there are several manifolds that can be discussed in the context of SLAM,

the two most common are those used to represent rotations and poses. Rotations

are typically either in two (planar) or three dimensions and we therefore refer to

the manifold of rotations as the special orthogonal group SO(d), where d = 2 or 3,

accordingly. A planar rotation matrix, Rb
a ∈ SO(2), has the form

Rb
a =

[
cos θ − sin θ

sin θ cos θ

]
, (2.1)

where θ ∈ R, the angle of rotation, is the single degree of freedom in this case. More-

over, Rb
a allows us to rotate a two-dimensional vector (i.e., landmark) expressed in

reference frame Fa to Fb: ℓb = Rb
aℓ

a.

A rotation matrix in three dimensions, Rb
a ∈ SO(3), again rotates vectors (this

time in three dimensions) from one frame to another. Three-dimensional rotation

matrices have nine entries but only three degrees of freedom (e.g., roll, pitch, yaw).

Both two- and three-dimensional rotation matrices must satisfy the constraints

Rb⊤
a R

b
a = I and det(Rb

a) = 1 to limit their degrees of freedom appropriately.

The pose of a robot comprises both rotational, Rb
a ∈ SO(d), and translational,

tba ∈ Rd, variables with 3(d − 1) degrees of freedom in all. Sometimes we keep

track of these quantities separately and then can use {Rb
a, t

b
a} ∈ SO(d)×Rd as the

representation. Alternatively, these quantities can be assembled into a (d+1)×(d+1)

transformation matrix,

T b
a =

[
Rb

a tba
0 1

]
. (2.2)

The manifold of all such transformation matrices is called the special Euclidean

group, SE(d), where again d = 2 (planar motion) or 3 (three-dimensional motion).

The benefit of using SE(d) is that we can easily translate and rotate landmarks

56 Advanced State Variable Representations

using a single matrix multiplication:

[
ℓb

1

]

︸︷︷︸
ℓ̃b

=

[
Rb

a tba
0 1

]

︸ ︷︷ ︸
T b

a

[
ℓa

1

]

︸︷︷︸
ℓ̃a

. (2.3)

We refer to ℓ̃ as the homogeneous representation of the landmark ℓ.

Due to the constraints imposed on the forms of rotation and transformation ma-

trices, they are unfortunately not vectors. For example, we cannot simply add two

rotation matrices together and arrive at another valid rotation matrix. However, it

turns out that SO(d) and SE(d) are examples of manifolds that possess some extra

useful properties called matrix Lie groups. Thankfully, we can exploit the struc-

ture of these manifolds to continue to perform unconstrained MAP optimization

for factor-graph SLAM (see, for example, Dellaert et al. [263] or Boumal [113] or

Barfoot [54]). For additional background on Lie groups in robotics see the seminal

work of Chirikjian and Kyatkin [215], Chirikjian [213, 214].

2.1.2 Matrix Lie Groups

The key to performing optimization on SO(d) and SE(d) is to exploit their group

structure. For example, one nice property is that matrix Lie groups enjoy closure

so that if we multiply two members, e.g., Rc
b,R

b
a ∈ SO(d), the result is also in the

group: Rc
a = Rc

bR
b
a ∈ SO(d).

Another nice property of matrix Lie groups is that they come along with a very

useful companion structure called a Lie algebra, which is also the tangent space for

the Lie group. For our purposes, the most important aspects of the Lie algebra are

(i) that it comprises a vector space with dimension equal to the number of degrees

of freedom of its Lie group, and (ii) there is a well-established mapping (the matrix

exponential) from the Lie algebra to the Lie group. This allows us to construct

elements of the Lie group with relative ease from elements of the Lie algebra. For

example, for SO(2) we can build a rotation matrix (dropping super/subscripts for

now) according to

R = Exp(θ) = exp(θ∧) =
∞∑

n=0

1

n!
(θ∧)n ∈ SO(2), θ∧ =

[
0 −θ
θ 0

]
, θ ∈ R. (2.4)

The quantity, θ∧, is a member of the Lie algebra, so(2), and it is mapped through

the matrix exponential, exp(·), to a member of the Lie group, R. We can go the

other way with the matrix logarithm: θ = Log(R) = (log(R))
∨

.

Each matrix Lie group has its own linear (·)∧ operator used to construct a Lie al-

gebra member from the standard vector space of appropriate dimension. For SO(3),

2.1 Optimization on Manifolds 57

it is the skew-symmetric operator:

R = Exp(θ) = exp(θ∧) =
∞∑

n=0

1

n!
θ∧

n ∈ SO(3), (2.5a)

θ∧ =

0 −θ3 θ2
θ3 0 −θ1
−θ2 θ1 0

 ∈ so(3), θ =

θ1
θ2
θ3

 ∈ R3. (2.5b)

For SE(d), we can use

T = Exp(ξ) = exp(ξ∧) ∈ SE(d), (2.6a)

ξ∧ =

[
θ∧ ρ

0 0

]
∈ se(d), ξ =

[
ρ

θ

]
∈ R3(d−1), θ ∈ R2d−3, ρ ∈ Rd, (2.6b)

where d = 2 (planar) or 3 (three-dimensional). Note, the version of the (·)∧ operator

can be determined by the size of the input vector.

For each of the matrix Lie groups discussed here, there are also well-known closed-

form expressions for the mappings between the Lie algebra and the Lie group that

can be used rather than the infinite series form of the matrix exponential [54].

2.1.3 Lie Group Optimization

Now that we have these matrix Lie groups established, we can use them to help

‘linearize’ our nonlinear least-squares terms in order to carry out MAP inference.

Looking back to the discussion in Section 1.3.1, we still seek to linearize our mea-

surement functions, hi(·), only now the input to these may involve a member of a

Lie group.

For example, suppose hi(·) represents a camera model that takes as its input a

homogeneous landmark expressed in the camera frame, ℓ̃ci , and returns the pixel

coordinates of the landmark in an image, zi ∈ R2: zi = hi(ℓ̃
c
i). We can write the

generative sensor model therefore as

zi = hi

(
T c
wℓ̃

w
i

)
+ ηi, (2.7)

where T c
w ∈ SE(3) is the pose of the camera with respect to a world frame, ℓ̃wi is

the homogeneous landmark expressed in the world frame, and ηi is the usual sensor

noise. We then might like to solve the optimization problem

T c∗

w = arg min
T c

w

=
∑

i

∥∥∥zi − hi

(
T c
wℓ̃

w
i

)∥∥∥
2

Σi

, (2.8)

which is known as the perspective-n-point (PNP) problem. For this example, we

assume that the positions of the landmarks in the world frame are known but of

course in SLAM we might like to estimate these as well.

58 Advanced State Variable Representations

To linearize our sensor model, we use the fact that we can produce a perturbed

version of our pose through its Lie algebra according to1

T c
w = T c0

w Exp (ξcw) . (2.9)

Here, ξcw ∈ R6 is used to produce a ‘small’ pose change that perturbs an initial

guess, T c0

w ∈ SE(3). This perturbation is also sometimes written succinctly using

the ⊕ operator so that

T c
w = T c0

w ⊕ ξcw (2.10)

implies (2.9). Owing to the closure property discussed earlier, the product of these

two quantities is guaranteed to be in SE(3). By using the Lie algebra to define our

pose perturbation, we restrict its dimension to be equal to the actual number of

degrees of freedom in a three-dimensional pose, which will mean that we can avoid

introducing constraints during optimization.

We can also approximate the perturbed pose according to

T c
w ≈ T c0

w

(
I + ξc

∧

w

)
, (2.11)

where we have kept just the terms up to linear in ξcw from the series form of the

matrix exponential. Then, inserting (2.11) into our measurement function (2.7), we

have

zi ≈ hi

(
T c0

w

(
I + ξc

∧

w

)
ℓ̃wi

)
+ ηi. (2.12)

This can also be rewritten as

zi ≈ hi

(
T c0

w ℓ̃
w
i + T c0

w ℓ̃
w⊙

i ξcw

)
+ ηi, (2.13)

where ⊙ is a (linear) operator for homogeneous points [54]:

ℓ̃⊙ =

[
ℓ

1

]⊙
=

[
I −ℓ∧
0 0

]
. (2.14)

We have essentially ‘linearized’ the pose perturbation in (2.13) and now need to

linearize the camera function hi(·) as well. We can use a standard first-order Taylor

series approximation to write

zi ≈ hi

(
T c0

w ℓ̃
w
i

)
+
∂hi

∂ℓ

∣∣∣∣
T c0

w ℓ̃wi

T c0

w ℓ̃
w⊙

i

︸ ︷︷ ︸
Hi (chain rule)

ξcw + ηi, (2.15)

where the chaining of two pieces into the overall Jacobian,Hi, is now clear. Looking

1 It is also possible to perturb on the left side rather than the right. A more subtle question is whether
the perturbation is happening on the ‘sensor’ side or the ‘world’ side, which depends on whether the
unknown transform is T c

w or Tw
c and whether the perturbation is applied to the left or the right.

2.1 Optimization on Manifolds 59

back to (1.21b), we can write the linearized least-squares term (i.e., negative-log

factor) for this measurement as
∥∥∥
(
zi − hi

(
T c0

w ℓ̃
w
i

))
−Hi ξ

c
w

∥∥∥
2

Σi

, (2.16)

where the only unknown is our pose perturbation, ξcw. After combining this with

other factors and then solving for the optimal updates to our state variables, in-

cluding ξc
∗

w , we need to update our initial guess, T c0

w . For this, we must return to

the perturbation scheme we chose in (2.9) and update according to

T c0

w ← T c0

w ⊕ ξc
∗

w , (2.17)

to ensure our solution, T c0

w , remains in SE(3). As usual, optimization proceeds itera-

tively until the change in all the state variable updates (including ξcw) is sufficiently

small.

To recap, we have shown how to carry out unconstrained optimization for a state

variable that is a member of a Lie group. Although our example was specific to

a three-dimensional pose variable, other Lie groups can be optimized in a similar

manner. The key is to arrive at a situation as in (2.15) where the measurement

function has been linearized with respect to a perturbation in the Lie algebra. Most

times, as in our example, this can be done analytically. However, it is also straight-

forward to compute the required Jacobian, Hi, numerically or through automatic

differentiation (by exploiting the chain rule and some primitives for Lie groups).

In (2.9), we perturbed our pose variable on the left side, but this was a choice and

in some cases perturbing on the right may be preferable.

Stepping back a bit, this approach to optimizing a function of a Lie group mem-

ber is an example of Riemannian optimization [113]. By exploiting the Lie algebra,

which is also the tangent space of a manifold, we constrain the optimization to be

tangent to the manifold of poses (or rotations). By carrying out the update accord-

ing to (2.17), we are retracting our update back onto the manifold. Riemannian

optimization is a very general concept that can be applied to quantities that live

on manifolds that are not matrix Lie groups as well. Retractions other than the

matrix exponential are also possible within the manifold-optimization framework

(e.g., see Dellaert et al. [263] or Barfoot et al. [56]).

2.1.4 Uncertainty and Lie Groups

We often represent uncertainty in our estimates by considering that the state vari-

ables and random, drawn from some distribution. Gaussian distributions are the

most common as discussed in Section 1.2.2. For a vector variable, x, we can write

x = µ+ δ, δ ∼ N (0,Σ), (2.18)

where µ is the mean and Σ is the covariance matrix. Notably, we have broken out

the state into the sum of the mean and zero-mean noise, δ.

60 Advanced State Variable Representations

For Lie groups, we need to redefine how noise is combined with the state since

simply adding noise to, for example, a rotation matrix R ∈ SO(d), will break the

group closure property (i.e., the result will no longer be a valid rotation matrix).

Instead, we typically use the surjective-only mapping of the matrix exponential to

combine noise, δ, with a ‘mean’ quantity, R̄ ∈ SO(d), as follows:

R = R̄Exp(δ), δ ∼ N (0,Σ), (2.19)

where it is now guaranteed that R ∈ SO(d). A similar approach can be followed

for SE(d):

T = T̄ Exp(δ), δ ∼ N (0,Σ), (2.20)

where it is now guaranteed that R ∈ SE(d) and naturally δ and Σ must be ap-

propriately sized. To learn more see, for example, Long et al. [696], Barfoot and

Furgale [55].

2.1.5 Lie Group Extras

There is a lot more that we could say about Lie groups [1039, 113] but have so far

restrained ourselves in the interest of keeping things simple. We use this section

to collect a few more useful facts that come up later in this and other chapters.

Further details of carrying out derivatives of functions of Lie group elements will

be provided in Section 4.3.

2.1.5.1 The ⊕ and ⊖ Operators

We have already seen the use of the ⊕ operator to compose a Lie algebra vector

with a Lie group member. For SE(d) we have

T = T 0 ⊕ ξ = T 0Exp(ξ) = T 0 exp(ξ∧) ∈ SE(d). (2.21)

We often have occasion to consider the ‘difference’ of two Lie group elements and

for this we can also define the ⊖ operator. Again for SE(d) we have

ξ = T 0 ⊖ T = Log
(
T 0T−1

)
= log

(
T 0T−1

)∨ ∈ se(d). (2.22)

These operators are a nice way to abstract away the details of these operations.

2.1.5.2 Inverses

Sometimes when we are carrying out perturbations, we have need to perturb the

inverse of a rotation or transformation matrix. In the SE(d) case, we simply have

that
(
T 0Exp(ξ)

)−1
= Exp(ξ)−1T 0−1

= Exp(−ξ)T 0−1

, (2.23)

where we see the perturbation moves from the right to the left with a negative sign.

2.1 Optimization on Manifolds 61

2.1.5.3 Adjoints

The adjoint of a Lie group is a way of describing the elements of that group as linear

transformations of its Lie algebra, which we recall is a vector space. For SO(d), the

adjoint representation is the same as the group itself, so we omit the details. For

SE(d), the adjoint differs from the group’s primary representation and so we use

this section to provide some details. The adjoint will prove to be an essential tool

when setting up state estimation problems, particularly for SE(d).

The adjoint map of SE(d) transforms a Lie algebra element ξ∧ ∈ se(d) to an-

other element of se(d) according to a map known as the inner automorphism or

conjugation:

AdT ξ
∧ = Tξ∧T−1. (2.24)

We can equivalently express the output of this map as

AdT ξ
∧ = (Ad(T)ξ)

∧
, (2.25)

where Ad(T) linearly transforms ξ ∈ R6 to R6. We will refer to Ad(T) as the

adjoint representation of SE(d).

The (2d)× (2d) transformation matrix, Ad(T), can be constructed directly from

the components of the (d+ 1)× (d+ 1) transformation matrix:

Ad(T) = Ad

([
R t

0 1

])
=

[
R t∧R
0 R

]
. (2.26)

One situation in which adjoints are useful in our estimation problems is to manip-

ulate perturbations from one side of a known transformation to another as in

T Exp(ξ) = Exp (Ad(T)ξ)T , (2.27)

which we emphasize does not require approximation.

2.1.5.4 Jacobians

Every Lie group also has a Jacobian associated with it, which allows us to relate

changes in an element of the group to elements of its algebra. For the case of SO(d),

for example, the common kinematic equation (i.e., Poisson’s equation) relating a

rotation matrix, R ∈ SO(d), to angular velocity, ω ∈ R3(d−1), is

Ṙ = ω∧R. (2.28)

If we parameterize R = Exp(θ), then we can equivalently write

θ̇ = J−1(θ)ω, (2.29)

where J(θ) is the (left) Jacobian of SO(d). A place where this Jacobian is quite

useful is when combining expressions involving products of matrix exponentials.

For example, we have that

Exp(θ1)Exp(θ2) ≈ Exp
(
θ2 + J(θ2)−1θ1

)
, (2.30)

62 Advanced State Variable Representations

where θ1 is assumed to be ‘small’. The series expression for J(θ) is

J(θ) =
∞∑

n=0

1

(n+ 1)!
(θ∧)

n
, (2.31)

and a closed-form expression can be found in Barfoot [54]. We will overload and

write J(ξ) for the (left) Jacobian of SE(d) where the context should inform which

is meant.

2.2 Continuous-Time Trajectories

Continuous-time trajectories offer a way to represent smooth robot motions. In our

development so far, we have assumed a discrete sequence of poses along a trajec-

tory is to be estimated. However, robots typically move fairly smoothly through

the world, which motivates the use of a smoother representation of trajectory.

Continuous-time trajectories come primarily in two varieties: parametric methods

combine known temporal basis functions into a smooth trajectory. Typically, these

temporal basis functions are chosen to have local support (e.g., piecewise poly-

nomials / splines), which ensures the factor graph remains sparse, as we will see.

Nonparametric methods have higher representational power by making use of kernel

functions. Specifically, a one-dimensional Gaussian process (GP) with time as the

independent variable can be used to represent a trajectory. When an appropriate

physically motivated kernel is chosen, we will see that the factor graph associated

with a GP also remains very sparse.

In addition to trajectory smoothness, the use of a continuous-time trajectory can

be particularly useful when working with high-rate and/or asynchronous sensors.

In the factor-graph examples that we have considered so far, we added robot poses

to the factor graph for each newly collected measurement (e.g., to model that the

current pose is taking a landmark measurement). This quickly leads to unwieldy

factor graphs when using high-rate sensors or when different sensors collect measure-

ments at different time instants. Below, we will see that we can easily represent the

trajectory with a number of variables that is much smaller than the number of mea-

surements, to keep things tractable. This is particularly useful for motion-distorted

sensors such as spinning lidars and radars and even rolling-shutter cameras; using

continuous-time trajectories we can account for the exact time stamp of each point

or pixel and relate them to the trajectory at that instant.

Finally, after MAP inference, continuous-time trajectories allow us to efficiently

query the trajectory at any time of interest, not just at the measurement times.

We can both interpolate and extrapolate (with caution), which can be useful for

consumers of our SLAM outputs. Separating the roles of measurements times, es-

timation variables, and query times, is a major advantage of both parametric and

nonparametric continuous-time methods.

2.2 Continuous-Time Trajectories 63

<latexit sha1_base64="b5MWbhCtoIcoBuQZk/2t5aCElIc=">AAACFHicbVDLSsNAFL2pr1pfVZdugkXoqiTic1dw47KCbYWmlMnkth06mQkzE6GE/oZbt/oP7sSte3/Br3CSivg6MMzh3Hu4hxMmnGnjeW9OaWFxaXmlvFpZW9/Y3Kpu73S0TBXFNpVcqpuQaORMYNsww/EmUUjikGM3nFzk8+4tKs2kuDbTBPsxGQk2ZJQYKw2qu0EoeaSnsf2yADmfDfxBteY1vALuX+J/klqzDAVag+p7EEmaxigM5UTrnu8lpp8RZRjlOKsEqcaE0AkZYc9SQWLU/awIP3MPrBK5Q6nsE8Yt1O+OjMQ6z2c3Y2LG+vcsF/+b9VIzPOtnTCSpQUHnh4Ypd4108ybciCmkhk8tIVQxm9WlY6IINbavSlAYMyHNvKkxkgjVrFKUc57j+KuKv6Rz2PBPGv7VUa1Zn7cEZdiDfaiDD6fQhEtoQRsoTOEeHuDRuXOenGfnZb5acj49u/ADzusHf5Of1A==</latexit>

`1
<latexit sha1_base64="7iyXCYXvtnf7LlcEQO+3L706C+s=">AAACFHicbVDLSsNAFL3xWeur6tJNsAhdlaT43BXcuKxgq9CUMpnctkMnM2FmIpTQ33DrVv/Bnbh17y/4FU5SEbUeGOZw7j3cwwkTzrTxvHdnYXFpeWW1tFZe39jc2q7s7Ha0TBXFNpVcqtuQaORMYNsww/E2UUjikONNOL7I5zd3qDST4tpMEuzFZCjYgFFirNSv7AWh5JGexPbLAuR82m/0K1Wv7hVw54n/RarNEhRo9SsfQSRpGqMwlBOtu76XmF5GlGGU47QcpBoTQsdkiF1LBYlR97Ii/NQ9tErkDqSyTxi3UH86MhLrPJ/djIkZ6b+zXPxv1k3N4KyXMZGkBgWdHRqk3DXSzZtwI6aQGj6xhFDFbFaXjogi1Ni+ykFhzIQ0s6ZGSCJU03JRznmO4+8q5kmnUfdP6v7VUbVZm7UEJdiHA6iBD6fQhEtoQRsoTOABHuHJuXeenRfndba64Hx59uAXnLdPgS+f1Q==</latexit>

`2

<latexit sha1_base64="B1c/MS3DPBeOl7HyBEK6cDUhha8=">AAACEnicbVDLattAFL1y08ZVmlZul92ImICzMVLoc2fopksX6gfYxoxG1/bg0YyYuWowwn/RbbftP3RXss0P9Bf6FR3JJqR1DgxzOPce7uEkuRSWoui313hw9PDRcfOxf/Lk9OmzoPV8aHVhOA64ltqME2ZRCoUDEiRxnBtkWSJxlKw/VPPRFzRWaPWZNjnOMrZUYiE4IyfNg9Y00TK1m8x9Zb7t0MU8aEfdqEZ4SOI9afeaUKM/D/5MU82LDBVxyaydxFFOs5IZElzi1p8WFnPG12yJE0cVy9DOyjr6Njx3ShoutHFPUVirdx0ly2yVzm1mjFb2/1kl3jebFLR4NyuFygtCxXeHFoUMSYdVD2EqDHKSG0cYN8JlDfmKGcbJteVPa2OpNO16WiFL0Wz9upz3FV7fVnFIhpfd+E03/vSq3evsWoImvIQz6EAMb6EHH6EPA+BwBd/gO/zwvno/vV/e9W614e09L+AfeDd/AZ2+nsw=</latexit>

p(t)

<latexit sha1_base64="JyXPdnG0UmSVpJY0R/zuXgyTVnY=">AAACAnicbVDLSsNAFL2pr1pfVZdugkXoqiTic1dw47KifUBbymR62w6dTMLMjVBCd27d6j+4E7f+iL/gV5ikRdR6YOBwzj3cO8cLpTDkOB9Wbml5ZXUtv17Y2Nza3inu7jVMEGmOdR7IQLc8ZlAKhXUSJLEVamS+J7Hpja9Sv3mP2ohA3dEkxK7PhkoMBGeUSLfUc3vFklNxMtiLxJ2TUjUPGWq94menH/DIR0VcMmParhNSN2aaBJc4LXQigyHjYzbEdkIV89F04+zUqX2UKH17EOjkKbIz9WciZr4xE99LJn1GI/PXS8X/vHZEg4tuLFQYESo+WzSIpE2Bnf7b7guNnOQkIYxrkdxq8xHTjFPSTqGTBWMVUNZLb4Ssj3payMq5THH6XcUiaRxX3LOKe3NSqpZnLUEeDuAQyuDCOVThGmpQBw5DeIQneLYerBfr1XqbjeaseWYffsF6/wKp8ZhT</latexit>

t1

<latexit sha1_base64="ptXvpYnN0Ty2KZ9a3kRZwTwPS1w=">AAACAnicbVDLSsNAFL3xWeur6tJNsAhdlaT43BXcuKxoH9CWMpnetkMnkzBzI5TQnVu3+g/uxK0/4i/4FSZpEbUeGDiccw/3zvFCKQw5zoe1tLyyurae28hvbm3v7Bb29hsmiDTHOg9koFseMyiFwjoJktgKNTLfk9j0xlep37xHbUSg7mgSYtdnQyUGgjNKpFvqVXqFolN2MtiLxJ2TYjUHGWq9wmenH/DIR0VcMmParhNSN2aaBJc4zXcigyHjYzbEdkIV89F04+zUqX2cKH17EOjkKbIz9WciZr4xE99LJn1GI/PXS8X/vHZEg4tuLFQYESo+WzSIpE2Bnf7b7guNnOQkIYxrkdxq8xHTjFPSTr6TBWMVUNZLb4Ssj3qaz8q5THH6XcUiaVTK7lnZvTkpVkuzliAHh3AEJXDhHKpwDTWoA4chPMITPFsP1ov1ar3NRpeseeYAfsF6/wKrjZhU</latexit>

t2
<latexit sha1_base64="eDvHW79tKIOBLnaUNkn48Lwr170=">AAACAnicbVDLSsNAFL2pr1pfVZdugkXoqiS+3RXcuKxobaEtZTK9bYdOJmHmRiihO7du9R/ciVt/xF/wK0zSImo9MHA45x7uneOFUhhynA8rt7C4tLySXy2srW9sbhW3d+5MEGmOdR7IQDc9ZlAKhXUSJLEZamS+J7HhjS5Tv3GP2ohA3dI4xI7PBkr0BWeUSDfUPeoWS07FyWDPE3dGStU8ZKh1i5/tXsAjHxVxyYxpuU5InZhpElzipNCODIaMj9gAWwlVzEfTibNTJ/ZBovTsfqCTp8jO1J+JmPnGjH0vmfQZDc1fLxX/81oR9c87sVBhRKj4dFE/kjYFdvpvuyc0cpLjhDCuRXKrzYdMM05JO4V2FoxVQFkv3SGyHupJISvnIsXJdxXz5O6w4p5W3OvjUrU8bQnysAf7UAYXzqAKV1CDOnAYwCM8wbP1YL1Yr9bbdDRnzTK78AvW+xetKZhV</latexit>

t3

<latexit sha1_base64="XTJsUXJ6OIogftiDvr1VNx0f0OY=">AAACIHicbVBNTxsxFHwLpYRA2xSOHGo1QuIU7VZtgVskLj1SqSGRkijyOm+JhT9W9ltEtMqxf4QrV/gP3CqO8BP6K+rdoKotHcnSaObNsz1prqSnOH6IVlZfrL1cb2w0N7devX7Tert96m3hBPaEVdYNUu5RSYM9kqRwkDvkOlXYT8+PK79/gc5La77RPMex5mdGZlJwCtKk9W6kU3tZEurcOq5Y2CU9ywojKt8vJq123IlrsOckeSLtbgNqnExaP0dTKwqNhoTi3g+TOKdxyR1JoXDRHBUecy7O+RkOAzVcox+X9UcWbC8oU5ZZF44hVqt/JkquvZ/rNExqTjP/r1eJ//OGBWWH41KavCA0YnlRVihGllWtsKl0KEjNA+HCyfBWJmbccUGhu+aoDpbG0rK1GfIpukWzLueowqffVTwnpx86yedO8vVju7u/bAkasAvvYR8SOIAufIET6IGA73ANN3AbXUV30Y/ofjm6Ej1lduAvRI+/AJXXpTE=</latexit>

temporal basis functions

<latexit sha1_base64="jsXKZYtIc+Vmx4FxXXOMdbKIcaU=">AAACFHicbZDLSgMxFIbPeK31Vu3SzWARuioz4nVXcOOygr1AW0omPdOGZpIhyYhl6Gu4davv4E7cuvcVfArTaRG1/hD4+c/5yeELYs608bwPZ2l5ZXVtPbeR39za3tkt7O03tEwUxTqVXKpWQDRyJrBumOHYihWSKODYDEZX03nzDpVmUtyacYzdiAwECxklxka9QrETBfI+pRJDGzIURk96hZJX8TK5i8afm1I1B5lqvcJnpy9pEtk25UTrtu/FppsSZRjlOMl3Eo0xoSMywLa1gkSou2l2/MQ9sknfDaWyTxg3S382UhJpPY4CuxkRM9R/Z9Pwv1k7MeFFN2UiTgwKOvsoTLhrpDsl4faZQmr42BpCFbO3unRIFKHG8sp3smIqpJmRGiLpo5rkMziXU51+o1g0jeOKf1bxb05K1fKMEuTgAA6hDD6cQxWuoQZ1oDCGR3iCZ+fBeXFenbfZ6pIz7xThl5z3L/NioBw=</latexit>

coe�cients

<latexit sha1_base64="qcCMnSQ0gRbcWYMIUDoCBDr7orw=">AAACF3icbZDLSgNBEEVrfMb4igpu3AwGwY1hRnzuAm5cRjAqJCH0dCqmsR9Dd40YxnyIW7f6D+7ErUt/wa9wMhHxdaHhcm8VXZwolsJRELx5Y+MTk1PThZni7Nz8wmJpafnMmcRyrHMjjb2ImEMpNNZJkMSL2CJTkcTz6Opo2J9fo3XC6FPqx9hS7FKLruCMsqhdWm2qyNyk3GgSOjGJ2yKhcNAulYNKkMv/a8JPU64WIFetXXpvdgxPFGrikjnXCIOYWimzJLjEQbGZOIwZv2KX2MisZgpdK83vH/gbWdLxu8ZmT5Ofp983Uqac66som1SMeu53Nwz/6xoJdQ9aqdBxQqj56KNuIn0y/hCG3xEWOcl+Zhi3IrvV5z1mGacMWbGZL6ba0AhWD1kH7aCYwzkcavcLxV9ztl0J9yrhyU65ujmiBAVYg3XYhBD2oQrHUIM6cLiFe3iAR+/Oe/KevZfR6Jj3ubMCP+S9fgCCVqF7</latexit>

continuous-time
<latexit sha1_base64="d9h9JQAyI59RvOuLkXad5c7n8DQ=">AAACEnicbVDLSgNBEOyNrxhfUY9eFoPgKeyKz1vAi0cFo0ISwuykY8bMziwzvWpY8hdeveo/eBOv/oC/4Fc42Yj4KhgoqrronooSKSwFwZtXmJicmp4pzpbm5hcWl8rLK2dWp4ZjnWupzUXELEqhsE6CJF4kBlkcSTyP+ocj//wajRVandIgwVbMLpXoCs7ISe3ycjOO9G1Ghl0hJ20Gw3a5ElSDHP5fEn6SSq0IOY7b5fdmR/M0RkVcMmsbYZBQK2OGBJc4LDVTiwnjfXaJDUcVi9G2svz0ob/hlI7f1cY9RX6ufk9kLLZ2EEduMmbUs7+9kfif10ipu9/KhEpSQsXHi7qp9En7ox78jjDuw3LgCONGuFt93mOGcXJtlZp5MFOaxj31kHXQDEt5OQcj7HxV8ZecbVXD3Wp4sl2pbY5bgiKswTpsQgh7UIMjOIY6cLiBe3iAR+/Oe/KevZfxaMH7zKzCD3ivH4g0n10=</latexit>

trajectory

<latexit sha1_base64="tuU/1EGVihSvBpdusa7FGcACNxc=">AAACEXicbVDLSsNAFL2pr1pfUZdugkXoqiTic1dw41LBtkJbymRy2w6dzISZSaGEfoVbt/oP7sStX+Av+BVOUhFfB4Y5nHsP93DChDNtfP/NKS0sLi2vlFcra+sbm1vu9k5Ly1RRbFLJpboNiUbOBDYNMxxvE4UkDjm2w/FFPm9PUGkmxY2ZJtiLyVCwAaPEWKnvut1Q8khPY/tldNYP+m7Vr/sFvL8k+CTVRhkKXPXd924kaRqjMJQTrTuBn5heRpRhlOOs0k01JoSOyRA7lgoSo+5lRfKZd2CVyBtIZZ8wXqF+d2Qk1nk4uxkTM9K/Z7n436yTmsFZL2MiSQ0KOj80SLlnpJfX4EVMITV8agmhitmsHh0RRaixZVW6hTET0sxrGiGJUM0qRTnnOY6/qvhLWof14KQeXB9VG7V5S1CGPdiHGgRwCg24hCtoAoUJ3MMDPDp3zpPz7LzMV0vOp2cXfsB5/QAHxp6A</latexit>

c1

<latexit sha1_base64="NpdHZvDEltGvU5fK1Dvc5QSXj7w=">AAACEXicbVDLSsNAFL3xWesr6tJNsAhdlaT43BXcuKxgVWhLmUxu26GTmTAzKZTQr3DrVv/Bnbj1C/wFv8JJWsTXgWEO597DPZww4Uwb3393FhaXlldWS2vl9Y3NrW13Z/dGy1RRbFHJpboLiUbOBLYMMxzvEoUkDjnehqOLfH47RqWZFNdmkmA3JgPB+owSY6We63ZCySM9ie2X0Wmv3nMrfs0v4P0lwZxUGiUo0Oy5H51I0jRGYSgnWrcDPzHdjCjDKMdpuZNqTAgdkQG2LRUkRt3NiuRT79AqkdeXyj5hvEL97shIrPNwdjMmZqh/z3Lxv1k7Nf2zbsZEkhoUdHaon3LPSC+vwYuYQmr4xBJCFbNZPTokilBjyyp3CmMmpJnVNEQSoZqWi3LOcxx/VfGX3NRrwUktuDqqNKqzlqAE+3AAVQjgFBpwCU1oAYUxPMAjPDn3zrPz4rzOVhecuWcPfsB5+wQJYp6B</latexit>

c2

<latexit sha1_base64="ioXcenwf52WQczvpo6TMOPHKxkE=">AAACEXicbVDLSsNAFL3xWesr6tJNsAiuSuLbXcGNSwVbC20pk8ltO3QyE2YmQgn9Crdu9R/ciVu/wF/wK5ykRdR6YJjDufdwDydMONPG9z+cufmFxaXl0kp5dW19Y9Pd2m5omSqKdSq5VM2QaORMYN0ww7GZKCRxyPEuHF7m87t7VJpJcWtGCXZi0hesxygxVuq6bjuUPNKj2H4ZHXePum7Fr/oFvFkSTEmlVoIC1133sx1JmsYoDOVE61bgJ6aTEWUY5Tgut1ONCaFD0seWpYLEqDtZkXzs7Vsl8npS2SeMV6g/HRmJdR7ObsbEDPTfWS7+N2ulpnfeyZhIUoOCTg71Uu4Z6eU1eBFTSA0fWUKoYjarRwdEEWpsWeV2YcyENJOaBkgiVONyUc5FjpPvKmZJ47AanFaDm+NK7WDSEpRgF/bgAAI4gxpcwTXUgcI9PMITPDsPzovz6rxNVuecqWcHfsF5/wIK/p6C</latexit>

c3
<latexit sha1_base64="+IGtFwFfOOatIEKmBPtDFR/HQh8=">AAACEXicbVDLSsNAFL2pr1pfUZdugkXoqiTic1dw47KCVaEtZTK5bYdOZsLMpFBCv8KtW/0Hd+LWL/AX/AonaRFfB4Y5nHsP93DChDNtfP/dKS0sLi2vlFcra+sbm1vu9s6Nlqmi2KKSS3UXEo2cCWwZZjjeJQpJHHK8DUcX+fx2jEozKa7NJMFuTAaC9Rklxko91+2Ekkd6Etsvo9PeUc+t+nW/gPeXBHNSbZShQLPnfnQiSdMYhaGcaN0O/MR0M6IMoxynlU6qMSF0RAbYtlSQGHU3K5JPvQOrRF5fKvuE8Qr1uyMjsc7D2c2YmKH+PcvF/2bt1PTPuhkTSWpQ0Nmhfso9I728Bi9iCqnhE0sIVcxm9eiQKEKNLavSKYyZkGZW0xBJhGpaKco5z3H8VcVfcnNYD07qwdVRtVGbtQRl2IN9qEEAp9CAS2hCCyiM4QEe4cm5d56dF+d1tlpy5p5d+AHn7RMMmp6D</latexit>

c4
<latexit sha1_base64="SdrZV5z20U8l5E8YYFoSC6A1+Jo=">AAACEXicbVDLSsNAFL3xWesr6tJNsAhdlUSsj13BjUsF+4C2lMnk1g5OZsLMRCihX+HWrf6DO3HrF/gLfoWTtIhaDwxzOPce7uGECWfa+P6Hs7C4tLyyWlorr29sbm27O7stLVNFsUkll6oTEo2cCWwaZjh2EoUkDjm2w7uLfN6+R6WZFDdmnGA/JreCDRklxkoD1+2Fkkd6HNsvo5NBfeBW/JpfwJsnwYxUGiUocDVwP3uRpGmMwlBOtO4GfmL6GVGGUY6Tci/VmBB6R26xa6kgMep+ViSfeIdWibyhVPYJ4xXqT0dGYp2Hs5sxMSP9d5aL/826qRme9TMmktSgoNNDw5R7Rnp5DV7EFFLDx5YQqpjN6tERUYQaW1a5VxgzIc20phGSCNWkXJRznqP+XcU8aR3VgpNacH1caVSnLUEJ9uEAqhDAKTTgEq6gCRTu4RGe4Nl5cF6cV+dturrgzDx78AvO+xcONp6E</latexit>

c5

<latexit sha1_base64="Do1v9y9uiRwBh5XBke3erL0vjjI=">AAACEXicbVDLSsNAFL3xWesr6tJNsAhdlUS06q7gxqWCfUBbymRyawcnM2FmIpTQr3DrVv/Bnbj1C/wFv8JJWkStB4Y5nHsP93DChDNtfP/DWVhcWl5ZLa2V1zc2t7bdnd2Wlqmi2KSSS9UJiUbOBDYNMxw7iUIShxzb4d1FPm/fo9JMihszTrAfk1vBhowSY6WB6/ZCySM9ju2X0cmgPnArfs0v4M2TYEYqjRIUuBq4n71I0jRGYSgnWncDPzH9jCjDKMdJuZdqTAi9I7fYtVSQGHU/K5JPvEOrRN5QKvuE8Qr1pyMjsc7D2c2YmJH+O8vF/2bd1AzP+hkTSWpQ0OmhYco9I728Bi9iCqnhY0sIVcxm9eiIKEKNLavcK4yZkGZa0whJhGpSLso5z3HyXcU8aR3VgnotuD6uNKrTlqAE+3AAVQjgFBpwCVfQBAr38AhP8Ow8OC/Oq/M2XV1wZp49+AXn/QsP0p6F</latexit>

c6
<latexit sha1_base64="/aq88fN9fvxSRb/ETVIf9Ot3uBM=">AAACEXicbVDLSsNAFL3xWesr6tJNsAiuSiJqdVdw47KCrUJbymRy2w6dzISZSaGEfoVbt/oP7sStX+Av+BVO0iK+DgxzOPce7uGECWfa+P67s7C4tLyyWlorr29sbm27O7stLVNFsUkll+ouJBo5E9g0zHC8SxSSOOR4G44u8/ntGJVmUtyYSYLdmAwE6zNKjJV6rtsJJY/0JLZfRqe9Ws+t+FW/gPeXBHNSqZegQKPnfnQiSdMYhaGcaN0O/MR0M6IMoxyn5U6qMSF0RAbYtlSQGHU3K5JPvUOrRF5fKvuE8Qr1uyMjsc7D2c2YmKH+PcvF/2bt1PTPuxkTSWpQ0Nmhfso9I728Bi9iCqnhE0sIVcxm9eiQKEKNLavcKYyZkGZW0xBJhGpaLsq5yHH6VcVf0jquBmfV4PqkUj+atQQl2IcDOIIAalCHK2hAEyiM4QEe4cm5d56dF+d1trrgzD178APO2ycRbp6G</latexit>

c7

<latexit sha1_base64="wx6YX6DcsfJx0QiKQUQeaqpzzcU=">AAACF3icbVDLattAFL1y09ZxX04L2WQjagruxkilj2Rn6KZLB+LYYBkzGl3bg0czYuaqYBR9SLbZtv/QXcg2y/xCviIjOYQ27oFhDufewz2cOJPCUhDceI0nO0+fPW/utl68fPX6TXvv7anVueE45FpqM46ZRSkUDkmQxHFmkKWxxFG8+l7NRz/RWKHVCa0znKZsocRccEZOmrX3o1jLxK5T9xXRwIpyFnbp46zdCXpBDX+bhPek029CjcGsfRslmucpKuKSWTsJg4ymBTMkuMSyFeUWM8ZXbIETRxVL0U6LOn/pf3BK4s+1cU+RX6t/OwqW2iqi20wZLe3jWSX+bzbJaX44LYTKckLFN4fmufRJ+1UZfiIMcpJrRxg3wmX1+ZIZxslV1opqY6E0bcpaIkvQlK26nKMKXx6q2Cann3rh1154/LnT725agiYcwHvoQgjfoA8/YABD4HAGF/ALfnvn3h/v0rvarDa8e887+Afe9R0oe6Cm</latexit>

 1(t)
<latexit sha1_base64="pZPfDcjdevpQkfzGYh4oXzbFnsY=">AAACF3icbVDBattAFHxKm9Rx0tRtoJdeREzAvRjJpE17M+SSowtxYrCMWa2e7cWrXbH7FDCqPqTXXtt/yK302mN/IV+RlWxKW2dg2WHeG94wcSaFpSD47e08ebq796yx3zw4fH70ovXy1bXVueE45FpqM4qZRSkUDkmQxFFmkKWxxJt4eVHNb27RWKHVFa0ynKRsrsRMcEZOmrZeR7GWiV2l7iuigRXltNeht9NWO+gGNfxtEm5Iu9+AGoNp6z5KNM9TVMQls3YcBhlNCmZIcIllM8otZowv2RzHjiqWop0Udf7SP3VK4s+0cU+RX6t/OwqW2iqi20wZLez/s0p8bDbOafZhUgiV5YSKrw/NcumT9qsy/EQY5CRXjjBuhMvq8wUzjJOrrBnVxkJpWpe1QJagKZt1OR8rvPtTxTa57nXD993w01m731m3BA14AyfQgRDOoQ+XMIAhcPgMX+EbfPe+eHfeD+/nenXH23iO4R94vx4AKhqgpw==</latexit>

 2(t)
<latexit sha1_base64="wq9JxWakw0cA9rTku+a/3aH4hhY=">AAACF3icbVDLattAFL1KH3Hcl9NCN9mImoK7MVKaR7szdNOlA/EDLGNGo2t78GhGzFwFjKIP6bbb9h+6K9lm2V/oV2Qkh9DEPTDM4dx7uIcTZ1JYCoI/3s6jx0+e7jb2ms+ev3j5qrX/emh1bjgOuJbajGNmUQqFAxIkcZwZZGkscRSvvlTz0QUaK7Q6p3WG05QtlJgLzshJs9bbKNYysevUfUXUt6KcfezQh1mrHXSDGv42CW9Ju9eAGv1Z62+UaJ6nqIhLZu0kDDKaFsyQ4BLLZpRbzBhfsQVOHFUsRTst6vyl/94piT/Xxj1Ffq3+6yhYaquIbjNltLQPZ5X4v9kkp/mnaSFUlhMqvjk0z6VP2q/K8BNhkJNcO8K4ES6rz5fMME6usmZUGwulaVPWElmCpmzW5XyucHxXxTYZHnbDk254dtTudTYtQQMO4B10IIRT6MFX6MMAOFzCd/gBP71v3i/vt3e1Wd3xbj1v4B686xsruaCo</latexit>

 3(t)
<latexit sha1_base64="vSjkAfiHeKxO1J+wMnHlDBt9l2o=">AAACF3icbVDBattAFHxKk9R10tRtIZdcREzAvRgpuE17M/TSowN1YrCMWa2e7cWrXbH7FDCqPqTXXtt/6C3k2mN/oV/RlWxCG2dg2WHeG94wcSaFpSD47e082d3bf9p41jw4fH70ovXy1ZXVueE45FpqM4qZRSkUDkmQxFFmkKWxxOt4+bGaX9+gsUKrz7TKcJKyuRIzwRk5ado6jmItE7tK3VdEAyvKaa9Db6atdtANavjbJNyQdr8BNQbT1p8o0TxPURGXzNpxGGQ0KZghwSWWzSi3mDG+ZHMcO6pYinZS1PlL/8wpiT/Txj1Ffq3+6yhYaquIbjNltLAPZ5X42Gyc0+z9pBAqywkVXx+a5dIn7Vdl+IkwyEmuHGHcCJfV5wtmGCdXWTOqjYXStC5rgSxBUzbrcj5UeHtfxTa5Ou+G77rhZa/d76xbggacwCl0IIQL6MMnGMAQOHyBb/AdfnhfvZ/erXe3Xt3xNp7X8B+8X38BLVigqQ==</latexit>

 4(t)
<latexit sha1_base64="OfRZ0QGgO6tIIA6xblkEugt9zRc=">AAACF3icbVDBattAFHxKm9Rx0tRtoJdeREzAvRgp1E17M+SSowtxYrCMWa2e7cWrXbH7FDCqPqTXXtt/yK302mN/IV+RlWxKW2dg2WHeG94wcSaFpSD47e08ebq796yx3zw4fH70ovXy1bXVueE45FpqM4qZRSkUDkmQxFFmkKWxxJt4eVHNb27RWKHVFa0ynKRsrsRMcEZOmrZeR7GWiV2l7iuigRXltNeht9NWO+gGNfxtEm5Iu9+AGoNp6z5KNM9TVMQls3YcBhlNCmZIcIllM8otZowv2RzHjiqWop0Udf7SP3VK4s+0cU+RX6t/OwqW2iqi20wZLez/s0p8bDbOafZhUgiV5YSKrw/NcumT9qsy/EQY5CRXjjBuhMvq8wUzjJOrrBnVxkJpWpe1QJagKZt1OR8r9P5UsU2uz7rh+2746V2731m3BA14AyfQgRDOoQ+XMIAhcPgMX+EbfPe+eHfeD+/nenXH23iO4R94vx4ALvegqg==</latexit>

 5(t)
<latexit sha1_base64="515z/8wJe+FsNwNk2SQEI8FOiag=">AAACF3icbVDBattAFHxKm9Rx0lRtoJdeREzAvRgptE57M+SSowtxYrCMWa2e7cWrXbH7FDCqP6TXXtt/yK302mN/IV+RlWxKW2dg2WHeG94wSS6FpTD87e08ebq796yx3zw4fH70wn/56trqwnAccC21GSbMohQKByRI4jA3yLJE4k2yuKjmN7dorNDqipY5jjM2U2IqOCMnTfzXcaJlapeZ+8q4b8Vq0m3T24nfCjthjWCbRBvS6jWgRn/i38ep5kWGirhk1o6iMKdxyQwJLnHVjAuLOeMLNsORo4plaMdlnX8VnDolDabauKcoqNW/HSXLbBXRbWaM5vb/WSU+NhsVNP0wLoXKC0LF14emhQxIB1UZQSoMcpJLRxg3wmUN+JwZxslV1oxrY6k0rcuaI0vRrJp1OR8rvP9TxTa5PutE3U706V2r1163BA14AyfQhgjOoQeX0IcBcPgMX+EbfPe+eHfeD+/nenXH23iO4R94vx4AMJagqw==</latexit>

 6(t)
<latexit sha1_base64="pDqXccyKUN3WHWF/d08WTa8GAV4=">AAACF3icbVDBattAFHxKm8Rx0tRtoJdeREzAvRgptHV7M+SSowtxYrCMWa2e7cWrXbH7FDCqP6TXXtt/yK302mN/IV+RlWRKW2dg2WHeG94wcSaFpSD47e08ebq7t984aB4ePTt+3nrx8trq3HAcci21GcXMohQKhyRI4igzyNJY4k28vCjnN7dorNDqilYZTlI2V2ImOCMnTVuvoljLxK5S9xXRwIr1tNehN9NWO+gGFfxtEm5Iu9+ACoNp6z5KNM9TVMQls3YcBhlNCmZIcInrZpRbzBhfsjmOHVUsRTspqvxr/8wpiT/Txj1FfqX+7ShYasuIbjNltLD/z0rxsdk4p9mHSSFUlhMqXh+a5dIn7Zdl+IkwyEmuHGHcCJfV5wtmGCdXWTOqjIXSVJe1QJagWTercj6WePenim1yfd4N33fDT2/b/U7dEjTgNZxCB0LoQR8uYQBD4PAZvsI3+O598e68H97PenXH23hO4B94vx4AMjWgrA==</latexit>

 7(t)

Figure 2.2 A parametric spline can be used to represent a continuous-time trajectory.
In this example, the pose at a given time p(t) is assembled as a weighted sum of known
temporal basis functions Ψk(t) with local support; at most four basis functions are nonzero
at a given time. This results in each landmark measurement being represented by a quinary
(five-way) factor between four coefficient variables and one landmark variable. The overall
factor graph is still very sparse.

2.2.1 Splines

The idea with parametric continuous-time trajectory methods is to write the pose

as a weighted sum of K known temporal basis functions, Ψk(t):

p(t) =

K∑

k=1

Ψk(t)ck, (2.32)

where the ck are the unknown coefficients. For now, we return to a vector-space

explanation and discuss implementation on Lie groups in a later section. The basis

functions are typically chosen to be splines, which are piecewise polynomials (e.g.,

B-splines, cubic Hermite polynomials); splines are advantageous because they have

local support meaning outside of their local region of influence they go to zero. The

setup is depicted in Figure 2.2. In this example, at each instant of time only four

basis functions are nonzero, which we see results in a sparse factor graph.

The main difference, as compared to our earlier discrete-time development, is that

we have coefficient variables instead of pose variables, but this is completely com-

patible with the general factor-graph approach. Now, when we observe a landmark,

ℓ, at a particular time, ti, the sensor model is

zi = hi (p(ti), ℓ) + ηi. (2.33)

64 Advanced State Variable Representations

Inserting (2.32) we have

zi = hi

(
K∑

k=1

Ψk(ti)ck, ℓ

)
+ ηi. (2.34)

As mentioned above, if our basis functions are chosen to have local support, then

only a small subset of the coefficients will be active at ti. If we let xi =
[
cTi ℓT

]T

represent the active coefficient variables at ti as well as the landmark variable, then

we are back to being able to write the measurement function as

zi = hi (xi) + ηi, (2.35)

whereupon we can use our general approach to construct the nonlinear least-squares

problem and optimize.

Moreover, if our basis functions are sufficiently differentiable, we can easily take

the derivative of our pose trajectory,

ṗ(t) =
K∑

k=1

Ψ̇k(t)ck (2.36)

so that we can handle sensor outputs that are functions of, say, velocity or even

higher derivatives while still optimizing the same coefficient variables. We simply

need to compute the derivatives of our basis functions, Ψ̇k(t).

Finally, once we have solved for the optimal coefficients through MAP inference,

we can then query the trajectory (or its derivatives) at any time of interest us-

ing (2.32) or (2.36). If we compute the covariance of the estimated coefficients dur-

ing inference (e.g., by inverting the information matrix), this can also be mapped

through to covariance of a queried pose (or derivative) quite easily since (2.32)

or (2.36) are linear relationships; and, local support in the basis functions implies

only the appropriate marginal covariance is needed from the coefficients.

2.2.2 From Parametric to Nonparametric

The main challenge with basic parametric continuous-time methods is that we must

decide what type and how many basis functions to use. If we have too many basis

functions, it becomes very easy to overfit to the measurement data. If we have too

few basis functions, we may not have sufficient capacity to represent the true shape

of the trajectory, resulting in an overly smooth solution. This challenge is partly

addressed by moving to a nonparametric method.

To simplify the explanation slightly, in this section we will assume for now that

there are no landmark variables only pose variables. Using the parametric approach

introduced in the previous section, our linearized least-squares term (negative-log

factor) will have the form
∥∥(zi − hi

(
x0
i

))
−HiΨi δc,i

∥∥2
Σi
, (2.37)

2.2 Continuous-Time Trajectories 65

where x0
i is the current solution (active coefficients), δc,i is the update (to the active

coefficients), Ψi is the stacking of all basis functions active (and evaluted) at ti,

and the Jacobian, Hi, is given by

Hi =
∂hi

∂x

∣∣∣∣
x0

i

. (2.38)

Gathering quantities into larger matrices as before, we can write our least-squares

problem as

δ∗c = arg min
δc

(
∥b−AΨδc∥2 + ∥δc∥2

)
, (2.39)

where we now include a regularizer term, ∥δc∥2, that seeks to keep the description

length of our solution reasonable (i.e., we prefer spline coefficients to be closer to

zero). The regularizer term helps to avoid the over-fitting problem mentioned in

the last section. The optimal solution will be given by
(
ΨTATAΨ + I

)
δ∗c = ΨTATb, (2.40)

which would allow us to compute the optimal update for the coefficients, δ∗c . How-

ever, what we typically care about is to produce an estimate for the pose, not

the spline coefficients (they are a means to an end). The optimal update to the

pose variables at the measurement times is actually δ∗ = Ψδ∗c . With a little bit of

algebra, we can show that
(
ATA+K−1

)
δ∗ = ATb, (2.41)

which is a modified version of the normal equations, first introduced in (1.25).

The kernel matrix, K = ΨTΨ, serves a regularization or smoothing function. The

careful reader will notice that (2.41) represents a larger linear system of equations

than (2.40) because there are more poses than basis function coefficients. However,

in the end we will be able to reduce the size of the linear system we need to solve in

our nonparametric approach by using built-in interpolation capabilities. For now,

we will work with (2.41) and come back to this issue towards the end of the section.

To move away from explicit basis functions, we can employ the so-called kernel

trick, which replaces the explicit inner product of basis functions with evaluations

of a chosen kernel function, K(t, t′) (e.g., squared-exponential). We can see that

in (2.41) it is only the inner product of the basis functions that is required to build

the kernel matrix. The kernel matrix is then K =
[
K(ti, tj)

]
ij

, which is to say we

populate it with evaluations of the kernel function at every pairing of measurement

times. We can now refer to this as a nonparametric method since we are no longer

estimating the coefficients (i.e., parameters) of a spline. We do, however, have to

tune the hyperparameters of our chosen kernel function (e.g., length scale for squared

exponential) to achieve the desired trajectory smoothness.

Since we need the inverse kernel matrix right away in (2.41), it would seem to

66 Advanced State Variable Representations

<latexit sha1_base64="b5MWbhCtoIcoBuQZk/2t5aCElIc=">AAACFHicbVDLSsNAFL2pr1pfVZdugkXoqiTic1dw47KCbYWmlMnkth06mQkzE6GE/oZbt/oP7sSte3/Br3CSivg6MMzh3Hu4hxMmnGnjeW9OaWFxaXmlvFpZW9/Y3Kpu73S0TBXFNpVcqpuQaORMYNsww/EmUUjikGM3nFzk8+4tKs2kuDbTBPsxGQk2ZJQYKw2qu0EoeaSnsf2yADmfDfxBteY1vALuX+J/klqzDAVag+p7EEmaxigM5UTrnu8lpp8RZRjlOKsEqcaE0AkZYc9SQWLU/awIP3MPrBK5Q6nsE8Yt1O+OjMQ6z2c3Y2LG+vcsF/+b9VIzPOtnTCSpQUHnh4Ypd4108ybciCmkhk8tIVQxm9WlY6IINbavSlAYMyHNvKkxkgjVrFKUc57j+KuKv6Rz2PBPGv7VUa1Zn7cEZdiDfaiDD6fQhEtoQRsoTOEeHuDRuXOenGfnZb5acj49u/ADzusHf5Of1A==</latexit>

`1

<latexit sha1_base64="7iyXCYXvtnf7LlcEQO+3L706C+s=">AAACFHicbVDLSsNAFL3xWeur6tJNsAhdlaT43BXcuKxgq9CUMpnctkMnM2FmIpTQ33DrVv/Bnbh17y/4FU5SEbUeGOZw7j3cwwkTzrTxvHdnYXFpeWW1tFZe39jc2q7s7Ha0TBXFNpVcqtuQaORMYNsww/E2UUjikONNOL7I5zd3qDST4tpMEuzFZCjYgFFirNSv7AWh5JGexPbLAuR82m/0K1Wv7hVw54n/RarNEhRo9SsfQSRpGqMwlBOtu76XmF5GlGGU47QcpBoTQsdkiF1LBYlR97Ii/NQ9tErkDqSyTxi3UH86MhLrPJ/djIkZ6b+zXPxv1k3N4KyXMZGkBgWdHRqk3DXSzZtwI6aQGj6xhFDFbFaXjogi1Ni+ykFhzIQ0s6ZGSCJU03JRznmO4+8q5kmnUfdP6v7VUbVZm7UEJdiHA6iBD6fQhEtoQRsoTOABHuHJuXeenRfndba64Hx59uAXnLdPgS+f1Q==</latexit>

`2

<latexit sha1_base64="XI+bVvG2FxLrcO8kqclPBNw10v8=">AAACFHicbVDLSsNAFL3xWeur6tJNsAiuSuLbXcGNSwVbC00pk8ltO3QyE2YmQgn9Dbdu9R/ciVv3/oJf4SQtotYDwxzOvYd7OGHCmTae9+HMzS8sLi2XVsqra+sbm5Wt7aaWqaLYoJJL1QqJRs4ENgwzHFuJQhKHHO/C4WU+v7tHpZkUt2aUYCcmfcF6jBJjpW5lJwglj/Qotl8WIOfj7lG3UvVqXgF3lvhTUq2XoMB1t/IZRJKmMQpDOdG67XuJ6WREGUY5jstBqjEhdEj62LZUkBh1JyvCj919q0RuTyr7hHEL9acjI7HO89nNmJiB/jvLxf9m7dT0zjsZE0lqUNDJoV7KXSPdvAk3Ygqp4SNLCFXMZnXpgChCje2rHBTGTEgzaWqAJEI1LhflXOQ4+a5iljQPa/5pzb85rtYPJi1BCXZhDw7AhzOowxVcQwMojOARnuDZeXBenFfnbbI650w9O/ALzvsXgsuf1g==</latexit>

`3

<latexit sha1_base64="VSjXtvk3tP4GqyhJeZJraKYvkis=">AAACEXicbVDLSsNAFL3xWesr6tJNsAhdlUR87gpuXCrYB7SlTCa3dnAyE2YmYgn9Crdu9R/ciVu/wF/wK5ykRdR6YJjDufdwDydMONPG9z+cufmFxaXl0kp5dW19Y9Pd2m5qmSqKDSq5VO2QaORMYMMww7GdKCRxyLEV3p7n89YdKs2kuDajBHsxuRFswCgxVuq7bjeUPNKj2H7Z/bgf9N2KX/MLeLMkmJJKvQQFLvvuZzeSNI1RGMqJ1p3AT0wvI8owynFc7qYaE0JvyQ12LBUkRt3LiuRjb98qkTeQyj5hvEL96chIrPNwdjMmZqj/znLxv1knNYPTXsZEkhoUdHJokHLPSC+vwYuYQmr4yBJCFbNZPTokilBjyyp3C2MmpJnUNEQSoRqXi3LOchx9VzFLmge14LgWXB1W6tVJS1CCXdiDKgRwAnW4gEtoAIU7eIQneHYenBfn1XmbrM45U88O/ILz/gUp0Z6V</latexit>

x1

<latexit sha1_base64="Yr4EdV941G5d4F9Y7HI7OEu2xuQ=">AAACEXicbVDLSsNAFL2pr1pfUZdugkVwVZLic1dw41LBVqEtZTK5bYdOZsLMRCyhX+HWrf6DO3HrF/gLfoWTtIivA8Mczr2Hezhhwpk2vv/ulObmFxaXysuVldW19Q13c6ulZaooNqnkUt2ERCNnApuGGY43iUIShxyvw9FZPr++RaWZFFdmnGA3JgPB+owSY6We63ZCySM9ju2X3U169Z5b9Wt+Ae8vCWak2ihDgYue+9GJJE1jFIZyonU78BPTzYgyjHKcVDqpxoTQERlg21JBYtTdrEg+8fasEnl9qewTxivU746MxDoPZzdjYob69ywX/5u1U9M/6WZMJKlBQaeH+in3jPTyGryIKaSGjy0hVDGb1aNDogg1tqxKpzBmQpppTUMkEapJpSjnNMfhVxV/SateC45qweVBtbE/bQnKsAO7sA8BHEMDzuECmkDhFh7gEZ6ce+fZeXFep6slZ+bZhh9w3j4BK22elg==</latexit>

x2

<latexit sha1_base64="tPqvzQuur0DYkQKtz7xTE46gnjY=">AAACEXicbVDLSsNAFL3xWesr6tJNsAiuSuLbXcGNSwVbC20pk8ltO3QyE2YmxRL6FW7d6j+4E7d+gb/gVzhJRXwdGOZw7j3cwwkTzrTx/TdnZnZufmGxtFReXlldW3c3NhtapopinUouVTMkGjkTWDfMcGwmCkkccrwJh+f5/GaESjMprs04wU5M+oL1GCXGSl3XbYeSR3oc2y+7nXQPum7Fr/oFvL8k+CSVWgkKXHbd93YkaRqjMJQTrVuBn5hORpRhlOOk3E41JoQOSR9blgoSo+5kRfKJt2uVyOtJZZ8wXqF+d2Qk1nk4uxkTM9C/Z7n436yVmt5pJ2MiSQ0KOj3US7lnpJfX4EVMITV8bAmhitmsHh0QRaixZZXbhTET0kxrGiCJUE3KRTlnOY6+qvhLGvvV4LgaXB1WanvTlqAE27ADexDACdTgAi6hDhRGcA8P8OjcOU/Os/MyXZ1xPj1b8APO6wctCZ6X</latexit>

x3 <latexit sha1_base64="acd9JfZNbDkl7lvH5hNr4W4k70I=">AAACEXicbVDLSsNAFL2pr1pfUZdugkVwVRKpr13BjUsFW4W2lMnkth06mQkzE7GEfoVbt/oP7sStX+Av+BVO0iK+DgxzOPce7uGECWfa+P67U5qbX1hcKi9XVlbX1jfcza2Wlqmi2KSSS3UTEo2cCWwaZjjeJApJHHK8Dkdn+fz6FpVmUlyZcYLdmAwE6zNKjJV6rtsJJY/0OLZfdjfp1Xtu1a/5Bby/JJiRaqMMBS567kcnkjSNURjKidbtwE9MNyPKMMpxUumkGhNCR2SAbUsFiVF3syL5xNuzSuT1pbJPGK9QvzsyEus8nN2MiRnq37Nc/G/WTk3/pJsxkaQGBZ0e6qfcM9LLa/AippAaPraEUMVsVo8OiSLU2LIqncKYCWmmNQ2RRKgmlaKc0xyHX1X8Ja2DWnBUCy7r1cb+tCUoww7swj4EcAwNOIcLaAKFW3iAR3hy7p1n58V5na6WnJlnG37AefsELqWemA==</latexit>
x4

<latexit sha1_base64="Gp1DCmbwOtMsi6yoWu3Yyr8O4yE=">AAACFHicbVDLSgNBEOz1GeMrmqOXwSh4Crvi8xbw4lHBGCEJYXbSSYbMY5mZFcOS3/DqVf/Bm3j17i/4Fe5uRNRYMFBT1UU3FUaCW+f7797M7Nz8wmJhqbi8srq2XtrYvLY6NgzrTAttbkJqUXCFdcedwJvIIJWhwEY4PMv8xi0ay7W6cqMI25L2Fe9xRl0qdUrllgz1XSJ19iWR4dqMO6WKX/VzkGkSfJFKrQA5Ljqlj1ZXs1iickxQa5uBH7l2Qo3jTOC42IotRpQNaR+bKVVUom0n+fFjspsqXdLTJn3KkVz9mUiotHYkw3RSUjewf71M/M9rxq530k64imKHik0W9WJBnCZZE6TLDTInRimhzPD0VsIG1FDm0r6KrTyYKO0mTQ2QdtGMi3k5pxkOv6uYJtf71eCoGlweVGo7k5agAFuwDXsQwDHU4BwuoA4MRvAAj/Dk3XvP3ov3Ohmd8b4yZfgF7+0T2K2gCA==</latexit>

motion prior

<latexit sha1_base64="ACt9Z2ln8ntfZS9GhpVYaWod1cs=">AAACF3icbZDLSgNBEEVrfMb4igpu3AxGwY1hRnzuAm5cKhgVkhB6OhXT2I+hu0YMYz7ErVv9B3fi1qW/4Fc4mYj4utBwubeKLk4US+EoCN68kdGx8YnJwlRxemZ2br60sHjmTGI51riRxl5EzKEUGmskSOJFbJGpSOJ5dHU46M+v0Tph9Cn1YmwqdqlFR3BGWdQqLTdUZG5SbjQJnZjEbZJQ2G+VykElyOX/NeGnKVcLkOu4VXpvtA1PFGrikjlXD4OYmimzJLjEfrGROIwZv2KXWM+sZgpdM83v7/vrWdL2O8ZmT5Ofp983Uqac66kom1SMuu53Nwj/6+oJdfabqdBxQqj58KNOIn0y/gCG3xYWOcleZhi3IrvV511mGacMWbGRL6ba0BBWF1kbbb+YwzkYaOcLxV9ztlUJdyvhyXa5ujakBAVYgVXYgBD2oApHcAw14HAL9/AAj96d9+Q9ey/D0RHvc2cJfsh7/QCBIqF3</latexit>

continuous-time

<latexit sha1_base64="LCLkPYigzkh4aS+EVQHQSHiAREM=">AAACanicbVFba9swGFXcXbLs0qx9Gn0RzQYZbMEOu3Rvgb7sMYWlLcSZkeXPsagsGelzaXD9G/u8v1D2utduslNGbweEDufoSB9HcSGFRd//1fE2Hj1+8rT7rPf8xctXm/3XW4dWl4bDjGupzXHMLEihYIYCJRwXBlgeSziKT/Yb/+gUjBVa/cBVAYucLZVIBWfopKgvQgkphuc0jLVM7Cp3W3VWR9W4ph9vieE0E/UQG+cDxSh4fzcS0NCIZeYu+zmOqpvmgTPrqD/wR34Lep8E12Qw6ZIW06h/GSaalzko5JJZOw/8AhcVMyi4hLoXlhYKxk/YEuaOKpaDXVRtJTV955SEptq4pZC26s1ExXLbTOdO5gwze9drxIe8eYnp3qISqigRFF8/lJaSoqZNvzQRBjjKlSOMG+FmpTxjhnF0v9AL22ClNK77z4AlYOpeW863Bp//V3GfHI5HwZdRcPBpMBmuWyJdskN2yZAE5CuZkO9kSmaEkwvyh1yRv53f3pb3xttZH/U615ltcgve23+tFb+W</latexit>

kx2 ��(t2, t1)x1k2Q1

<latexit sha1_base64="TTmtJJJgYmBn7n4RbC66UYQXrNA=">AAACanicbVFba9swGFW8W5bdsvZp9EUsG2SwBTtt1/UtsJc9prC0hTgzsvw5FpUlI30eDa5/4577F0pf+7pNdsroZQeEDufoSB9HcSGFRd8/73gPHj56/KT7tPfs+YuXr/qvNw6tLg2HGddSm+OYWZBCwQwFSjguDLA8lnAUn3xt/KOfYKzQ6juuCljkbKlEKjhDJ0V9EUpIMTyjYaxlYle526rTOqq2a/rplhhOM1EPsXE+UozGH+5GxjQ0Ypm5y36Mo+qmeeDMOuoP/JHfgt4nwTUZTLqkxTTqX4SJ5mUOCrlk1s4Dv8BFxQwKLqHuhaWFgvETtoS5o4rlYBdVW0lN3zsloak2bimkrXozUbHcNtO5kznDzN71GvF/3rzE9MuiEqooERRfP5SWkqKmTb80EQY4ypUjjBvhZqU8Y4ZxdL/QC9tgpTSu+8+AJWDqXlvOfoPdf1XcJ4fjUfB5FBzsDCbDdUukS7bIWzIkAdkjE/KNTMmMcPKLXJHf5E/n0tvw3nhb66Ne5zqzSW7Be/cXtfa/mw==</latexit>

kx3 ��(t3, t2)x2k2Q2

<latexit sha1_base64="u0E0kaobO4dcLg5hr+J6hBA4a5A=">AAACanicbVHPb9MwGHWzAaX8KuOEdrEoSEWCKtnGxm6VuOzYSes2qSmR43xprDl2ZH9BVFn+Rs78C9OuuwJOOk37wZMsP73nZ396jgspLPr+7463tv7o8ZPu096z5y9evuq/3ji2ujQcplxLbU5jZkEKBVMUKOG0MMDyWMJJfPat8U9+gLFCqyNcFjDP2UKJVHCGTor6IpSQYnhOw1jLxC5zt1U/66jaqennO2I4yUQ9xMb5RDHa/ng/sk1DIxaZu+z7VlTdNg+dWUf9gT/yW9CHJLgmg3GXtJhE/Ysw0bzMQSGXzNpZ4Bc4r5hBwSXUvbC0UDB+xhYwc1SxHOy8aiup6QenJDTVxi2FtFVvJyqW22Y6dzJnmNn7XiP+z5uVmH6dV0IVJYLiq4fSUlLUtOmXJsIAR7l0hHEj3KyUZ8wwju4XemEbrJTGVf8ZsARM3WvL2W/w5aaKh+R4axTsjoLDncF4uGqJdMkmeUeGJCB7ZEwOyIRMCSe/yBX5Q/52Lr0N7623uTrqda4zb8gdeO//Ab7Xv6A=</latexit>

kx4 ��(t4, t3)x3k2Q3

<latexit sha1_base64="2oG3EZWO2xoOOXOSedwYPCwninU=">AAACSnicbVBNb9NAEF2HQtPwFeDIZdUIKUgosqtS4BaplyIurdS0leJgrdfjZNX1rrU7RkSLfxN/pNceuMCdY2+IS9dOVbWUJ4326b0ZzexLSykshuGPoHNv7f6D9e5G7+Gjx0+e9p89P7K6MhwmXEttTlJmQQoFExQo4aQ0wIpUwnF6utv4x1/AWKHVIS5LmBVsrkQuOEMvJf2PsYQc4280TrXM7LLwj/taJy6qaWzEfOG9z1uJu2nHBcMFZ9J9qushJtEbX6/rpD8IR2ELepdEV2Qw7pIW+0n/d5xpXhWgkEtm7TQKS5w5ZlBwCXUvriyUjJ+yOUw9VawAO3Ptl2v6yisZzbXxpZC26s0JxwrbnOs7m2vtv14j/s+bVpi/nzmhygpB8dWivJIUNW3yo5kwwFEuPWHcCH8r5QtmGEefci9uB53SuMp3ASwDU/facD40eHsdxV1ytDWKdkbRwfZgPFylRLrkJdkkQxKRd2RM9sg+mRBOvpNz8pP8Cs6Ci+BP8HfV2gmuZl6QW+isXQKN8rWp</latexit>

kx1k2K(t1,t1)

<latexit sha1_base64="YYxVZb/ytCpQGjA2z/xlrLyTDVM=">AAACJ3icbVBNTxsxFHxLoYRAS1qOXCyiovQS7SJa2kOlSFx6pBIBpCRaeb0vxMJrr+y3iGiVf9A/0muv5T9wQ/TIlV9R7wYhPjqS5dHMG/l5klxJR2H4N1h4tbj0ermx0lxde/N2vfXu/ZEzhRXYF0YZe5Jwh0pq7JMkhSe5RZ4lCo+Ts/3KPz5H66TRhzTNcZTxUy3HUnDyUtzaHiZGpW6a+au8mMWSfWNPpQ7F8mPcaofdsAZ7SaJ70u41oMZB3LobpkYUGWoSijs3iMKcRiW3JIXCWXNYOMy5OOOnOPBU8wzdqKz/M2MfvJKysbH+aGK1+jhR8sxV+/nJjNPEPfcq8X/eoKDxl1EpdV4QajF/aFwoRoZV5bBUWhSkpp5wYaXflYkJt1yQr7A5rIOlNjQvb4I8RTtr1uV8rfDpoYqX5GinG33uRj92273OvCVowCZsQQci2IMefIcD6IOAn/Ab/sBl8Cu4Cq6Dm/noQnCf2YAnCG7/AZSKp7Y=</latexit>

xi = x(ti)

Figure 2.3 Example of Gaussian process (GP) continuous-time factor graph. The motion
prior is based on a kernel function derived from a stochastic differential equation (SDE)
for Markovian state x(t). This results in a very sparse set of factors: a single unary factor
at the initial state and then binary factors linking consecutive states.

be expensive to formulate things this way. However, the next section shows how

we can choose a kernel function that guarantees that we have a very sparse inverse

kernel matrix and therefore a sparse factor graph.

2.2.3 Gaussian Processes

We will construct a family of kernel functions that by design results in a sparse

inverse kernel matrix and corresponding factor graph. We saw in the last section

that we could swap out our basis functions for a kernel function, creating a non-

parametric continuous-time method. However, if done naively, this could result in a

dense inverse kernel matrix, which is undesirable. In this section, we come at things

from a slightly different direction. As a teaser, Figure 2.3 shows an example of a

factor graph resulting from the ideas in this section, which we see remains sparse

yet results in smooth trajectories.

We start by choosing a linear, time-invariant, stochastic differential equation

(SDE) driven by white noise:2

ẋ(t) = Ax(t) +Lw(t), (2.42)

where w(t) = GP(0,Qδ(t − t′)) is a zero-mean white noise Gaussian process, Q
is a power-spectral density matrix, and δ(·) is the Dirac delta function. The idea

is that this will serve as a motion prior. We can integrate this SDE once in closed

2 It is also possible to include control inputs in this equation but we omit them in the interest of
simplicity.

2.2 Continuous-Time Trajectories 67

form:

x(t) = Φ(t, t1)x(t1) +

∫ t

t1

Φ(t, s)Lw(s) ds, (2.43)

where Φ(t, s) = exp (A(t− s)) is known as the transition function and t1 is the

time stamp of the first measurement. The function, x(t), is also a Gaussian pro-

cess. To keep the explanation simple, if we assume the mean of the initial state is

zero, E[x(t1)] = 0, then the mean will remain zero for all subsequent times. The

covariance function of the state (i.e., the kernel function), K(t, t′), can be calculated

as

K(t, t′) = Φ(t, t1)K(t1, t1)Φ(t′, t1)T +

∫ min(t,t′)

t1

Φ(t, s)LQLTΦ(t′, s)T ds, (2.44)

which looks daunting. However, we can evaluate this kernel function at all pairs of

measurement times (i.e., build the kernel matrix) using the tidy relation

K = ΦQΦT, (2.45)

where Q = diag(K(t1, t1),Q1, . . . ,QM), Qi =
∫ ti
ti−1

Φ(ti, s)LQLTΦ(ti, s)
T ds, and

Φ =

I

Φ(t2, t1) I

Φ(t3, t1) Φ(t3, t2) I
...

...
...

. . .

Φ(tM−1, t1) Φ(tM−1, t2) Φ(tM−1, t3) · · · I

Φ(tM , t1) Φ(tM , t2) Φ(tM , t3) · · · Φ(tM , tM−1) I

, (2.46)

with M the last measurement time index. However, since it is the inverse kernel

matrix that we want in (2.41), K−1 = Φ−⊤Q−1Φ−1, we can compute this directly.

The middle matrix, Q, is block-diagonal and so its inverse can be computed one

diagonal block at a time. Importantly, when we compute the inverse of Φ, we find

Φ−1 =

I

−Φ(t2, t1) I

−Φ(t3, t2) I

−Φ(t4, t3)
. . .

. . . I

−Φ(tM , tM−1) I

, (2.47)

which is all zeros except for the main block-diagonal and one block-diagonal below.

Thus, when we construct the inverse kernel matrix,K−1, it will be block-tridiagonal,

for any length of trajectory. Based on our earlier discussions about factor graphs,

we know that the sparsity of the left-hand side in (2.41) is closely tied to the

factor-graph structure. In this case, K−1 serves as a motion prior over the entire

68 Advanced State Variable Representations

trajectory, but it is easily described using a very sparse factor graph. Figure 2.3

shows how the block-tridiagonal structure of K−1 turns into a factor graph.

The reason K−1 has such a sparse factor graph is that we started from an

SDE whose state, x(t), is Markovian. Practically speaking, what this means is that

depending on the motion prior that we want to express using (2.42), we may need

to use a higher-order state, i.e., not simply the pose but also some of its derivatives.

For example, if we want to use the so-called ‘constant-velocity’ prior, our SDE can

be chosen to be

[
ṗ(t)

v̇(t)

]

︸ ︷︷ ︸
ẋ(t)

=

[
0 I

0 0

]

︸ ︷︷ ︸
A

[
p(t)

v(t)

]

︸ ︷︷ ︸
x(t)

+

[
0

I

]

︸︷︷︸
L

w(t), (2.48)

where the state now comprises pose and its derivative, v(t) = ṗ(t). Due to the

use of this augmented state, this is sometimes this is referred to as simultaneous

trajectory estimation and mapping (STEAM), a variation of SLAM.

This formulation of continuous-time trajectory estimation is really an example of

Gaussian process regression [916]. By making this connection, once we have solved

at the measurement times, we can easily query the trajectory at other times of

interest using GP interpolation (for both mean and covariance); with our sparse

kernel approach, the cost of each query is constant time with respect to the number

of measurements, M , as it only involves the estimated states at the two times

bracketing the query.

Importantly, we can also use the resulting GP interpolation scheme to reduce the

number of control points needed (i.e., we do not need one at every measurement

time), which is similar to the idea of GP inducing points. For example, we might put

one control point per lidar scan but still make use of all the individual time stamps

of each point gathered during a sweep. This last point is quite important because in

contrast to discrete-time estimation, the measurement times, the estimation times,

and the query times can now all be different in this continuous formulation. More-

over, in the GP approach we do not need to worry about overfitting by including

too many estimation times as the kernel provides proper regularization. However,

we still need enough estimation times to capture the detail of the trajectory.

2.2.4 Spline and GPs on Lie Groups

It is also possible to use both splines and GP continuous-time methods when the

state lives on a manifold. In the case that the manifolds are Lie groups, both

methods make use of the Lie algebra to accomplish this, but in different ways. We

begin with splines and then move to Gaussian processes.

2.2 Continuous-Time Trajectories 69

<latexit sha1_base64="QJK7MWG9ZDtKnSOSrw1rdvY+w8E=">AAACDHicbZDNSsNAFIVv/K31r+rSTbAKurAk4u+u4EZwU8HWQhvKZHrbDk4mceZGKKGv4NatvoM7ces7+Ao+hWlaRK0HBg7n3MtcPj+SwpDjfFhT0zOzc/O5hfzi0vLKamFtvWbCWHOs8lCGuu4zg1IorJIgifVIIwt8iTf+7fmwv7lHbUSorqkfoRewrhIdwRmlkdeMjGgll/sHg13aaxWKTsnJZE8ad2yK5RxkqrQKn812yOMAFXHJjGm4TkRewjQJLnGQb8YGI8ZvWRcbqVUsQOMl2dEDeydN2nYn1OlTZGfpz42EBcb0Az+dDBj1zN9uGP7XNWLqnHqJUFFMqPjoo04sbQrtIQG7LTRykv3UMK5FeqvNe0wzTimnfDNbTFRIGaFWD1kb9SCfwTkb6ugbxaSpHZTc45J7dVgsb48oQQ42YQt2wYUTKMMFVKAKHO7gEZ7g2XqwXqxX6200OmWNdzbgl6z3L7YbnB0=</latexit>

 K�2(t)
<latexit sha1_base64="Nw1EqjcqPC8zjb4nQ+g4bgZB9AY=">AAACDHicbZDNSsNAFIVv/K31r+rSTbAKurAk4u+u4EZwU8HaQhvKZHprh04mceZGKKGv4NatvoM7ces7+Ao+hWlaRK0HBg7n3MtcPj+SwpDjfFhT0zOzc/O5hfzi0vLKamFt/caEseZY5aEMdd1nBqVQWCVBEuuRRhb4Emt+73zY1+5RGxGqa+pH6AXsVomO4IzSyGtGRrSSy313sEt7rULRKTmZ7Enjjk2xnINMlVbhs9kOeRygIi6ZMQ3XichLmCbBJQ7yzdhgxHiP3WIjtYoFaLwkO3pg76RJ2+6EOn2K7Cz9uZGwwJh+4KeTAaOu+dsNw/+6RkydUy8RKooJFR991ImlTaE9JGC3hUZOsp8axrVIb7V5l2nGKeWUb2aLiQopI9TqImujHuQzOGdDHX2jmDQ3ByX3uOReHRbL2yNKkINN2IJdcOEEynABFagChzt4hCd4th6sF+vVehuNTlnjnQ34Jev9C7R7nBw=</latexit>

 K�1(t)
<latexit sha1_base64="PHSAoNAcutCQrsit/YygzULifWQ=">AAACCHicbVDLSgNBEOz1GeMr6tHLYhTiJeyKz1vAi+AlgnlIEsLspJMMmZ1dZnqFsOQHvHrVf/AmXv0Lf8GvcLMJosaCgaKqi+4pL5TCkON8WHPzC4tLy5mV7Ora+sZmbmu7aoJIc6zwQAa67jGDUiiskCCJ9VAj8z2JNW9wOfZr96iNCNQtDUNs+aynRFdwRol01wyNaF8X6LCdyztFJ4U9S9wpyZcykKLczn02OwGPfFTEJTOm4TohtWKmSXCJo2wzMhgyPmA9bCRUMR9NK04PHtkHidKxu4FOniI7VX8mYuYbM/S9ZNJn1Dd/vbH4n9eIqHveioUKI0LFJ4u6kbQpsMe/tztCIyc5TAjjWiS32rzPNOOUdJRtpsFYBZS20+4j66AeZdNyLsY4+a5illSPiu5p0b05zpf2Jy1BBnZhDwrgwhmU4ArKUAEOPjzCEzxbD9aL9Wq9TUbnrGlmB37Bev8C6jSang==</latexit>

 K(t)
<latexit sha1_base64="T6rhl8tVBm2qgaRgAzygvtTLM5Q=">AAACCnicbVDLSgNBEOz1GeMr6tHLYhTiJeyKz1vAi8cIxgSSEGYnnWRwdmaZ6RXCkj/w6lX/wZt49Sf8Bb/CzSaIGgsGiqouuqeCSApLnvfhzM0vLC4t51byq2vrG5uFre1bq2PDsca11KYRMItSKKyRIImNyCALA4n14O5y7Nfv0Vih1Q0NI2yHrK9ET3BGqdRsRVZ0En9UosNOoeiVvQzuLPGnpFjJQYZqp/DZ6moeh6iIS2Zt0/ciaifMkOASR/lWbDFi/I71sZlSxUK07SQ7eeQepErX7WmTPkVupv5MJCy0dhgG6WTIaGD/emPxP68ZU++8nQgVxYSKTxb1YumSdsf/d7vCICc5TAnjRqS3unzADOOUtpRvZcFEacr66QyQddGM8lk5F2OcfFcxS26Pyv5p2b8+Llb2Jy1BDnZhD0rgwxlU4AqqUAMOGh7hCZ6dB+fFeXXeJqNzzjSzA7/gvH8BoYObkA==</latexit>

 1(t)
<latexit sha1_base64="sGqMoaX/M4uKbxvfd2slmPN2tI0=">AAACCnicbVDLSgNBEOz1GeMr6tHLYhT0EnaDz1vAi8cIxgSSEGYnnWTI7Mwy0yuEJX/g1av+gzfx6k/4C36Fm00QXwUDRVUX3VNBJIUlz3t35uYXFpeWcyv51bX1jc3C1vat1bHhWONaatMImEUpFNZIkMRGZJCFgcR6MLyc+PU7NFZodUOjCNsh6yvRE5xRKjVbkRWdpDw+pKNOoeiVvAzuX+LPSLGSgwzVTuGj1dU8DlERl8zapu9F1E6YIcEljvOt2GLE+JD1sZlSxUK07SQ7eewepErX7WmTPkVupn5PJCy0dhQG6WTIaGB/exPxP68ZU++8nQgVxYSKTxf1YumSdif/d7vCICc5SgnjRqS3unzADOOUtpRvZcFEacr66QyQddGM81k5FxOcfFXxl9yWS/5pyb8+Llb2py1BDnZhDw7BhzOowBVUoQYcNDzAIzw5986z8+K8TkfnnFlmB37AefsEoyObkQ==</latexit>

 2(t)
<latexit sha1_base64="xkAowyhmfXQ7/ToYPKU0LixR29g=">AAACCnicbVDLSgNBEOyNrxhfUY9eFqMQL2HXt7eAF48KJgaSEGYnnWTI7Mwy0yuEJX/g1av+gzfx6k/4C36Fm42Ir4KBoqqL7qkgksKS5705uZnZufmF/GJhaXllda24vlG3OjYca1xLbRoBsyiFwhoJktiIDLIwkHgTDM8n/s0tGiu0uqZRhO2Q9ZXoCc4olZqtyIpOcjAu016nWPIqXgb3L/E/SamahwyXneJ7q6t5HKIiLpm1Td+LqJ0wQ4JLHBdascWI8SHrYzOlioVo20l28tjdTZWu29MmfYrcTP2eSFho7SgM0smQ0cD+9ibif14zpt5pOxEqigkVny7qxdIl7U7+73aFQU5ylBLGjUhvdfmAGcYpbanQyoKJ0pT10xkg66IZF7JyziY4+qriL6nvV/zjin91WKruTFuCPGzBNpTBhxOowgVcQg04aLiHB3h07pwn59l5mY7mnM/MJvyA8/oBpMObkg==</latexit>

 3(t)
<latexit sha1_base64="vjKjmZzSAZy4dyZ7uorGTFottZU=">AAACCnicbVDLSgNBEOz1GeMr6tHLYhT0EnYlvm4BLx4jGBNIQpiddJIhszPLTK8QlvyBV6/6D97Eqz/hL/gVbjZBfBUMFFVddE8FkRSWPO/dmZtfWFxazq3kV9fWNzYLW9u3VseGY41rqU0jYBalUFgjQRIbkUEWBhLrwfBy4tfv0Fih1Q2NImyHrK9ET3BGqdRsRVZ0kvL4kI46haJX8jK4f4k/I8VKDjJUO4WPVlfzOERFXDJrm74XUTthhgSXOM63YosR40PWx2ZKFQvRtpPs5LF7kCpdt6dN+hS5mfo9kbDQ2lEYpJMho4H97U3E/7xmTL3zdiJUFBMqPl3Ui6VL2p383+0Kg5zkKCWMG5He6vIBM4xT2lK+lQUTpSnrpzNA1kUzzmflXExw8lXFX3J7XPJPS/51uVjZn7YEOdiFPTgEH86gAldQhRpw0PAAj/Dk3DvPzovzOh2dc2aZHfgB5+0TpmObkw==</latexit>

 4(t)
<latexit sha1_base64="4hZel9xVX31OTCmVQWejoStYyRg=">AAACCnicbVDLSgNBEOz1GeMr6tHLYhT0EnbF+LgFvHiMYEwgCWF20kmGzM4sM71CWPIHXr3qP3gTr/6Ev+BXuNkE8VUwUFR10T0VRFJY8rx3Z25+YXFpObeSX11b39gsbG3fWh0bjjWupTaNgFmUQmGNBElsRAZZGEisB8PLiV+/Q2OFVjc0irAdsr4SPcEZpVKzFVnRScrjQzrqFIpeycvg/iX+jBQrOchQ7RQ+Wl3N4xAVccmsbfpeRO2EGRJc4jjfii1GjA9ZH5spVSxE206yk8fuQap03Z426VPkZur3RMJCa0dhkE6GjAb2tzcR//OaMfXO24lQUUyo+HRRL5YuaXfyf7crDHKSo5QwbkR6q8sHzDBOaUv5VhZMlKasn84AWRfNOJ+VczFB+auKv+T2uOSflvzrk2Jlf9oS5GAX9uAQfDiDClxBFWrAQcMDPMKTc+88Oy/O63R0zpllduAHnLdPqAOblA==</latexit>

 5(t)

<latexit sha1_base64="nvdq8F622th/BF8IyaHma8eSVbY=">AAACBXicbVDLSgNBEOyNrxhfUY9eFoPgKexKfN0CXjxGMFFIQpid7SRjZmeWmV4hLDl79ar/4E28+h3+gl/hZiPiq2CgqOqieyqIpbDkeW9OYW5+YXGpuFxaWV1b3yhvbrWsTgzHJtdSm+uAWZRCYZMESbyODbIokHgVjM6m/tUtGiu0uqRxjN2IDZToC84ok1odHmqyvXLFq3o53L/E/ySVehFyNHrl906oeRKhIi6ZtW3fi6mbMkOCS5yUOonFmPERG2A7o4pFaLtpfu3E3cuU0O1rkz1Fbq5+T6QssnYcBdlkxGhof3tT8T+vnVD/pJsKFSeEis8W9RPpknanX3dDYZCTHGeEcSOyW10+ZIZxygoqdfJgqjTl1fSGyEI0k1JezukUh19V/CWtg6p/VPUvapV6bdYSFGEHdmEffDiGOpxDA5rA4Qbu4QEenTvnyXl2XmajBeczsw0/4Lx+AHmbmfI=</latexit>· · ·
<latexit sha1_base64="tf0tQCEYLEqgtHW/mU29DnziMd4=">AAACAHicbVDLSsNAFL2pr1pfVZduBovgqiTic1dw47IFWwttKJPJTTt0MgkzE6GEbty61X9wJ279E3/BrzBJi6j1wMDhnHu4d44XC66NbX9YpaXlldW18nplY3Nre6e6u9fRUaIYtlkkItX1qEbBJbYNNwK7sUIaegLvvPF17t/do9I8krdmEqMb0qHkAWfUZFLLHlRrdt0uQBaJMye1RhkKNAfVz74fsSREaZigWvccOzZuSpXhTOC00k80xpSN6RB7GZU0RO2mxaFTcpQpPgkilT1pSKH+TKQ01HoSetlkSM1I//Vy8T+vl5jg0k25jBODks0WBYkgJiL5r4nPFTIjJhmhTPHsVsJGVFFmsm4q/SKYysgUrQxGSH1U00pRzlWOs+8qFknnpO6c153Waa1BZi1BGQ7gEI7BgQtowA00oQ0MEB7hCZ6tB+vFerXeZqMla57Zh1+w3r8ABwmXYw==</latexit>

0
<latexit sha1_base64="IV49BjYvrOBP6CAFMC5K2/ImtzA=">AAACAHicbVDLSsNAFL2pr1pfVZduBovgqiTic1dw47KFvqANZTK5bYdOJmFmIpTQjVu3+g/uxK1/4i/4FSZpEbUeGDiccw/3zvEiwbWx7Q+rsLK6tr5R3Cxtbe/s7pX3D9o6jBXDFgtFqLoe1Si4xJbhRmA3UkgDT2DHm9xmfuceleahbJpphG5AR5IPOaMmlRrNQbliV+0cZJk4C1KpFSFHfVD+7PshiwOUhgmqdc+xI+MmVBnOBM5K/VhjRNmEjrCXUkkD1G6SHzojJ6nik2Go0icNydWfiYQGWk8DL50MqBnrv14m/uf1YjO8dhMuo9igZPNFw1gQE5Ls18TnCpkR05RQpnh6K2FjqigzaTelfh5MZGjyVgZjpD6qWSkv5ybDxXcVy6R9VnUuq07jvFIj85agCEdwDKfgwBXU4A7q0AIGCI/wBM/Wg/VivVpv89GCtcgcwi9Y719A+ZeH</latexit>

T
<latexit sha1_base64="mD29PdzRIsapMVqtHxDgsfJC4zo=">AAACAXicbVDLSsNAFL3xWeur6tLNYBFclaT43BXcuKzSF7ShTKY37dDJJMxMhBK6cutW/8GduPVL/AW/wiQtotYDA4dz7uHeOV4kuDa2/WEtLa+srq0XNoqbW9s7u6W9/ZYOY8WwyUIRqo5HNQousWm4EdiJFNLAE9j2xteZ375HpXkoG2YSoRvQoeQ+Z9Sk0l210S+V7YqdgywSZ07KtQLkqPdLn71ByOIApWGCat117Mi4CVWGM4HTYi/WGFE2pkPsplTSALWb5JdOyXGqDIgfqvRJQ3L1ZyKhgdaTwEsnA2pG+q+Xif953dj4l27CZRQblGy2yI8FMSHJvk0GXCEzYpISyhRPbyVsRBVlJi2n2MuDiQxNXkt/hHSAalrMy7nKcPZdxSJpVSvOecW5PS3XyKwlKMAhHMEJOHABNbiBOjSBgQ+P8ATP1oP1Yr1ab7PRJWueOYBfsN6/ALafl8M=</latexit>

2T
<latexit sha1_base64="29S4cSqDnXVJkjwuwmz0FZQ8xRk=">AAACAXicbVDLSsNAFL2prxpfVZduBovgqiS+3RXcuKzSF7SlTKY37dDJJMxMhBK6cutW/8GduPVL/AW/wiQt4uvAwOGce7h3jhcJro3jvFuFhcWl5ZXiqr22vrG5VdreaeowVgwbLBShantUo+ASG4Ybge1IIQ08gS1vfJX5rTtUmoeybiYR9gI6lNznjJpUuj2u90tlp+LkIH+JOyflahFy1Pqlj+4gZHGA0jBBte64TmR6CVWGM4FTuxtrjCgb0yF2UippgLqX5JdOyUGqDIgfqvRJQ3L1eyKhgdaTwEsnA2pG+reXif95ndj4F72Eyyg2KNlskR8LYkKSfZsMuEJmxCQllCme3krYiCrKTFqO3c2DiQxNXkt/hHSAamrn5VxmOP2q4i9pHlXcs4p7c1KukllLUIQ92IdDcOEcqnANNWgAAx8e4BGerHvr2XqxXmejBWue2YUfsN4+Abg8l8Q=</latexit>

3T
<latexit sha1_base64="Foup/KXIecj5oiAVgzbPX1x9xWQ=">AAACAXicbVDLSsNAFL2pr1pfVZduBovgqiTic1dw47JKX9CGMpnetEMnkzAzEUroyq1b/Qd34tYv8Rf8CpO0iFoPDBzOuYd753iR4NrY9odVWFpeWV0rrpc2Nre2d8q7ey0dxophk4UiVB2PahRcYtNwI7ATKaSBJ7Dtja8zv32PSvNQNswkQjegQ8l9zqhJpbvTRr9csat2DrJInDmp1IqQo94vf/YGIYsDlIYJqnXXsSPjJlQZzgROS71YY0TZmA6xm1JJA9Rukl86JUepMiB+qNInDcnVn4mEBlpPAi+dDKgZ6b9eJv7ndWPjX7oJl1FsULLZIj8WxIQk+zYZcIXMiElKKFM8vZWwEVWUmbScUi8PJjI0eS39EdIBqmkpL+cqw9l3FYukdVJ1zqvO7WmlRmYtQREO4BCOwYELqMEN1KEJDHx4hCd4th6sF+vVepuNFqx5Zh9+wXr/ArnZl8U=</latexit>

4T
<latexit sha1_base64="lrKCIVIOoINO+iR9jVlEp1FXE7I=">AAACAXicbVDLSsNAFL3xWeur6tLNYBFclUSsj13BjcsqfUEbymR60w6dTMLMRCihK7du9R/ciVu/xF/wK0zSImo9MHA45x7uneNFgmtj2x/W0vLK6tp6YaO4ubW9s1va22/pMFYMmywUoep4VKPgEpuGG4GdSCENPIFtb3yd+e17VJqHsmEmEboBHUruc0ZNKt1VG/1S2a7YOcgiceakXCtAjnq/9NkbhCwOUBomqNZdx46Mm1BlOBM4LfZijRFlYzrEbkolDVC7SX7plBynyoD4oUqfNCRXfyYSGmg9Cbx0MqBmpP96mfif142Nf+kmXEaxQclmi/xYEBOS7NtkwBUyIyYpoUzx9FbCRlRRZtJyir08mMjQ5LX0R0gHqKbFvJyrDNXvKhZJ67TinFec27NyjcxaggIcwhGcgAMXUIMbqEMTGPjwCE/wbD1YL9ar9TYbXbLmmQP4Bev9C7t2l8Y=</latexit>

5T
<latexit sha1_base64="xmWGJ/ZUcmwbbXYdg+MpfxXwm/g=">AAACBXicbVDLSsNAFL2pr1pfVZduBotQF5ZEfO4KbgQ3FfqCtpTJ9LYdO5mEmYlQQtdu3eo/uBO3foe/4FeYpEXUemDgcM493DvHDQTXxrY/rMzC4tLySnY1t7a+sbmV396paz9UDGvMF75qulSj4BJrhhuBzUAh9VyBDXd0lfiNe1Sa+7JqxgF2PDqQvM8ZNbFUL94cOYfVbr5gl+wUZJ44M1IoZyFFpZv/bPd8FnooDRNU65ZjB6YTUWU4EzjJtUONAWUjOsBWTCX1UHei9NoJOYiVHun7Kn7SkFT9mYiop/XYc+NJj5qh/usl4n9eKzT9i07EZRAalGy6qB8KYnySfJ30uEJmxDgmlCke30rYkCrKTFxQrp0GI+mbtJruEGkP1SSXlnOZ4PS7inlSPy45ZyXn9qRQJtOWIAt7sA9FcOAcynANFagBgzt4hCd4th6sF+vVepuOZqxZZhd+wXr/Ao91mLM=</latexit>

(K � 1)T
<latexit sha1_base64="EKOMK3uPp1vs3zaWXWKl/HHIMws=">AAACBXicbVDLSsNAFL2pr1pfVZduBotQF5ak+NwV3AhuKvQFbSiT6W07djIJMxOhhK7dutV/cCdu/Q5/wa8wTYv4OjBwOOce7p3jhYJrY9vvVmZhcWl5JbuaW1vf2NzKb+80dBAphnUWiEC1PKpRcIl1w43AVqiQ+p7Apje6nPrNO1SaB7JmxiG6Ph1I3ueMmkRqFK+Pyoe1br5gl+wU5C9x5qRQyUKKajf/0ekFLPJRGiao1m3HDo0bU2U4EzjJdSKNIWUjOsB2QiX1Ubtxeu2EHCRKj/QDlTxpSKp+T8TU13rse8mkT81Q//am4n9eOzL9czfmMowMSjZb1I8EMQGZfp30uEJmxDghlCme3ErYkCrKTFJQrpMGYxmYtJruEGkP1SSXlnMxxclXFX9Jo1xyTkvOzXGhQmYtQRb2YB+K4MAZVOAKqlAHBrfwAI/wZN1bz9aL9TobzVjzzC78gPX2CZETmLQ=</latexit>

(K � 2)T
<latexit sha1_base64="EAImJcwfwD6OvGQJQ6ogTOIKVSU=">AAACAXicbVDLSsNAFL2prxpfVZduBovgqiTic1dwI7ip0he0pUymN+3QySTMTIQSunLrVv/Bnbj1S/wFv8IkLeLrwMDhnHu4d44XCa6N47xbhYXFpeWV4qq9tr6xuVXa3mnqMFYMGywUoWp7VKPgEhuGG4HtSCENPIEtb3yZ+a07VJqHsm4mEfYCOpTc54yaVLq9rvdLZafi5CB/iTsn5WoRctT6pY/uIGRxgNIwQbXuuE5keglVhjOBU7sba4woG9MhdlIqaYC6l+SXTslBqgyIH6r0SUNy9XsioYHWk8BLJwNqRvq3l4n/eZ3Y+Oe9hMsoNijZbJEfC2JCkn2bDLhCZsQkJZQpnt5K2Igqykxajt3Ng4kMTV5Lf4R0gGpq5+VcZDj5quIvaR5V3NOKe3NcrpJZS1CEPdiHQ3DhDKpwBTVoAAMfHuARnqx769l6sV5nowVrntmFH7DePgHe9Jfc</latexit>

KT

<latexit sha1_base64="nvdq8F622th/BF8IyaHma8eSVbY=">AAACBXicbVDLSgNBEOyNrxhfUY9eFoPgKexKfN0CXjxGMFFIQpid7SRjZmeWmV4hLDl79ar/4E28+h3+gl/hZiPiq2CgqOqieyqIpbDkeW9OYW5+YXGpuFxaWV1b3yhvbrWsTgzHJtdSm+uAWZRCYZMESbyODbIokHgVjM6m/tUtGiu0uqRxjN2IDZToC84ok1odHmqyvXLFq3o53L/E/ySVehFyNHrl906oeRKhIi6ZtW3fi6mbMkOCS5yUOonFmPERG2A7o4pFaLtpfu3E3cuU0O1rkz1Fbq5+T6QssnYcBdlkxGhof3tT8T+vnVD/pJsKFSeEis8W9RPpknanX3dDYZCTHGeEcSOyW10+ZIZxygoqdfJgqjTl1fSGyEI0k1JezukUh19V/CWtg6p/VPUvapV6bdYSFGEHdmEffDiGOpxDA5rA4Qbu4QEenTvnyXl2XmajBeczsw0/4Lx+AHmbmfI=</latexit>· · ·
<latexit sha1_base64="sb63SUsb1V0UasSTB8546dUnstQ=">AAACCnicbVDLSgNBEOyNrxhfUY9eFqOgl7ArPm8BLx4VTCIkMcxOOsmQ2ZllplcIS/7Aq1f9B2/i1Z/wF/wKNxsRNRYMFFVddE8FkRSWPO/dyc3Mzs0v5BcLS8srq2vF9Y2a1bHhWOVaanMTMItSKKySIIk3kUEWBhLrweB87Nfv0Fih1TUNI2yFrKdEV3BGqdRoRla0/Vu+R/vtYskrexncaeJ/kVIlDxku28WPZkfzOERFXDJrG74XUSthhgSXOCo0Y4sR4wPWw0ZKFQvRtpLs5JG7myodt6tN+hS5mfozkbDQ2mEYpJMho779643F/7xGTN3TViJUFBMqPlnUjaVL2h3/3+0Ig5zkMCWMG5He6vI+M4xT2lKhmQUTpSnrp91H1kEzKmTlnI1x9F3FNKkdlP3jsn91WKrsTFqCPGzBNuyBDydQgQu4hCpw0PAAj/Dk3DvPzovzOhnNOV+ZTfgF5+0TR/ObWQ==</latexit>

 c
1(t)

<latexit sha1_base64="A/rnaKBv4IIwCzAIh8cKeKXSu+4=">AAACCnicbVDLSgNBEOz1GeMr6tHLYhTiJeyKz1vAi0cFYwJJDLOTTjI4O7PM9AphyR949ar/4E28+hP+gl/hZhNEjQUDRVUX3VNBJIUlz/twZmbn5hcWc0v55ZXVtfXCxuaN1bHhWOVaalMPmEUpFFZJkMR6ZJCFgcRacHc+8mv3aKzQ6poGEbZC1lOiKzijVGo0IyvaB7e8RPvtQtErexncaeJPSLGSgwyX7cJns6N5HKIiLpm1Dd+LqJUwQ4JLHOabscWI8TvWw0ZKFQvRtpLs5KG7lyodt6tN+hS5mfozkbDQ2kEYpJMho779643E/7xGTN3TViJUFBMqPl7UjaVL2h393+0Ig5zkICWMG5He6vI+M4xT2lK+mQUTpSnrp91H1kEzzGflnI1w9F3FNLk5KPvHZf/qsFjZHbcEOdiGHSiBDydQgQu4hCpw0PAIT/DsPDgvzqvzNh6dcSaZLfgF5/0LSZSbWg==</latexit>

 c
2(t)

<latexit sha1_base64="+f2VlbW7kUyOe5pRm1+t4b3J5qY=">AAACCnicbVDLSgNBEOz1GeMr6tHLYhTiJez69hbw4lHBGCGJYXbSSYbMziwzvUJY8gdeveo/eBOv/oS/4Fe42YiosWCgqOqieyqIpLDkee/O1PTM7Nx8biG/uLS8slpYW7+2OjYcq1xLbW4CZlEKhVUSJPEmMsjCQGIt6J+N/NodGiu0uqJBhM2QdZXoCM4oleqNyIrW/i0v0W6rUPTKXgZ3kvhfpFjJQYaLVuGj0dY8DlERl8zauu9F1EyYIcElDvON2GLEeJ91sZ5SxUK0zSQ7eejupErb7WiTPkVupv5MJCy0dhAG6WTIqGf/eiPxP68eU+ekmQgVxYSKjxd1YumSdkf/d9vCICc5SAnjRqS3urzHDOOUtpRvZMFEacr6afWQtdEM81k5pyMcflcxSa73yv5R2b88KFa2xy1BDjZhC0rgwzFU4BwuoAocNDzAIzw5986z8+K8jkennK/MBvyC8/YJSzWbWw==</latexit>

 c
3(t)

<latexit sha1_base64="macRzjk86TnjlLqPUa76UmWMbxg=">AAACCnicbVDLSgNBEOz1GeMr6tHLYhTiJeyKz1vAi0cFYwJJDLOTTjI4O7PM9AphyR949ar/4E28+hP+gl/hZhNEjQUDRVUX3VNBJIUlz/twZmbn5hcWc0v55ZXVtfXCxuaN1bHhWOVaalMPmEUpFFZJkMR6ZJCFgcRacHc+8mv3aKzQ6poGEbZC1lOiKzijVGo0Iyvah7e8RPvtQtErexncaeJPSLGSgwyX7cJns6N5HKIiLpm1Dd+LqJUwQ4JLHOabscWI8TvWw0ZKFQvRtpLs5KG7lyodt6tN+hS5mfozkbDQ2kEYpJMho779643E/7xGTN3TViJUFBMqPl7UjaVL2h393+0Ig5zkICWMG5He6vI+M4xT2lK+mQUTpSnrp91H1kEzzGflnI1w9F3FNLk5KPvHZf/qsFjZHbcEOdiGHSiBDydQgQu4hCpw0PAIT/DsPDgvzqvzNh6dcSaZLfgF5/0LTNabXA==</latexit>

 c
4(t)

<latexit sha1_base64="P3YKFE7ogKs4GIRJAtBEaahZdd4=">AAACCnicbVDLSgNBEOz1GeMr6tHLYhTiJeyKz1vAi0cFYwJJDLOTTjI4O7PM9AphyR949ar/4E28+hP+gl/hZhNEjQUDRVUX3VNBJIUlz/twZmbn5hcWc0v55ZXVtfXCxuaN1bHhWOVaalMPmEUpFFZJkMR6ZJCFgcRacHc+8mv3aKzQ6poGEbZC1lOiKzijVGo0IyvaR7e8RPvtQtErexncaeJPSLGSgwyX7cJns6N5HKIiLpm1Dd+LqJUwQ4JLHOabscWI8TvWw0ZKFQvRtpLs5KG7lyodt6tN+hS5mfozkbDQ2kEYpJMho779643E/7xGTN3TViJUFBMqPl7UjaVL2h393+0Ig5zkICWMG5He6vI+M4xT2lK+mQUTpSnrp91H1kEzzGflnI1w9F3FNLk5KPvHZf/qsFjZHbcEOdiGHSiBDydQgQu4hCpw0PAIT/DsPDgvzqvzNh6dcSaZLfgF5/0LTnebXQ==</latexit>

 c
5(t)

<latexit sha1_base64="D7l3U4xoGvUkBoLsB2p4xiYO+Qk=">AAACEHicbZDLSsNAFIZPvNZ6q7p0E6yCLixJ8boruBHcKNhWaGqZTE/t0MkkzJwIJfQl3LrVd3Anbn0DX8GnME1EvP0w8PP/5zCHz4+kMOQ4b9bE5NT0zGxhrji/sLi0XFpZbZgw1hzrPJShvvKZQSkU1kmQxKtIIwt8iU1/cDLum7eojQjVJQ0jbAfsRome4IzSqFNa9iIjOsnZbnV0zbdpp1MqOxUnk/3XuJ+mXCtApvNO6d3rhjwOUBGXzJiW60TUTpgmwSWOil5sMGJ8wG6wlVrFAjTtJDt8ZG+lSdfuhTp9iuws/b6RsMCYYeCnkwGjvvndjcP/ulZMvaN2IlQUEyqef9SLpU2hPaZgd4VGTnKYGsa1SG+1eZ9pxillVfSyxUSFlFPqI+uiHhUzOMdj7X+h+Gsa1Yp7UHEv9sq1zZwSFGAdNmAbXDiEGpzCOdSBQwz38ACP1p31ZD1bL/nohPW5swY/ZL1+ALuPnSM=</latexit>

 c
K�2(t)

<latexit sha1_base64="nMDhS5B1D1sjJBwy60z03JcSI3U=">AAACEHicbZDNSsNAFIVv/K31p1WXboJV0IUlEX93BTeCmwq2FtpaJtPbduhkEmZuhBL6Em7d6ju4E7e+ga/gU5imRdR6YOBwzr3M5fNCKQw5zoc1Mzs3v7CYWcour6yu5fLrG1UTRJpjhQcy0DWPGZRCYYUESayFGpnvSbz1+hej/vYetRGBuqFBiE2fdZXoCM4oiVr5XCM0ohVfHbjDO75H+618wSk6qexp405MoZSBVOVW/rPRDnjkoyIumTF11wmpGTNNgkscZhuRwZDxPutiPbGK+WiacXr40N5NkrbdCXTyFNlp+nMjZr4xA99LJn1GPfO3G4X/dfWIOmfNWKgwIlR8/FEnkjYF9oiC3RYaOclBYhjXIrnV5j2mGaeEVbaRLsYqoDGlHrI26mE2hXM+0vE3imlTPSy6J0X3+qhQ2hlTggxswTbsgQunUIJLKEMFOETwCE/wbD1YL9ar9TYenbEmO5vwS9b7F7ntnSI=</latexit>

 c
K�1(t)

<latexit sha1_base64="5dbsJI9Gf2Rzwu69/S83j+Nl4tk=">AAACDHicbZDNSsNAFIVv6l+tf1WXboJV0E1JxN9dwY3gRsG2QhvLZHrbDk4mceZGKKGv4NatvoM7ces7+Ao+hWlaRK0HBg7n3MtcPj+SwpDjfFi5qemZ2bn8fGFhcWl5pbi6VjNhrDlWeShDfe0zg1IorJIgideRRhb4Euv+7emwr9+jNiJUV9SP0AtYV4mO4IzSyGtGRrSS88EN36HdVrHklJ1M9qRxx6ZUyUOmi1bxs9kOeRygIi6ZMQ3XichLmCbBJQ4KzdhgxPgt62IjtYoFaLwkO3pgb6dJ2+6EOn2K7Cz9uZGwwJh+4KeTAaOe+dsNw/+6RkydYy8RKooJFR991ImlTaE9JGC3hUZOsp8axrVIb7V5j2nGKeVUaGaLiQopI9TqIWujHhQyOCdDHXyjmDS1vbJ7WHYv90uVrRElyMMGbMIOuHAEFTiDC6gChzt4hCd4th6sF+vVehuN5qzxzjr8kvX+BVXUnH8=</latexit>

 c
K(t)

<latexit sha1_base64="tf0tQCEYLEqgtHW/mU29DnziMd4=">AAACAHicbVDLSsNAFL2pr1pfVZduBovgqiTic1dw47IFWwttKJPJTTt0MgkzE6GEbty61X9wJ279E3/BrzBJi6j1wMDhnHu4d44XC66NbX9YpaXlldW18nplY3Nre6e6u9fRUaIYtlkkItX1qEbBJbYNNwK7sUIaegLvvPF17t/do9I8krdmEqMb0qHkAWfUZFLLHlRrdt0uQBaJMye1RhkKNAfVz74fsSREaZigWvccOzZuSpXhTOC00k80xpSN6RB7GZU0RO2mxaFTcpQpPgkilT1pSKH+TKQ01HoSetlkSM1I//Vy8T+vl5jg0k25jBODks0WBYkgJiL5r4nPFTIjJhmhTPHsVsJGVFFmsm4q/SKYysgUrQxGSH1U00pRzlWOs+8qFknnpO6c153Waa1BZi1BGQ7gEI7BgQtowA00oQ0MEB7hCZ6tB+vFerXeZqMla57Zh1+w3r8ABwmXYw==</latexit>

0

<latexit sha1_base64="IRydpEp7JrY20NYZvqwHW7ohptw=">AAACAHicbVDLSsNAFL2pr1pfVZduBovgqiTic1dw47IFWwttKJPJTTt0MgkzE6GEbty61X9wJ279E3/BrzBJi6j1wMDhnHu4d44XC66NbX9YpaXlldW18nplY3Nre6e6u9fRUaIYtlkkItX1qEbBJbYNNwK7sUIaegLvvPF17t/do9I8krdmEqMb0qHkAWfUZFLLGVRrdt0uQBaJMye1RhkKNAfVz74fsSREaZigWvccOzZuSpXhTOC00k80xpSN6RB7GZU0RO2mxaFTcpQpPgkilT1pSKH+TKQ01HoSetlkSM1I//Vy8T+vl5jg0k25jBODks0WBYkgJiL5r4nPFTIjJhmhTPHsVsJGVFFmsm4q/SKYysgUrQxGSH1U00pRzlWOs+8qFknnpO6c153Waa1BZi1BGQ7gEI7BgQtowA00oQ0MEB7hCZ6tB+vFerXeZqMla57Zh1+w3r8ACKWXZA==</latexit>

1

<latexit sha1_base64="tf0tQCEYLEqgtHW/mU29DnziMd4=">AAACAHicbVDLSsNAFL2pr1pfVZduBovgqiTic1dw47IFWwttKJPJTTt0MgkzE6GEbty61X9wJ279E3/BrzBJi6j1wMDhnHu4d44XC66NbX9YpaXlldW18nplY3Nre6e6u9fRUaIYtlkkItX1qEbBJbYNNwK7sUIaegLvvPF17t/do9I8krdmEqMb0qHkAWfUZFLLHlRrdt0uQBaJMye1RhkKNAfVz74fsSREaZigWvccOzZuSpXhTOC00k80xpSN6RB7GZU0RO2mxaFTcpQpPgkilT1pSKH+TKQ01HoSetlkSM1I//Vy8T+vl5jg0k25jBODks0WBYkgJiL5r4nPFTIjJhmhTPHsVsJGVFFmsm4q/SKYysgUrQxGSH1U00pRzlWOs+8qFknnpO6c153Waa1BZi1BGQ7gEI7BgQtowA00oQ0MEB7hCZ6tB+vFerXeZqMla57Zh1+w3r8ABwmXYw==</latexit>

0

<latexit sha1_base64="IRydpEp7JrY20NYZvqwHW7ohptw=">AAACAHicbVDLSsNAFL2pr1pfVZduBovgqiTic1dw47IFWwttKJPJTTt0MgkzE6GEbty61X9wJ279E3/BrzBJi6j1wMDhnHu4d44XC66NbX9YpaXlldW18nplY3Nre6e6u9fRUaIYtlkkItX1qEbBJbYNNwK7sUIaegLvvPF17t/do9I8krdmEqMb0qHkAWfUZFLLGVRrdt0uQBaJMye1RhkKNAfVz74fsSREaZigWvccOzZuSpXhTOC00k80xpSN6RB7GZU0RO2mxaFTcpQpPgkilT1pSKH+TKQ01HoSetlkSM1I//Vy8T+vl5jg0k25jBODks0WBYkgJiL5r4nPFTIjJhmhTPHsVsJGVFFmsm4q/SKYysgUrQxGSH1U00pRzlWOs+8qFknnpO6c153Waa1BZi1BGQ7gEI7BgQtowA00oQ0MEB7hCZ6tB+vFerXeZqMla57Zh1+w3r8ACKWXZA==</latexit>

1

<latexit sha1_base64="Kpn/TFRetcR5G4vSZSOfZHafXfE=">AAACJXicbVDLSgMxFL3js9ZX1aWbYCu4KjPic1dw41LBqtCWkknv2GAmGZKMWIb+gD/i1q3+gzsRXLn3K8xMi/g6EDicc89NcsJEcGN9/82bmJyanpktzZXnFxaXlisrq+dGpZphkymh9GVIDQousWm5FXiZaKRxKPAivD7K/Ysb1IYreWYHCXZieiV5xBm1TupWau04VLdZHqeamCQnxC3khkSpZPmQGXYrVb/uFyB/STAm1UYJCpx0Kx/tnmJpjNIyQY1pBX5iOxnVljOBw3I7NZhQdk2vsOWopDGaTlb8Zkg2ndIjkdLuSEsK9Xsio7Exgzh0kzG1ffPby8X/vFZqo4NOxmWSWpRsdFGUCmIVyashPa6RWTFwhDLN3VsJ61NNmXUFlttFMJPKjqrrI+2hHpaLcg5z7H5V8Zecb9eDvXpwulNt1EYtQQnWYQO2IIB9aMAxnEATGNzBAzzCk3fvPXsv3utodMIbZ9bgB7z3T2FZpyE=</latexit>

linear spline basis functions

<latexit sha1_base64="BGIeEnjLpw4AGJOhKe3hnmObZ1M=">AAACMHicbVDLSgMxFL3js9ZX1aWbYBVc1RnxuSu4calgVWhLyaR3bDCTDElGLEM/wx9x61b/QVfitl9hZlrE14HA4dxzbpITJoIb6/tv3sTk1PTMbGmuPL+wuLRcWVm9NCrVDBtMCaWvQ2pQcIkNy63A60QjjUOBV+HtST6/ukNtuJIXtp9gO6Y3kkecUeukTmWnFYfqPsvjVBOT5ISwNE6FM9whcbu5IVEqWe43g06l6tf8AuQvCcakWi9BgbNOZdjqKrcQpWWCGtMM/MS2M6otZwIH5VZqMKHslt5g01FJYzTtrPjYgGw5pUsipd2RlhTq90RGY2P6ceicMbU983uWi//NmqmNjtoZl0lqUbLRRVEqiFUkb4l0uUZmRd8RyjR3byWsRzVl1nVZbhXBTCo7arGHtIt6UC7KOc6x/1XFX3K5WwsOasH5XrW+OWoJSrAOG7ANARxCHU7hDBrA4AGe4BlevEfv1Xv3PkbWCW+cWYMf8Iafub2r7g==</latexit>

linear spline cumulative basis functions

Figure 2.4 Example of linear spline basis functions both in (top) normal and (bottom)
cumulative form.

2.2.4.1 Splines on Lie Groups

The key to making splines work on Lie groups is to use a cumulative formulation.

For a vector space, we can simplify (2.32) by assuming we are using the same basis

functions for all degrees of freedom so that we can write

p(t) =
K∑

k=1

ψk(t)pk, (2.49)

where the pk are now control points of our spline (replacing the earlier coefficients)

and the basis functions, ψk(t), are now scalar. Then, we can rewrite this in cumu-

lative form as

p(t) = ψc
1(t)p1 +

K∑

k=2

ψc
k(t) (pk − pk−1) , (2.50)

where

ψc
k(t) =

K∑

ℓ=k

ψℓ(t) (2.51)

are the cumulative basis functions.

For example, if we want to have linear interpolation with uniform temporal spac-

70 Advanced State Variable Representations

ing, T , the basis functions are

ψ1(t) =

{
1− α1(t) 0 ≤ t < T

0 otherwise
, ψK(t) =

{
αK(t) (K − 1)T ≤ t < KT

0 otherwise
,

(2.52)

k = 2 . . .K − 1 : ψk(t) =

αk−1(t) (k − 2)T ≤ t < (k − 1)T

1− αk(t) (k − 1)T ≤ t < kT

0 otherwise

, (2.53)

where αk(t) = t−(k−1)T
T . The corresponding cumulative basis functions are

ψc
1(t) = 1, ψc

K(t) =

{
0 ≤ t < (K − 1)T

αk(t) (k − 1)T ≤ t , (2.54)

k = 2 . . .K − 1 : ψc
k(t) =

0 t < (k − 1)T

αk(t) (k − 1)T ≤ t < kT

1 kT ≤ t
. (2.55)

Figure 2.4 shows what these basis functions look like.

The key advantage of the cumulative basis functions is that at a given time stamp,

most of the basis functions are inactive. In the case of our linear spline example,

we can write

p(t) = pk−1 + ψc
k(t) (pk − pk−1) (2.56)

when (k − 1)T ≤ t < kT . We see that only a single basis function needs to be

evaluated. With higher-order splines, we will still have only a small active set at a

particular time stamp.

To apply splines on a Lie group, the idea is to then use the cumulative formulation

with the Lie group operator (matrix multiplication) replacing the summation. For

example, in the case of a linear spline, an element of SE(d) can be written as

T (t) = Exp
(
ψc
k(t) Log

(
TkT

−1
k−1

))
· Tk−1, (2.57)

when (k − 1)T ≤ t < kT . We can now insert T (ti) into any measurement ex-

pression at some time stamp ti, linearize it with respect to the Tk control points

(our estimation variables), and then use it within our MAP framework. Again, with

compact-support basis functions, only a few are active at a given measurement time

(one in the example of linear splines).

In a bit more detail for our linear spline example, we can rewrite (2.57) as

T (t) =
(
TkT

−1
k−1

)αk(t)
Tk−1. (2.58)

When linearizing expressions involving T (t), we can make use of the optimization

2.2 Continuous-Time Trajectories 71

approach introduced in Section 2.1.3. We perturb each of the poses3 so that

Exp(ξ(t))T 0(t) =
(

Exp(ξk)T 0
kT

0−1

k−1Exp(−ξk−1)
)αk(t)

Exp(ξk−1)T 0
k−1. (2.59)

Our goal is to relate the perturbation of the interpolated pose, ξ(t), to those of

the control points, ξk and ξk−1. As shown by Barfoot [54], this relationship can be

approximated (to first order in the perturbations) as

ξ(t) ≈ (I −A(αk(t))) ξk−1 +A(αk(t)) ξk, (2.60)

where

A(αk(t)) = αk(t)J
(
αk(t)T 0

kT
0−1

k−1

)
J
(
T 0
kT

0−1

k−1

)−1

(2.61)

and J(·) is the left Jacobian of SE(d). We can then use (2.60) to relate changes in

our pose at a measurement time to the two bracketing control-point poses in order

to form linearized error terms for use in MAP estimation. For example, consider

the linearized measurement model in (2.15) again, where we rearrange it as an error

with slightly simpler notation for the pose and its perturbation as a function of t:

ei(t) ≈ zi − hi

(
T 0(t)ℓ̃i

)
−Hiξ(t). (2.62)

It is now a simple matter of substituting (2.60) in for ξ(t) to produce a linearized

error in terms of the bracketing control points:

ei(t) ≈ zi − hi

(
T (t)0ℓ̃i

)
−Hi (I −A(αk(t))) ξk−1 −HiA(αk(t)) ξk. (2.63)

Note, we also need to substitute T 0(t) =
(
T 0
kT

0−1

k−1

)αk(t)

T 0
k−1 for the nominal pose

at t, both within hi and Hi. We have essentially chained the derivative through

our linear spline. The same process can be followed for higher-order splines as well.

2.2.4.2 Gaussian Processes on Lie Groups

To use Gaussian processes on a Lie group, we will again exploit its Lie algebra to do

so. Figure 2.5 provides a visual teaser of the GP motion-prior factors resulting from

the ideas in this section. Note, as in the vector-space case, depending on the chosen

motion prior, the control-point state may comprise additional trajectory derivatives

as well.

To apply GPs on a Lie group, we will employ a local GP between a set of control-

point states [54], similar to splines. Figure 2.6 provides a depiction of these local

variables for SE(d). This means the SDE used to derive our kernel function operates

on these local variables. For example, in the case of a ‘random-walk’ prior for SE(d),

we could choose the SDE to be

ξ̇k(t) = w(t), w(t) = GP(0,Qδ(t− t′)), (2.64)

3 In this case, we are perturbing on the left side instead of the right as shown in Section 2.1.3. The
reason is that if the unknown poses represent T s

w(t) (‘sensor’ with respect to ‘world’), we typically
apply splines in the ‘sensor’ frame and so choose the perturbations to occur there as well.

72 Advanced State Variable Representations

<latexit sha1_base64="Gp1DCmbwOtMsi6yoWu3Yyr8O4yE=">AAACFHicbVDLSgNBEOz1GeMrmqOXwSh4Crvi8xbw4lHBGCEJYXbSSYbMY5mZFcOS3/DqVf/Bm3j17i/4Fe5uRNRYMFBT1UU3FUaCW+f7797M7Nz8wmJhqbi8srq2XtrYvLY6NgzrTAttbkJqUXCFdcedwJvIIJWhwEY4PMv8xi0ay7W6cqMI25L2Fe9xRl0qdUrllgz1XSJ19iWR4dqMO6WKX/VzkGkSfJFKrQA5Ljqlj1ZXs1iickxQa5uBH7l2Qo3jTOC42IotRpQNaR+bKVVUom0n+fFjspsqXdLTJn3KkVz9mUiotHYkw3RSUjewf71M/M9rxq530k64imKHik0W9WJBnCZZE6TLDTInRimhzPD0VsIG1FDm0r6KrTyYKO0mTQ2QdtGMi3k5pxkOv6uYJtf71eCoGlweVGo7k5agAFuwDXsQwDHU4BwuoA4MRvAAj/Dk3XvP3ov3Ohmd8b4yZfgF7+0T2K2gCA==</latexit>

motion prior

<latexit sha1_base64="ACt9Z2ln8ntfZS9GhpVYaWod1cs=">AAACF3icbZDLSgNBEEVrfMb4igpu3AxGwY1hRnzuAm5cKhgVkhB6OhXT2I+hu0YMYz7ErVv9B3fi1qW/4Fc4mYj4utBwubeKLk4US+EoCN68kdGx8YnJwlRxemZ2br60sHjmTGI51riRxl5EzKEUGmskSOJFbJGpSOJ5dHU46M+v0Tph9Cn1YmwqdqlFR3BGWdQqLTdUZG5SbjQJnZjEbZJQ2G+VykElyOX/NeGnKVcLkOu4VXpvtA1PFGrikjlXD4OYmimzJLjEfrGROIwZv2KXWM+sZgpdM83v7/vrWdL2O8ZmT5Ofp983Uqac66kom1SMuu53Nwj/6+oJdfabqdBxQqj58KNOIn0y/gCG3xYWOcleZhi3IrvV511mGacMWbGRL6ba0BBWF1kbbb+YwzkYaOcLxV9ztlUJdyvhyXa5ujakBAVYgVXYgBD2oApHcAw14HAL9/AAj96d9+Q9ey/D0RHvc2cJfsh7/QCBIqF3</latexit>

continuous-time

<latexit sha1_base64="L/p+Vr8kdesOV/vRaTJLy1/9Ww8=">AAACCHicbVDLSsNAFL3xWeur6tJNsAhdlUR87gpuXFboS5pQJtPbdujMJMxMhBL6A27d6j+4E7f+hb/gV5ikRdR6YOBwzj3cOyeIONPGcT6speWV1bX1wkZxc2t7Z7e0t9/SYawoNmnIQ9UJiEbOJDYNMxw7kUIiAo7tYHyd+e17VJqFsmEmEfqCDCUbMEpMKt15ItBJY9pze6WyU3Vy2IvEnZNyrQA56r3Sp9cPaSxQGsqJ1l3XiYyfEGUY5TgterHGiNAxGWI3pZII1H6SHzy1j1Olbw9ClT5p7Fz9mUiI0HoignRSEDPSf71M/M/rxmZw6SdMRrFBSWeLBjG3TWhnv7f7TCE1fJISQhVLb7XpiChCTdpR0cuDiQxN3k5vhKSPalrMy7nKcPZdxSJpnVTd86p7e1quVWYtQQEO4Qgq4MIF1OAG6tAECgIe4QmerQfrxXq13majS9Y8cwC/YL1/AYuimwU=</latexit>

T 1

<latexit sha1_base64="FQn1ZxFiffFO9CGFx9kP8LpSv5M=">AAACCHicbVDLSsNAFL2pr1pfVZdugkXoqiTF567gxmWFvqQtYTK5bYfOTMLMRCihP+DWrf6DO3HrX/gLfoVpWkStBwYO59zDvXP8iDNtHOfDyq2srq1v5DcLW9s7u3vF/YOWDmNFsUlDHqqOTzRyJrFpmOHYiRQS4XNs++Prmd++R6VZKBtmEmFfkKFkA0aJSaW7nvB10ph6Va9YcipOBnuZuAtSquUhQ90rfvaCkMYCpaGcaN11ncj0E6IMoxynhV6sMSJ0TIbYTakkAnU/yQ6e2iepEtiDUKVPGjtTfyYSIrSeCD+dFMSM9F9vJv7ndWMzuOwnTEaxQUnniwYxt01oz35vB0whNXySEkIVS2+16YgoQk3aUaGXBRMZmqwdb4QkQDUtZOVczXD2XcUyaVUr7nnFvT0t1crzliAPR3AMZXDhAmpwA3VoAgUBj/AEz9aD9WK9Wm/z0Zy1yBzCL1jvX40+mwY=</latexit>

T 2

<latexit sha1_base64="t+FmYV3J/PPTVV+EWCO22F3f6PU=">AAACCHicbVDLSsNAFL2prxpfVZdugkXoqiS+3RXcuKzQl7SlTKa37dCZSZiZCCXkB9y61X9wJ279C3/BrzBNi6j1wMDhnHu4d44fcqaN635YuaXlldW1/Lq9sbm1vVPY3WvoIFIU6zTggWr5RCNnEuuGGY6tUCERPsemP76e+s17VJoFsmYmIXYFGUo2YJSYVLrrCF/HtaR30isU3bKbwVkk3pwUK3nIUO0VPjv9gEYCpaGcaN323NB0Y6IMoxwTuxNpDAkdkyG2UyqJQN2Ns4MT5yhV+s4gUOmTxsnUn4mYCK0nwk8nBTEj/debiv957cgMLrsxk2FkUNLZokHEHRM40987faaQGj5JCaGKpbc6dEQUoSbtyO5kwVgGJmunN0LSR5XYWTlXU5x9V7FIGsdl77zs3Z4WK6VZS5CHAziEEnhwARW4gSrUgYKAR3iCZ+vBerFerbfZaM6aZ/bhF6z3L47amwc=</latexit>

T 3
<latexit sha1_base64="pynJLpF2fLKsnj23VpB2J1ecRr0=">AAACCHicbVDLSsNAFL2pr1pfVZdugkXoqiRSX7uCG5cV+pK2hMnkth06MwkzE6GE/oBbt/oP7sStf+Ev+BWmaRG1Hhg4nHMP987xI860cZwPK7eyura+kd8sbG3v7O4V9w9aOowVxSYNeag6PtHImcSmYYZjJ1JIhM+x7Y+vZ377HpVmoWyYSYR9QYaSDRglJpXuesLXSWPqVb1iyak4Gexl4i5IqZaHDHWv+NkLQhoLlIZyonXXdSLTT4gyjHKcFnqxxojQMRliN6WSCNT9JDt4ap+kSmAPQpU+aexM/ZlIiNB6Ivx0UhAz0n+9mfif143N4LKfMBnFBiWdLxrE3DahPfu9HTCF1PBJSghVLL3VpiOiCDVpR4VeFkxkaLJ2vBGSANW0kJVzNcPZdxXLpHVacc8r7m21VCvPW4I8HMExlMGFC6jBDdShCRQEPMITPFsP1ov1ar3NR3PWInMIv2C9fwGQdpsI</latexit>

T 4

<latexit sha1_base64="+Xgy1SB/OhkBpRaaevm+0gysdfE=">AAACUXicbVBNbxMxEJ1s+UhTPtJy5GIRkFIJot0KCtwicUGCQ5CatlI2XXmdSWLVa69sLyJy/Lf4I5yQuNID/4Ab3k2EgPKkkd68mSePX14Kbmwcf21FOzdu3rrd3u3s3bl77353/+DUqEozHDMllD7PqUHBJY4ttwLPS420yAWe5Zdv6vnZR9SGK3liVyVOC7qQfM4ZtUHKuqP1mqRFrj6592rh+4Ead+KzhKSl5m7bhv7CPUv8IVmvL44yRxo9LahdMircO+/7Nkuehjr0WbcXD+IG5DpJtqQ3bEODUdb9kc4UqwqUlglqzCSJSzt1VFvOBPpOWhksKbukC5wEKmmBZuqan3vyJCgzMlc6lLSkUf90OFoYsyrysFlfa/6d1eL/ZpPKzl9NHZdlZVGyzUPzShCrSB0jmXGNzIpVIJRpHm4lbEk1ZTaE3Ukbo5PKbmJeIp2h9p0mnNc1XvyO4jo5PRokx4Pkw/Pe8PEmJWjDQ3gEfUjgJQzhLYxgDAw+wzf4DletL62fEUTRZjVqbT0P4C9Ee78A8cC1MA==</latexit>

||Log(T 1Ť
�1

1)||2K(t1,t1)
<latexit sha1_base64="vQ4eA6yNTXLbCkA8TgdJcqQTap4=">AAACQnicbZBNbxMxEIZnW6Bp+Apw5GIRkMqBaDeifNxSceHAoZWStlI2XXmdSWLVa69sLyJy/Hv6R3rlCuIv9FZx5YB3UxBQXsnSo3dmNOM3LwU3No6/RRubN27e2mptt2/fuXvvfufBw0OjKs1wxJRQ+jinBgWXOLLcCjwuNdIiF3iUn76r60cfURuu5NAuS5wUdC75jDNqg5V19lYrkha5+uQ+qLnfCWjc0Gd98ouSE/ci8c/JanXSz9ywsdOC2gWjwh1477NON+7Fjch1SK6gO2hBo/2sc5FOFasKlJYJasw4iUs7cVRbzgT6dloZLCk7pXMcB5S0QDNxzVc9eRacKZkpHZ60pHH/nHC0MGZZ5KGzPtL8W6vN/9XGlZ29mTguy8qiZOtFs0oQq0idG5lyjcyKZQDKNA+3EragmjIb0m2nzaCTyq5zXSCdovbtJpy3tXZ/R3EdDvu95FUvOXjZHTxdpwQteAxPYAcSeA0DeA/7MAIGZ/AZvsDX6Dy6iC6j7+vWjehq5hH8pejHT3lbsq4=</latexit>

||Log(T 2T
�1
1)||2TQ

<latexit sha1_base64="IKJ3OpNoYBgG/yBlJEphW1gdWMY=">AAACQnicbZBNbxMxEIZny0fT8NEARy4WAakciHYD5eOWigsHDq2UtJWy6crrTBKrXntlexGR49/DH+HaK6h/oTfElQPeTUFAeSVLj96Z0YzfvBTc2Dg+jzauXb9xc7O11b51+87d7c69+4dGVZrhiCmh9HFODQoucWS5FXhcaqRFLvAoP31b148+oDZcyaFdljgp6FzyGWfUBivr7K1WJC1y9dG9V3O/E9C4oc+ek1/UP3HPEv+UrFYn/cwNGzstqF0wKtyB9z7rdONe3IhcheQSuoMWNNrPOhfpVLGqQGmZoMaMk7i0E0e15Uygb6eVwZKyUzrHcUBJCzQT13zVkyfBmZKZ0uFJSxr3zwlHC2OWRR466yPNv7Xa/F9tXNnZ64njsqwsSrZeNKsEsYrUuZEp18isWAagTPNwK2ELqimzId122gw6qew61wXSKWrfbsJ5U2v3dxRX4bDfS172koMX3cHjdUrQgofwCHYggVcwgHewDyNg8AnO4At8jT5HF9G36Pu6dSO6nHkAfyn68RN83bKw</latexit>

||Log(T 3T
�1
2)||2TQ

<latexit sha1_base64="lGgnh+c9Kxz8btEHUNL8lInH9GU=">AAACQnicbZBNbxMxEIZnS4E0fAU49mI1IJUD0W4pX7egXjj00EpJWymbrrzOJLHqtVe2FxE5/j38Ea5cQf0LvaFeOeDdFASUV7L06J0ZzfjNS8GNjePzaO3G+s1bt1sb7Tt3791/0Hn46MioSjMcMiWUPsmpQcElDi23Ak9KjbTIBR7nZ3t1/fgDasOVHNhFieOCziSfckZtsLLOu+WSpEWuPrp9NfPbAY0b+GyX/KIXp+554p+R5fJ0J3ODxk4LaueMCnfovc863bgXNyLXIbmCbr8FjQ6yzkU6UawqUFomqDGjJC7t2FFtORPo22llsKTsjM5wFFDSAs3YNV/15GlwJmSqdHjSksb9c8LRwphFkYfO+kjzb602/1cbVXb6Zuy4LCuLkq0WTStBrCJ1bmTCNTIrFgEo0zzcSticaspsSLedNoNOKrvKdY50gtq3m3De1nr5O4rrcLTTS171ksPdbv/JKiVowSZswTYk8Br68B4OYAgMPsEX+Arfos/RRfQ9uly1rkVXM4/hL0U/fgKAX7Ky</latexit>

||Log(T 4T
�1
3)||2TQ

Figure 2.5 Example GP motion prior factors when using a ‘random walk’ model.

where we note that we have defined it using the local variable (between control

points Tk and Tk+1). The transition function for this SDE is simply Φ(t, s) = I

and so stochastically integrating we have

ξk(t) = ξk(tk)︸ ︷︷ ︸
0

+

∫ t

tk

w(s) ds (2.65)

and then after taking the mean and covariance we can say that the motion prior is

ξk(t) ∼ GP(0,min(t, t′)Q). (2.66)

If we place our control-point poses uniformly spaced every T seconds then our

inverse kernel matrix will be simply K−1 = Φ−⊤Q−1Φ−1 with

Φ−1 =

I

−I I
. . .

. . .

−I I

 , Q = diag (K(t1, t1), TQ, . . . , TQ) . (2.67)

<latexit sha1_base64="tlItKr9j0nEeAr3N4ipsykVah1A=">AAACFXicbZDNSiNBFIVv+zMTozNmHHezKQxCZhO6JYzjYiDgxqWCUSEdmurKjSlSXd1U3RYzTZ5jtrPVd3Ans3XtK/gUVjph/D1QcDjnXuryxZmSlnz/3ltYXFr+8LGyUl1d+/R5vfZl48SmuRHYEalKzVnMLSqpsUOSFJ5lBnkSKzyNR/vT/vQCjZWpPqZxhr2En2s5kIKTi6LaZpjEtggv5SQaNSgafWe/mB/V6n7TL8XemmBu6u0KlDqMag9hPxV5gpqE4tZ2Az+jXsENSaFwUg1zixkXI36OXWc1T9D2ivL6Cdt2SZ8NUuOeJlamzzcKnlg7TmI3mXAa2tfdNHyv6+Y0+NkrpM5yQi1mHw1yxShlUxSsLw0KUmNnuDDS3crEkBsuyAGrhuVioVOaoRoi76OZVB2c4InJntNua272gv9wTnaawY9mcNSqtxszSlCBb7AFDQhgF9pwAIfQAQG/4S9cwbX3x7vxbr1/s9EFb77zFV7Iu3sEVuOfLQ==</latexit>

⇠k(tk) = 0

<latexit sha1_base64="bB4ELLFHG+Cl8yLxmTP7YU7gtio=">AAACFnicbZDNSgMxFIXv1L9a/6riyk2wCK7KjBSru4IblxVsFdpS7qSpDc0kQ5IRy9D3cOtW38GduHXrK/gUptPi/4HA4dyc5PKFseDG+v6bl5ubX1hcyi8XVlbX1jeKm1tNoxJNWYMqofRViIYJLlnDcivYVawZRqFgl+HwdDK/vGHacCUv7ChmnQivJe9zitZF3eJOOwrVbSoURUFuUHN0zXG3WPLLfiby1wQzU6rlIVO9W3xv9xRNIiYtFWhMK/Bj20lRW07de4V2YliMdIjXrOWsxIiZTpqtPyb7LumRvtLuSEuy9HsjxciYURS6mxHagfk9m4T/zVqJ7R93Ui7jxDJJpx/1E0GsIhMWpMc1o1aMnEGquduV0AFqpNYRK7SzYiqVnbIaMOwxPS44OMEXkxOnamVmToJPOM3DcnBUDs4rpdrBlBLkYRf24AACqEINzqAODaCQwj08wKN35z15z97L9GrOm3W24Ye81w8nTaDZ</latexit>

local variable

<latexit sha1_base64="23jlmdD8pRRNmeGNdh/q6fXln0M=">AAACGHicbZDNSiNBFIVv+xvjz8Rx4cJNYRBchW6RUXeB2cxSwaiQhHC7cpMUVlc1VdViaPpF3LqdeYfZyWxn5yv4FFY6wf8DBYdz76GqvjiVwrowfAzm5hcWl5YrK9XVtfWNb7XN7xdWZ4ZTi2upzVWMlqRQ1HLCSbpKDWESS7qMr39O5pc3ZKzQ6tyNU+omOFRiIDg6H/Vq250k1rf5UOoYJbtBI9BXbdGr1cNGWIp9NtHM1JsVKHXaqz11+ppnCSnHJVrbjsLUdXM0TnBJRbWTWUqRX+OQ2t4qTMh28/IDBdvzSZ8NtPFHOVambxs5JtaOk9hvJuhG9uNsEn41a2ducNzNhUozR4pPLxpkkjnNJjRYXxjiTo69QW6EfyvjIzTInWdW7ZTFXGk3pTUi7JMpqh5O9MrkxOvocGZOohc4FweN6EcjOjusN/enlKACO7AL+xDBETThF5xCCzgUcA+/4U9wF/wNHoJ/09W5YNbZgncK/j8D4IGhxg==</latexit>

global variables

<latexit sha1_base64="A2/4dkhVt1+la+AuHanbipMnE/4=">AAACCHicbVDLSsNAFL3xWeur6tJNsAhdlUR87gpuXFboS5pQJtPbdujMJMxMhBL6A27d6j+4E7f+hb/gV5ikRdR6YOBwzj3cOyeIONPGcT6speWV1bX1wkZxc2t7Z7e0t9/SYawoNmnIQ9UJiEbOJDYNMxw7kUIiAo7tYHyd+e17VJqFsmEmEfqCDCUbMEpMKt15ItBJY9ob90plp+rksBeJOyflWgFy1HulT68f0ligNJQTrbuuExk/IcowynFa9GKNEaFjMsRuSiURqP0kP3hqH6dK3x6EKn3S2Ln6M5EQofVEBOmkIGak/3qZ+J/Xjc3g0k+YjGKDks4WDWJum9DOfm/3mUJq+CQlhCqW3mrTEVGEmrSjopcHExmavJ3eCEkf1bSYl3OV4ey7ikXSOqm651X39rRcq8xaggIcwhFUwIULqMEN1KEJFAQ8whM8Ww/Wi/Vqvc1Gl6x55gB+wXr/Auj6mz8=</latexit>

T k

<latexit sha1_base64="Ci/UgnlvYDYDR644KxdugvsffM0=">AAACDHicbZDLSsNAFIZP6q3WW9Wlm2ARCkJJxOuu4MZlhd6gDWUyOWmHTiZxZiKUkFdw61bfwZ249R18BZ/CNC2i1h8Gfv7/HObwuRFnSlvWh1FYWl5ZXSuulzY2t7Z3yrt7bRXGkmKLhjyUXZco5ExgSzPNsRtJJIHLseOOr6d95x6lYqFo6kmETkCGgvmMEp1FTj9wVdJMB8n42E4H5YpVs3KZi8aem0q9CLkag/Jn3wtpHKDQlBOlerYVaSchUjPKMS31Y4URoWMyxF5mBQlQOUl+dGoeZYln+qHMntBmnv7cSEig1CRws8mA6JH6203D/7perP1LJ2EiijUKOvvIj7mpQ3NKwPSYRKr5JDOESpbdatIRkYTqjFOpny8mItQ5ocEIiYcyLeVwrqY6+0axaNonNfu8Zt+eVurVGSUowgEcQhVsuIA63EADWkDhDh7hCZ6NB+PFeDXeZqMFY76zD79kvH8BsWucuw==</latexit>

T k+1

<latexit sha1_base64="odrlfACFwFBMs9D8g80hYOLj1Bo=">AAACRHicbVBNaxNBGH63Vo3xK9Wjl6FBSA+GXfGjHoRALx56qNC0hWxcZifvJkNmZ5aZd6Vh2R/kH/Haa/sXxFvxKs5ugqj1gYGH54OZedJCSUdheBVs3dq+fedu5173/oOHjx73dp6cOFNagWNhlLFnKXeopMYxSVJ4VljkearwNF0eNP7pZ7ROGn1MqwKnOZ9rmUnByUtJ7yDOU1fF57JOlgPaY++ZF8x5dWjmdawwowFrE8d1425osvxUvYhqFls5X9Be0uuHw7AFu0miDemPOtDiKOl9i2dGlDlqEoo7N4nCgqYVtySFwroblw4LLpZ8jhNPNc/RTav2szV77pUZy4z1RxNr1T8bFc+dW+WpT+acFu5frxH/501KyvanldRFSajF+qKsVIwMa5ZjM2lRkFp5woWV/q1MLLjlgvy+3bgtVtrQetkF8hnautuO867B699T3CQnL4fRm2H08VV/NFivBB14BrswgAjewgg+wBGMQcAXuIBLuAq+Bt+D6+DHOroVbDpP4S8EP38BLM+yVA==</latexit>

⇠k(t) = Log
�
T (t)T�1

k

�

<latexit sha1_base64="Hus2T3JWsAD8kA093tenlJbut0M=">AAACTXicbVBNaxsxFNS6H3HdL7c99iJqCg6lZrck/TgEDL30kEMKcRLwuotWfmuL1UqL9LbEiP1T+SO9tsfmmHtvpVS7G0LbdEAwb94MkiYtpbAYht+C3o2bt25v9e8M7t67/+Dh8NHjI6srw2HGtdTmJGUWpFAwQ4ESTkoDrEglHKf5+2Z//BmMFVod4qaERcFWSmSCM/RSMtyPi9S6+FTUST7GxOUvonqb7lEv61O3r1d1LCHDMW19h3XnuJryT+5lMxqxWuN2MhyFk7AFvU6iSzKa9kmLg2R4ES81rwpQyCWzdh6FJS4cMyi4hHoQVxZKxnO2grmnihVgF679dU2fe2VJM238UUhb9c+EY4W1myL1zoLh2v67a8T/7eYVZm8XTqiyQlC8uyirJEVNmwrpUhjgKDeeMG6Efyvla2YYR1/0IG6DTmnsKl4DW4KpB2057xrsXlVxnRy9mkSvJ9HHndF03LVE+uQpeUbGJCJvyJR8IAdkRjg5I1/Jd3IefAl+BD+DX521F1xmnpC/0Nv6DQHVtSY=</latexit>

⇠k(tk+1) = Log
�
T k+1T

�1
k

�

<latexit sha1_base64="VU+hOrSHh0+eRUAHRxQrmPyyW68=">AAACCXicbVDLSgNBEOyNrxhfUY9eFoMQL2FXfN4CXjxGyAuTEGYnnWTI7Owy0yuEJV/g1av+gzfx6lf4C36Fm00QNRYMFFVddE95oRSGHOfDyiwtr6yuZddzG5tb2zv53b26CSLNscYDGeimxwxKobBGgiQ2Q43M9yQ2vNH11G/cozYiUFUah9jx2UCJvuCMEumu7Xsmrk6KdNzNF5ySk8JeJO6cFMpZSFHp5j/bvYBHPirikhnTcp2QOjHTJLjESa4dGQwZH7EBthKqmI+mE6cXT+yjROnZ/UAnT5Gdqj8TMfONGfteMukzGpq/3lT8z2tF1L/sxEKFEaHis0X9SNoU2NPv2z2hkZMcJ4RxLZJbbT5kmnFKSsq102CsAkrr6Q6R9VBPcmk5V1OcfVexSOonJfe85N6eFsrFWUuQhQM4hCK4cAFluIEK1ICDgkd4gmfrwXqxXq232WjGmmf24Res9y8JWJtE</latexit>

T (t)

Figure 2.6 When using a GP for continuous-time estimation on Lie groups (e.g., SE(d)),
a local variable, ξk(t), is defined between control-point states.

2.2 Continuous-Time Trajectories 73

The individual errors in terms of the local variables will be

ek =

{
Log

(
T1Ť

−1
1

)
k = 1

ξk−1(tk)− ξk−1(tk−1) k > 1
, (2.68)

where Ť1 is some prior initial pose value. In terms of the global variables, these

same errors are

ek =

{
Log

(
T1Ť

−1
1

)
k = 1

Log
(
TkT

−1
k−1

)
k > 1

. (2.69)

Figure 2.5 shows what the ‘random walk’ GP motion prior looks like as a factor

graph. Similarly to the previous section discussing linear splines, if we want to query

the trajectory at other times of interest, we can do this using GP interpolation. For

the ‘random walk’ prior, this results again in linear interpolation [54]:

T (t) =
(
TkT

−1
k−1

)αk(t)
Tk−1, (2.70)

where αk(t) = t−(k−1)T
T and (k − 1)T ≤ t < kT . In contrast to the spline method,

this linear interpolation results indirectly from our choice of SDE at the beginning

rather than an explicit choice. Choosing higher-order SDEs at the start will result

in higher-order splines for interpolation.

The last part we need to understand is how to linearize our error terms for use

in MAP estimation. To do this, we again make use of the Lie group perturbation

approach detailed earlier. For example, looking at the second case in (2.69) we can

write

ek = Log
(

Exp(ξk)T 0
kT

0−1

k−1Exp(−ξk−1)
)

≈ Log
(
T 0
kT

0−1

k−1

)
+ ξk −Ad

(
T 0
kT

0−1

k−1

)
ξk−1, (2.71)

where T 0
k and T 0

k−1 are current guesses, ξk and ξk−1 are the to-be-solved-for per-

turbations, and Ad(·) is the adjoint for SE(d). This linearized form for ek can be

inserted in our standard MAP estimation framework at each iteration.

Additionally, if we want to use (2.70) to reduce the number of control points in

this ‘random walk’ example, we can make use of the same approach developed for

linear splines detailed in (2.63), since both methods boil down to linear interpolation

between SE(d) control points. Ultimately, then, the big difference between the spline

and GP approaches is that the GP approach employs motion-prior terms (see Figure

2.5) to regularize the problem, while the spline approach does not.4

4 Johnson et al. [533] provide a detailed comparison between spline and GP approaches and shows
that motion-prior terms can also be introduced to regularize spline methods.

3

Robustness to Incorrect Data
Association and Outliers

Heng Yang, Josh Mangelson, Yun Chang, Jingnan Shi,

Niko Sunderhauf, and Luca Carlone

In Chapter 1, we have seen that factor graphs are a powerful representation to model

and visualize SLAM problems, and that maximum a posteriori (MAP) estimation

provides a grounded and general framework to infer variables of interest (e.g., robot

poses and landmark positions) given a set of measurements (e.g., odometry and

landmark measurements). For instance, we observed that when the measurements

zi are affected by additive and zero-mean Gaussian noise with covariance Σi, MAP

estimation leads to a nonlinear least-squares optimization:

xMAP = arg min
x

∑

i

∥zi − hi(xi)∥2Σi
, (3.1)

where xi denotes the subset of the states involved in measurement i.1 In this chap-

ter we notice that in practice many measurements zi —possibly due to incorrect

data association— may have large errors, which are far from following a zero-mean

Gaussian (Section 3.1); these measurements typically induce large perturbations in

the estimate xMAP from eq. (3.1). Therefore, we discuss how to reject gross outliers

in the SLAM front-end (Section 3.2) and then focus on how to increase robustness

to remaining outliers in the SLAM back-end (Section 3.3). We close the chapter

with a short review of recent trends and extra pointers to related work (Section

3.4).

3.1 What Causes Outliers and Why Are They a Problem?

This section argues that outliers are inevitable in most SLAM applications and that

not handling them appropriately leads to grossly incorrect estimates.

3.1.1 Data Association and Outliers

To understand the cause of outlier measurements, let us consider two examples.

First, consider a landmark-based SLAM problem, where we have to reconstruct

1 While for simplicity eq. (3.1) assumes that measurements belong to a vector space, the algorithms in
this chapter apply to arbitrary SLAM problems where variables belong to manifolds, see Chapter 2.

3.1 What Causes Outliers and Why Are They a Problem? 75

the trajectory of the robot and the position of external landmarks from odometry

measurements and relative observations of landmarks from certain robot poses. As-

suming (as we did in Chapter 1) that the landmark measurements have zero-mean

Gaussian noise leads to terms in the optimization in the form ∥zij − h(pi, ℓj)∥2Σ.

These terms model the fact that a given measurement zij is an observation of land-

mark ℓj from pose pi up to Gaussian noise, where h(·) is the function describing the

type of relative measurement (e.g., range, bearing, etc.). In practice, the measure-

ments zij are obtained by pre-processing raw sensor data in the SLAM front-end.

For instance, if the robot has an onboard camera and zij is a visual observation of

the bearing to a landmark ℓj , the measurement zij might be extracted by perform-

ing object (or more generally, feature) detection and matching in the image, and

then computing the bearing corresponding to the detected pixels. Now, the issue

is that the detections are imperfect and a landmark detected as ℓj in the image,

might be actually a different landmark in reality. This causes zij to largely deviate

from the assumed model. The problem of associating a measurement to a certain

landmark is typically referred to as the data association problem and is common to

many other estimation problems (e.g., target tracking). Therefore, incorrect data

association creates outliers in the estimation problem.

As a second example, consider a pose-graph optimization problem, where we

are primarily interested in estimating the trajectory of the robot (represented as

a set of poses), and the measurements are either odometry measurements (which

relate consecutive poses along the trajectory) or loop closures (which relate non-

consecutive and possibly temporally distant poses). In practice, the loop closures

are detected using (vision-based or lidar-based) place recognition methods, which

are in charge of detecting if a pair of poses pi and pj have observed the same portion

of the environment. Unfortunately current place recognition methods are prone to

making mistakes and detecting loop closures between poses that are not observing

the same scene. This is partially due to limitations of current methods, but it is

often due to perceptual aliasing, that is the situation where two similarly looking

locations actually correspond to different locations (think of two classrooms in a

university building, or similarly looking cubicles in an office environment). This can

be again understood as a failure of data association, where we mistakenly associate

the loop closure measurement to two incorrectly chosen robot poses.

Note that outliers are not only caused by incorrect data associations, but can

also be caused by violations of the assumptions made in the SLAM approach. For

instance, the majority of SLAM approaches assume landmarks to be static, hence

detections of a moving object —even when correctly associated to that object—

may lead to outlier measurements with large residuals. Similarly, sensor failure

and degradation, e.g., a faulty wheel encoder or dust on the camera lens, might

contribute to creating outliers in the measurements.

76 Robustness to Incorrect Data Association and Outliers

3.1.2 Least-Squares in the Presence of Outliers

In the presence of outliers, the estimate resulting from the least-squares formula-

tion (3.1) can be grossly incorrect. From the theoretical standpoint, the Gaussian

noise we assumed for the measurement is “light-tailed”, in that it essentially rules

out the possibility of measurements with very large error. From a more practical

perspective, the outliers lead to terms in the objective function where the residual

error ri(x) := ∥zij − h(pi, ℓj)∥Σ is very large, when evaluated near the ground

truth. Since the residuals are squared in the objective of the optimization, i.e., the

objective is
∑

i ri(x)2, these residuals have a disproportionately large impact on

the cost, and the optimization focuses on minimizing the large terms induced by

the outliers rather than making good use of the remaining (inlier) measurements.

M3500 SubT Victoria Park

G
ro
u
n
d
T
ru
th

(a) (b) (c)

L
ea
st

S
q
u
a
res

(d) (e) (f)

Figure 3.1 SLAM problems with outliers: (a)-(c) Ground truth trajectories for the M3500,
SubT, and Victoria Park datasets. (d)-(f) Trajectory estimates obtained with the least-
squares formulation in the presence of outliers. Inlier measurements are visualized as gray
edges, while outliers are visualized as red edges. In the SubT dataset, we also visualize a
dense map built from the SLAM pose estimate.

To illustrate this point, Figure 3.1 shows results for three SLAM problems with

outliers. The first column is a simulated pose-graph optimization benchmark, known

as M3500, with poses arranged in a grid-like configuration; the dataset includes 3500

2D poses and 8953 measurements. The second column is a real-world pose-graph

dataset, denoted as SubT, collected in a tunnel during the DARPA Subterranean

Challenge [307]; the dataset includes 682 3D poses and 3278 measurements. The

third column is a real-world landmark-SLAM dataset, known as Victoria Park [815];

the dataset includes 7120 2D poses and landmarks, and 17728 measurements. Fig-

3.2 Detecting and Rejecting Outliers in the SLAM Front-end 77

Figure 3.2 Feature tracking across three frames (collected at time k−1, k, and k+1) in a
visual SLAM problem. Inliers are visualized in green, while outliers are visualized in red.

ure 3.1(a)-(c) show the ground truth trajectories for the three problems. Figure 3.1

(d)-(f) show the estimate produced by the least-squares formulation in the presence

of outliers. In particular, for M3500 and Victoria Park we add 15% random outliers

to the (loop closures or landmark) measurements, while the SubT dataset already

includes outliers. In the figure, we visualize outlier measurements in red. We observe

that the presence of outliers leads to completely incorrect trajectories and map esti-

mates. Moreover, the outliers often expose perceptual aliasing in the environment:

for instance, the two similarly looking vertical corridors in the middle of the SubT

dataset induce many spurious loop closures, which mislead the back-end to create

a map with a single vertical corridor.

3.2 Detecting and Rejecting Outliers in the SLAM Front-end

The main role of the SLAM front-end is to extract intermediate representations

or (pseudo-)measurements —which will be converted into factors for the back-

end— from the raw sensor data. Typical SLAM front-ends accomplish this by first

computing an initial set of measurements (possibly corrupted by many outliers)

and then post-processing the initial set to remove outliers. This section discusses

two approaches to reject outliers in the SLAM front-end.

3.2.1 RANdom SAmple Consensus (RANSAC)

RANSAC is a well-established tool for outlier rejection [336] and is a key component

of many landmark-based SLAM systems. In order to understand what RANSAC is

and its role in SLAM, consider a landmark-based visual SLAM approach.

Example 3.1 (Outliers in landmark-based visual SLAM) A landmark-based (or

78 Robustness to Incorrect Data Association and Outliers

feature-based) visual-SLAM approach extracts 2D feature points in each image and

then associates them across consecutive frames using either optical-flow-based fea-

ture tracking or descriptor-based feature matching (Figure 3.2). In particular, at

time k, the approach detects 2D feature points and matches them with correspond-

ing points observed in the previous frame (say, at time k − 1); the matching pixels

are typically referred to as 2D-2D correspondences. Due to inaccuracies of optical

flow or descriptor-based matching, this initial set of correspondences might contain

outliers. Therefore, it is important to filter out gross outliers before passing them

to the back-end, which estimates the robot poses and landmark positions.

RANSAC is a tool to quickly detect and remove outliers in the correspondences

before passing them to the back-end. Detecting outliers relies on two key insights.

The first insight is that in SLAM problems, inlier correspondences must satisfy

geometric constraints. For instance, in our example, inlier correspondences picture

the observed pixel motion of static 3D points as the camera moves. The resulting

pixel motion cannot be arbitrary, but must follow a precise geometric constraint,

known as the epipolar constraint, which dictates how corresponding pixels in two

frames are related depending on the camera motion. In particular, for calibrated

cameras, the epipolar constraint imposes that corresponding pixels zi(k − 1), zi(k)

—picturing landmark i at time k − 1 and k, respectively— satisfy

zi(k − 1)T
(
[tk−1
k]× R

k−1
k

)
zi(k) = 0, (3.2)

where tk−1
k and Rk−1

k are the relative position and rotation describing the (un-

known) motion of the camera between time k − 1 and k.2 More generally, if we

denote the i-th correspondence as zi (in the example above, zi = {zi(k−1), zi(k)}),
these geometric constraints are in the form

C(zi,x) ≤ γ, (3.3)

which states that the correspondences have to satisfy some inequality, which is

possibly a function of the unknown state x; in (3.3) the parameter γ on the right-

hand-side is typically tuned to account for the presence of noise. For instance, while

ideally the epipolar constraint in (3.2) is exactly satisfied, in practice it might have

small errors since the pixel detections are noisy, and hence we would relax the

constraint to only require
∣∣zi(k − 1)T

(
[tk−1
k]×R

k−1
k

)
zi(k)

∣∣ ≤ γ, for some small γ.

The second insight is that —assuming we do not have too many outliers— we

can find the inliers as the largest set of correspondences that satisfy the geometric

2 Clearly, different problems will have different geometric constraints, but luckily there is a
well-established literature in robotics and computer vision, that studies geometric constraints
induced by different types of sensor measurements. The example in this section considers 2D-2D
correspondences, and the corresponding constraints have been studied in the context of 2-view
geometry in computer vision, see [444].

3.2 Detecting and Rejecting Outliers in the SLAM Front-end 79

constraint (3.3) for some x:

S∗CM = argmax
x,S⊂M

|S|

s.t. C(zi,x) ≤ γ, ∀i ∈ S
(3.4)

where M is the set of initial putative correspondences, and |S| denotes the cardi-

nality (number of elements) in the subset S [735]. In words, the optimization (3.4)

looks for the largest subset S of the set of putative correspondences M, such that

measurements in S satisfy the geometric constraints for the same value of x. Intu-

itively, problem (3.4) captures the intuition that the inliers (estimated by the set S)

must “agree” on the same x (e.g., they must all be consistent with the actual mo-

tion of the robot). Problem (3.4) is known as consensus maximization in computer

vision. Note that (3.4) does not require solving the entire SLAM problem (which

might involve many poses and landmarks), since it only involves a small portion of

the SLAM state; for instance, the epipolar constraint (3.2) only involves the rela-

tive pose between two frames rather than the entire SLAM trajectory. At the same

time, (3.4) is still a hard combinatorial problem, which clashes with the fast run-

time requirements of typical SLAM front-ends. Therefore, rather than looking for

exact solutions to (3.4), it is common to resort to quick heuristics to approximately

solve (3.4).

RANdom SAmple Consensus (RANSAC) is probably the most well-known ap-

proach to find an approximate solution to the consensus maximization problem

in (3.4). RANSAC builds on the key assumption that x in (3.4) is relatively low-

dimensional and can be estimated from a small set of measurements (the so-called

minimal set), using fast estimators (the so called minimal solvers).3 For instance, in

our visual SLAM example, one can estimate the relative motion between two cam-

era frames using only 5 pixel correspondences, using Nister’s 5-point method [816].

Then the key idea behind RANSAC is that, instead of exhaustively checking every

possible subset S ⊂ M, one can sample minimal sets of measurements looking for

inliers. More in detail, RANSAC iterates the following three steps:

1 Sample a subset of n correspondences, where n is the size of the minimal set for

the problem at hand;4

2 Compute an estimate x̂ from the n sampled correspondences using a minimal

solver;5

3 Select the correspondences S ⊂ M that satisfy the geometric constraint C(zi, x̂) ≤
3 The development of minimal solvers can be considered a sub-area of computer vision research,

hence for typical problems it is well-understood what is the size of the minimal set and there are
well-developed (and typically off-the-shelf) minimal solvers one can use.

4 In our example with pixel correspondences between calibrated camera images, the minimal set has
size n = 5, since 5 non-collinear measurements are sufficient to determine the pose between two
cameras up to scale.

5 In our example, this involves computing the relative motion (up to scale) between time k − 1 and k
using the 5-point method.

80 Robustness to Incorrect Data Association and Outliers

γ for the x̂ computed at the previous step. Store the set S if it is larger than the

set computed at the previous iterations.

The set S computed in the last step is called the consensus set and RANSAC

typically stops after computing a sufficiently large consensus set (as specified by

a user parameter) or after a maximum number of iterations. RANSAC essentially

attempts to sample n inliers from the set of measurements, since these are likely to

“agree” with all the other inliers and hence have a large consensus set.

RANSAC is the go-to solution for many outlier-rejection problems. In particu-

lar, it quickly converges to good estimates (i.e., good sets of correspondences) in

problems with small number of outliers and small minimal sets. Assuming that the

probability of sampling an inlier from the set of measurements is ω,6 it is easy

to conclude that the expected number of iterations RANSAC requires for finding

a set of inliers is 1
ωn . For instance, when n = 5 and ω = 0.7 (i.e., 70% of the

measurements are inliers), the expected number of iterations is less then 10. This,

combined with the fact that non-minimal solvers are extremely fast in practice (al-

lowing even thousand of iterations in a handful of milliseconds), makes RANSAC

extremely appealing. Moreover, RANSAC also provides an estimate x̂ (e.g., the

robot odometry), that can be useful as an initial guess for the back-end.

On the downside, RANSAC may not be the right approach for all problems. In

particular, the expected number of iterations becomes impractically large when the

number of inliers is small or when the minimal set is large; for instance, when n = 10

and ω = 0.1, the expected number of iterations to find a set of inliers becomes 1010,

and terminating RANSAC after a smaller number of iterations is likely to return

incorrect solutions (i.e., incorrect x̂ and correspondences). As we discuss in the

next section, in context of many SLAM problems, the assumptions of having many

inliers and small minimal sets are not always valid.

3.2.2 Graph-theoretic Outlier Rejection and

Pairwise Consistency Maximization

As we mentioned, RANSAC is very effective when the number of outliers is rea-

sonable (say, below 70%) and the size of the minimal set is small (say, less than

8). However, environments with severe perceptual aliasing might have very high

number of outliers. Moreover, not all the problems we are interested in have a fast

minimal solver with a small minimal set. For instance, if we consider a pose-graph

SLAM problem with N nodes, the minimal set must include at least N − 1 mea-

surements (forming a spanning tree of the pose-graph), and N is typically in the

thousands.

For these reasons, this section introduces an alternative approach, known as pair-

6 Assuming that samples are drawn uniformly at random, ω can be thought of as the fraction of
measurements that are inliers.

3.2 Detecting and Rejecting Outliers in the SLAM Front-end 81

(a) (b)

Figure 3.3 (a) 3D-3D correspondences from two RGB-D scans representing two partial
views of a scene. The green lines indicate inlier correspondences and the red lines indicate
outlier correspondences. (b) Pose graph with outliers in the loop closures. The dashed
green lines indicate inlier loop closures while the dotted red line is an outlier loop closure.

wise consistency maximization (PCM), that, rather than sampling minimal sets,

seeks to find the largest set of measurements that are internally “consistent” with

one another, using graph theory. This approach can be used to sort through sets of

measurements with upwards of 90% outliers and prune gross outliers before passing

them to the back-end. The approach was initially proposed in [735] and extended

beyond pairwise consistency in [1011, 340].

The key insight behind PCM is that for many problems one can define consistency

functions that capture whether a pair of measurements are consistent with each

other. Let’s elucidate on this point with two examples.

Example 3.2 (Consistency Function in landmark-based visual SLAM with RG-

B-D cameras) A landmark-based visual-SLAM approach with RGB-D cameras

extracts 3D feature points in each RGB-D frame and then associates them across

consecutive frames (Figure 3.3(a)). In particular, at time k, the approach detects

3D feature points and matches them with corresponding points observed in the

previous frame (say, at time k − 1); the matching 3D points are typically referred

to as 3D-3D correspondences. We observe that the 3D points collected at time k

and k− 1 ideally correspond to the same set of 3D static points observed from two

different viewpoints; therefore, the distance between a pair of corresponding points

{zi(k−1), zj(k−1)} and {zi(k), zj(k)} has to be constant over time (up to noise):

|∥zi(k − 1)− zj(k − 1)∥ − ∥zi(k)− zj(k)∥| ≤ γ (3.5)

We observe that contrary to the geometric constraints used in RANSAC, the con-

sistency function (3.5) (i) does not depend on the state, hence it can be evaluated

directly without the need for a minimal solver, and (ii) involves a pair of correspon-

dences regardless of the size of the minimal set. While the previous example could

also be solved with RANSAC,7 let us now consider a higher dimensional problem.

7 Motion estimation from 3D-3D correspondences admits a fast 3-point minimal solver, e.g., Horn’s
method [485].

82 Robustness to Incorrect Data Association and Outliers

Example 3.3 (Consistency Function in pose-graph SLAM) Consider a pose-

graph SLAM problem where loop closures might contain outliers due to place

recognition failure and perceptual aliasing; we assume the odometry is reliable and

outlier free. In order to understand if two loop closures are consistent with each

other, we observe that in the noiseless case, pose measurements along cycles in

the graph must compose to the identity (Figure 3.3(b)).8 Therefore, a pair of loop

closures Tab (between poses a and b) and Tcd (between poses c and d) must satisfy:

dist(Tab · T̄bc · Tcd · T̄da, I) ≤ γ (3.6)

where T̄bc and T̄da are the chain of odometry measurements from node b to node

c, and from node d to node a, respectively, and dist is a suitable distance function

that measures how far is Tab · T̄bc · Tcd · T̄da from the identity pose. As usual, γ is

a parameter chosen to account for the noise: measurements along a loop might not

compose to the identity due to noise in the odometry and loop closures.9

More generally, a consistency function is a function relating two measurements

and that have to satisfy a given constraint. For a pair of measurements zi and zj ,

the resulting pairwise consistency constraints are in the form:

F (zi, zj) ≤ γ, (3.7)

where F is the consistency function, and γ is a user-specified parameter that ac-

counts for measurement noise. We remark that the pairwise consistency constraint

are state independent, hence they can be efficiently checked without resorting to a

minimal solver by just inspecting every pair of measurements.

Using (3.7), we can formulate an alternative approach for outlier rejection, which

selects the largest set of measurements that are pairwise consistent:

S∗PCM = argmax
S⊂M

|S|

s.t. F (zi, zj) ≤ γ, ∀i, j ∈ S
(3.8)

Problem (3.8) looks for the largest subset S of measurements such that every pair of

measurements in S are pairwise consistent. We refer to this as the pairwise consis-

tency maximization (PCM) problem. This problem is still combinatorial in nature,

but appears slightly easier than (3.4): the problem does not involve x, and the con-

straints F (zi, zj) ≤ γ can be pre-computed for every pair (i, j) in M. Furthermore,

the problem admits a graph-theoretic interpretation, which allows solving (3.4) us-

ing well-established tools from graph theory, namely, maximum clique algorithms.

In order to draw a connection between problem (3.8) and graph theory, let us

visualize the outlier-rejection problem as a graph G, where the nodes of the graph

are the putative measurements i ∈ M and an edge exists between two nodes i and j if

8 Intuitively, if we walk back along a loop in the environment we come back to our initial location.
9 In practice, one would select γ to account for the size of the loop: intuitively, longer loops will

accumulate more noise, see [735, 306].

3.2 Detecting and Rejecting Outliers in the SLAM Front-end 83

(a) (b)

Figure 3.4 (a) Consistency graph of the 3D-3D correspondences example in Figure 3.3(a).
(b) Consistency graph of the loop closures for the pose-graph example in Figure 3.3(b)

F (zi, zj) ≤ γ. This is typically called the consistency graph. Now problem (3.8) asks

to select the largest subset of nodes S such that every pair of nodes in S is connected

by an edge: this is exactly the definition of maximum clique of a graph. More in

detail, a clique in graph theory is a subset of nodes in which every pair of nodes has

an edge between them, and the maximum clique is the largest such subset of nodes

in the graph. Therefore, the solution to problem (3.8) is the maximum clique of the

consistency graph G. This graph theoretic connection is really useful in practice,

since the problem of finding the maximum clique for a given graph is a well-studied

problem in graph theory and is called the maximum clique problem. The maximum

clique problem is an NP-hard problem [1194] and hard to approximate [1309, 330],

meaning that finding a solution arbitrarily close to the true solution is also NP-

hard. However, dozens of potential solutions have been proposed, some of which

can handle significantly sized problems depending on the density of the graph. The

majority of proposed methods can be classified as either exact or heuristic-based

methods. All of the exact algorithms are exponential in complexity and are usually

based on branch and bound, while the heuristic algorithms often try to exploit

some type of structure in the problem, making them faster, at the expense of not

necessarily guaranteeing the optimal solution [1194]. Relatively recent works, e.g.,

[859], propose maximum clique algorithms that are parallelizable and able to quickly

find maximum cliques in sparse graphs.

In summary, solving the PCM problem using a maximum clique algorithm in-

volves the following steps:

1 Select a Consistency Function F for the problem at hand.

2 Evaluate the Consistency Function for every pair of putative measurements (i, j) ∈
M, and create a consistency graph with edges between i and j when F (zi, zj) ≤ γ.

3 Solve for the Maximum Clique of the Consistency Graph using exact or approx-

imate maximum clique algorithms.

84 Robustness to Incorrect Data Association and Outliers

4 Return measurements S in the (possibly approximate) maximum clique.

We remark that the choice of consistency function is problem-dependent. More-

over, choosing a good consistency function might largely influence the quality of

the outlier rejection. For instance, one could select a dummy function F (zi, zj) = 0

which always returns zero regardless of the arguments; such a function would not

allow rejecting any outliers, hence making PCM ineffective. On the other hand, if

we make the function such that only the inliers can pass the test, then we would ex-

actly reject all the outliers. A selection of potential consistency functions for broad

variety of geometric problems is discussed in [1011, 340].

Before concluding this section a few remarks are in order. While we observed that

PCM has the ability to handle a large number of outliers compared to RANSAC

and is more suitable for certain problems (e.g., pose-graph SLAM), the trade-offs

between PCM and RANSAC are more nuanced. RANSAC evaluates the consistency

of individual measurements using an estimate computed by a minimal solver; PCM,

on the other hand, evaluates the consistency of a set of measurements to each

other in a pairwise manner. In certain cases, RANSAC’s individual consistency is

insufficient to evaluate the set of measurements as a whole: this is often the case

in pose-graph optimization where individual consistency of a pair of loop-closure

measurements does not necessarily ensure pairwise consistency of the two loop-

closures.10 On the other hand, for certain problems such as 3D-3D pose estimation

(Example 3.2), the pairwise consistency function (3.5) used in PCM might be more

permissive then RANSAC and lead to classifying certain outliers as inliers.

In the context of PCM, it is also important to note that exact maximum clique

solvers tend to be slow in dense consistency graphs (i.e., when many pairs of mea-

surements are consistent), hence heuristic-based maximum-clique solutions may be

a better choice for certain problems. Finally, for certain problems, it might be hard

to design a suitable consistency function; for instance, for 2D-2D correspondences,

there is no easy way to rigorously design a general consistency function due to the

lack of suitable invariances (see discussion in [1011]).

3.3 Increasing Robustness to Outliers in the SLAM Back-end

Front-end outlier rejection, including both RANSAC and PCM, might still miss

outliers and pass an outlier-contaminated set of measurements to the back-end.11

As we have seen in Section 3.1.2, a handful of outliers can lead to completely wrong

10 This is especially pronounced in the context of the multi-robot pose-graph optimization — where
the goal is to estimate the trajectory of two (or more) robots jointly within a single pose-graph. In
these contexts in particular, PCM has been shown to dramatically outperform RANSAC [735].

11 Intuitively, both the geometric constraints (3.3) —even when evaluated at the ground truth x—
and the pairwise consistency constraints (3.7) are necessary (but not sufficient) conditions for
measurements to be inliers. Moreover, consensus maximization and PCM are often solved with
approximation algorithms that do not guarantee an optimal selection of the inliers.

3.3 Increasing Robustness to Outliers in the SLAM Back-end 85

results when using standard least squares estimation. Therefore, it is important to

enhance the back-end to be robust to remaining outliers.

In Section 3.1.2, we observed that the use of squared residuals “amplifies” the

impact of outlying measurements on the cost function. In this section we slightly

modify the objective function in the SLAM optimization to regain robustness to

outliers, following the standard theory of M-Estimation in robust statistics [502].

M-Estimation (“Maximum-likelihood-type Estimation”) is a framework for ro-

bust estimation and suggests replacing the squared loss in eq. (3.1) with a suitably

chosen robust loss function ρ:

xMAP = arg min
x

∑

i

ri(x)2 =⇒ xMEST = arg min
x

∑

i

ρ (ri(x)) . (3.9)

The key requirement for the robust loss ρ is to be a non-negative function and grow

less than quadratically for large residuals; in other words, robust loss functions

need to have derivative ∂ρ(ri)
∂ri

≪ ∂∥ri∥2

∂ri
= 2ri as ri becomes large; in many cases,

it is desirable for ∂ρ(ri)
∂ri

to approach zero as ri becomes large. To elucidate this

requirement, consider the case where we solve minx

∑
i ρ (ri(x)) using gradient

descent. Using the chain rule, the gradient of the objective f(x)
.
=
∑

i ρ (ri(x))

becomes:
∂f

∂x
=
∑

i

∂ρ (ri)

∂ri
· ∂ri(x)

∂x
(3.10)

From (3.10), it is clear that if we start for a good initial guess (i.e., relatively

close to the ground truth), outlier measurements will have large residual and hence

very small ∂ρ(ri)
∂ri

, thus having a minor influence on the overall descent direction.

Hence they will have almost no influence in the estimation. Indeed, the function

ψ(ri) := ∂ρ(ri)
∂ri

is typically referred to as the influence function [92].

Rather than a single choice of robust loss function, the robust estimation litera-

ture provides a “menu” of potential choices. Figure 3.5 lists common choices of loss

functions. This list includes common robust losses, such as Huber, Geman-McClure,

Tukey’s biweight and the truncated quadratic loss, and also includes a more radical

choice, named maximum consensus loss. The latter is not typically listed among

the loss functions in the robust estimation literature, but we mention it here, since

it connects back to the consensus maximization problem we discussed in (3.4).12

The choice of robust loss is fairly problem-dependent [562, 1079]. For instance, loss

functions with hard cut-offs (e.g., the truncated quadratic loss, where there is a

sudden transition between the quadratic and the “flat” portion of the function) are

preferable when a reasonable threshold for the cut-off (i.e., the maximum error ex-

pected from the inliers) is known. One also has to take into account computational

12 Intuitively, the maximum consensus loss “counts” the outliers in the estimation problem, since it is
constant (typically equal to 1) for large residuals and zero for small residuals. Therefore, minimizing
such loss leads to an estimate that produces the least number of outliers. This is the same as
solving the consensus maximization problem in (3.4).

86 Robustness to Incorrect Data Association and Outliers

(a) Quadratic loss (b) Huber loss (c) Geman-McClure

(d) Tukey’s biweight (e) Truncated Quadratic (f) Maximum Consensus loss

Figure 3.5 Quadratic loss and examples of robust loss functions. The shape of the robust
loss functions is controlled by a parameter that controls the separation between inliers
and outliers.

considerations. For instance, Huber is often used in bundle adjustment problems

since it is a convex function and is better-behaved during the optimization, despite

leaving non-zero influence for the outliers (the influence becomes zero only if the

loss is constant for large residuals). On the other hand, the truncated quadratic

and maximum consensus losses are known to be particularly insensitive to outliers,

but they often require ad-hoc solvers.13

Figure 3.6(g)-(l) show the SLAM trajectories obtained by applying gradient de-

scent to two of the robust losses mentioned above: the Huber loss and the trun-

cated quadratic loss. Here we consider the same datasets used in Figure 3.1. We

implemented the gradient descent solver using GTSAM’s NonlinearConjugateGra-

dientOptimizer [261] with the gradientDescent flag enabled, and using robust noise

models to instantiate the robust loss functions. We set the maximum number of

iterations and the stopping conditions thresholds (relative and absolute tolerance)

to 10000 and 10−7, respectively. All other parameters were left to the default GT-

SAM values. In the figure, an edge is colored in gray if it is correctly classified

as inlier or outlier by the optimization (i.e., an inlier that falls in the quadratic

region of the Huber or truncated quadratic loss); it is colored in red if it is an

outlier incorrectly classified as an inlier (a “false positive”); it is colored in blue if

it is an inlier incorrectly classified as an outlier (a “false negative”). Compared to

13 For instance, RANSAC (Section 3.2.1) optimizes the maximum consensus loss via sampling (an
option that is only viable for the low-dimensional optimization problems arising in the front-end),
while graduated non-convexity allows optimizing a broad variety of losses including the truncated
quadratic loss (more on this in Section 3.3.4 below).

3.3 Increasing Robustness to Outliers in the SLAM Back-end 87

M3500 SubT Victoria Park

G
ro
u
n
d
T
ru
th

(a) (b) (c)

H
u
b
er

+
g
ra
d
ien

t

(g) (h) (i)

T
L
S
+

g
ra
d
ien

t

(j) (k) (l)

Figure 3.6 Solving SLAM problems with outliers using robust loss functions and gradi-
ent descent: (a)-(c) Ground truth trajectories for the M3500, SubT, and Victoria Park
datasets. (d)-(f) Trajectory estimates obtained using gradient descent and Huber loss.
(h)-(l) Trajectory estimates obtained using gradient descent and truncated quadratic loss.
Measurements are visualized as colored edges. In particular, an edge is colored in gray if
it is correctly classified as inlier or outlier by the optimization (i.e., an inlier that falls in
the quadratic region of the Huber or truncated quadratic loss); it is colored in red if it is
an outlier incorrectly classified as an inlier (a “false positive”); it is colored in blue if it is
an inlier incorrectly classified as an outlier (a “false negative”).

(non-robust) least squares optimization (Figure 3.1(d)-(f)), we note that the use of

the robust losses allows us to quickly regain robustness to outliers in the case of

the M3500 and SubT datasets, but a simple gradient descent method may still fail

to correctly optimize heavily non-convex functions such as the truncated quadratic

cost, as in the case of the Victoria Park dataset. We will address this issue with

a better solver, based on graduated non-convexity, below. Moreover, while gradient

descent already improves performance in many of the instances as shown in Figure

3.6, it has slow convergence tails. For instance, in our experiments, it often takes

88 Robustness to Incorrect Data Association and Outliers

thousands of iterations to converge. Therefore, in the rest of this section we discuss

more advanced solvers, that improve both convergence quality and speed.

As a concluding remark before delving into more advanced solvers, we observe

that while it might seem that we gave up on our probabilistic framework when

switching to robust loss functions, it is actually possible to derive several robust

losses by applying MAP estimation to heavy-tailed noise distributions. For instance,

the truncated quadratic loss results from MAP estimation when assuming the noise

follow a max-mixture distribution between a Gaussian density (describing the in-

liers) and a uniform distribution (describing the outliers) [41].

3.3.1 Iteratively Reweighted Least Squares

M-Estimation replaces the least-squares loss by a robust loss ρ in (3.9) — a function

that grows sub-quadratically for large residuals. This comes with two prices. First,

we lose the efficient solutions already developed for least-squares formulations; for

instance, the Gauss-Newton and the Levenberg-Marquardt methods are designed

for least squares problems. Second, due to the typical non-convex landspace of M-

Estimation, iterative solvers (e.g., based on gradient descent) are sensitive to the

quality of initialization and often converge to undesired suboptimal estimates. In

this section, we introduce a popular algorithm for solving M-Estimation called iter-

atively reweighted least squares (IRLS) which, as the name suggests, allows reusing

the efficient least-squares solvers. In the next section, we introduce graduated non-

convexity as a technique to improve the convergence of IRLS.

The basic idea behind IRLS is to optimize (3.9) by solving a weighted least squares

problem at each iteration

x(t+1) = arg min
x

∑

i

wi(x
(t))r2i (x), (3.11)

where the weights wi’s depend on the estimate x(t) from the last iteration. We wish

the iterative solutions x(t) to converge to the optimal solution of M-Estimation (3.9).

This implies that the gradient of the robust loss ρ, shown in (3.10), must match

the gradient of the loss in (3.11). By writing down the gradient of (3.11) as

∑

i

2wi(x
(t))ri(x)

∂ri(x)

∂x

and comparing it to (3.10), we obtain the IRLS weight update rule

wi(x
(t)) =

1

2ri(x(t))

∂ρ(ri(x
(t)))

∂ri(x(t))
=
ψ(ri(x

(t)))

2ri(x(t))
, (3.12)

where we recall that ψ(ri) := ∂ρ(ri)
∂ri

is the influence function. Therefore, IRLS

alternates computing the weights wi(x
(t)) for each measurement i, with performing

3.3 Increasing Robustness to Outliers in the SLAM Back-end 89

an optimization step (i.e., a Gauss-Newton or Levengberg-Marquardt iteration) on

the weighted least squares problem (3.11).

Figure 3.7 shows the performance of IRLS on the M3500, SubT, and Victoria

Park datasets. IRLS converges in tens of iterations and is typically much faster

than gradient descent; for instance, gradient descent requires around 5 seconds to

optimize the Huber loss in our M3500 experiments, while IRLS took less than 1.5

seconds. On the other hand, this faster convergence often comes at the cost of a

slightly decreased accuracy, as can be seen by comparing Figure 3.7 and Figure 3.6.

The convergence properties of the update rule (3.12) has been studied in [17, 823].

3.3.2 Black-Rangarajan Duality

The weight update rule (3.12) is widely used in practice, but its derivation was

somewhat heuristic. It also has the issues that (3.12) is not well-defined at the non-

differentiable points of ρ (e.g., the cut-off point of the truncated quadratic loss). We

now introduce a more principled framework, namely the Black-Rangarajan (B-R)

duality [92], to solve M-Estimation using IRLS.

Let us present the intuition of B-R duality using the truncated quadratic loss

ρ(ri(x)) := min{r2i (x), β2
i }, (3.13)

where β2
i is a bound on the i-th residual such that the i-th measurement is an inlier

if r2i (x) ≤ β2
i and an outlier otherwise. We observe that the cost in (3.13) can be

equivalently written as a sum of two terms by introducing a new weight variable

wi ∈ [0, 1]

ρ(ri(x)) := min
wi∈[0,1]

wir
2
i (x) + (1− wi)β

2
i , (3.14)

where the first term is exactly the weighted least squares, and the second term

is a function of wi that does not depend on x. With (3.14), the M-Estimation

problem (3.9) with a truncated quadratic loss can be reformulated as

min
x

wi∈[0,1],i=1,...,N

∑

i

[
wir

2
i (x) + (1− wi)β

2
i

]
, (3.15)

where we have introduced one wi for each measurement residual ri(x). Prob-

lem (3.15) is easy to interpret: wi = 1 implies r2i (x) ≤ β2
i and the i-th mea-

surement is an inlier; wi = 0 implies r2i (x) > β2
i and the i-th measurement is an

outlier. Moreover, all the residuals with wi = 0 are effectively discarded from the

optimization (3.15) and hence robustness is ensured.

B-R duality generalizes the derivation above to a family of robust losses.

Theorem 3.4 (Black-Rangarajan Duality [92]) Given a robust loss function ρ(·),
define ϕ(z) := ρ(

√
z). If ϕ(z) satisfies limz→0 ϕ

′(z) = 1, limz→∞ ϕ′(z) = 0, and

90 Robustness to Incorrect Data Association and Outliers

M3500 SubT Victoria Park

G
ro
u
n
d
T
ru
th

(a) (b) (c)

IR
L
S
+

H
u
b
er

(d) (e) (f)

IR
L
S
+

G
M

(g) (h) (i)

IR
L
S
+

T
L
S

(j) (k) (l)

Figure 3.7 Solving SLAM problems with outliers using robust loss functions and Itera-
tively Re-weighted Least-Squares (IRLS): (a)-(c) Ground truth trajectories for the M3500,
SubT, and Victoria Park datasets. (d)-(f) Trajectory estimates obtained using the Huber
loss. (g)-(i) Trajectory estimates obtained using the Geman-McClure loss. (j)-(l) Trajec-
tory estimates obtained using the truncated quadratic loss. Measurements are visualized
as colored edges. In particular, an edge is colored in gray if it is correctly classified as
inlier or outlier by the optimization (i.e., an inlier that falls in the quadratic region of
the Huber or truncated quadratic loss); it is colored in red if it is an outlier incorrectly
classified as an inlier (a “false positive”); it is colored in blue if it is an inlier incorrectly
classified as an outlier (a “false negative”).

3.3 Increasing Robustness to Outliers in the SLAM Back-end 91

ϕ′′(z) < 0, then the M-Estimation problem (3.9) is equivalent to

min
x

wi∈[0,1],i=1,...,N

N∑

i=1

[
wir

2
i (x) + Φρ(wi)

]
, (3.16)

where wi ∈ [0, 1], i = 1, . . . , N are weight variables associated to each residual ri,

and the function Φρ(wi), referred to as an outlier process, defines a penalty on the

weight wi whose form is dependent on the choice of robust loss ρ.

In the case of ρ being the truncated quadratic loss, we easily derived from (3.14)

that Φρ(wi) = (1−wi)β
2
i . When ρ takes other forms, [92] provides a recipe to derive

Φρ(wi). We give an example for the Geman-McClure (G-M) robust loss.

Example 3.5 (B-R Duality for G-M Loss) Consider the G-M robust loss function

ρ(ri(x)) =
β2
i r

2
i (x)

β2
i + r2i (x)

, (3.17)

where β2
i is a noise bound for the i-th residual similar to (3.13). The outlier process

associated to (3.17) is

Φρ(wi) = β2
i (
√
wi − 1)2. (3.18)

To verify the correctness of (3.18), consider

min
wi∈[0,1]

wir
2
i (x) + Φρ(wi), (3.19)

whose optimal solution is (via setting the gradient of (3.19) to zero)

w⋆
i =

(
β2
i

r2i (x) + β2
i

)2

. (3.20)

Plugging (3.20) back to the objective of (3.19) recovers the G-M robust loss (3.17).

3.3.3 Alternating Minimization

With the introduction of B-R duality, the IRLS algorithm naturally comes out

using a common optimization strategy called alternating minimization [1116, 87].

The idea is that, although it is difficult to jointly optimize both x and wi ∈ [0, 1], i =

1, . . . , N in (3.16), optimization of either x or wi’s when fixing the other is easy.

To see this, observe that when wi’s are fixed, problem (3.16) becomes a weighted

least squares; analogously, when x is fixed, problem (3.16) becomes

min
wi∈[0,1],i=1,...,N

N∑

i=1

Φρ(wi) + wir
2
i (x),

which splits into N subproblems, each optimizing a scalar wi

min
wi∈[0,1]

Φρ(wi) + wir
2
i (x). (3.21)

92 Robustness to Incorrect Data Association and Outliers

Problem (3.21) is easy to solve and often admits a closed-form solution. In fact,

for the G-M robust loss, the solution of (3.21) is just (3.20). For the truncated

quadratic loss, problem (3.21) reads

min
wi∈[0,1]

(1− wi)β
2
i + wir

2
i (x)

and admits a closed-form solution

w⋆
i =

1 if r2i (x) < β2
i

0 if r2i (x) > β2
i

[0, 1] otherwise

.

In summary, the t-th iteration of IRLS in the context of B-R duality alternates

between two steps

1 Variable update: solve a weighted least squares problem using the current

weights w
(t)
i

x(t) ∈ arg min
x

∑

i

w
(t)
i r2i (x). (3.22)

2 Weight update: update the weights using x(t)

w
(t+1)
i ∈ arg min

wi∈[0,1]

Φρ(wi) + wir
2
i (x(t)), i = 1, . . . , N. (3.23)

The weight update rule obtained via B-R duality actually matches the popular

weight update rule (3.12). Interestingly, instantiating the above IRLS algorithm in

SLAM using the G-M robust loss leads to the dynamic covariance scaling algo-

rithm [18], which has been proposed in the context of outlier-robust SLAM.

3.3.4 Graduated Non-Convexity

The previous section leveraged Black-Rangarajan duality and alternating mini-

mization to derive the IRLS framework that alternates in solving (3.22) and (3.23).

However, due to the non-convexity of common robust losses, the convergence of the

IRLS framework can be highly sensitive to the quality of initialization, i.e., how

close is x(0) to the optimal solution of (3.9) or how well does w
(0)
i reflect the inlier-

outlier membership of each measurement. For example, [1012] showed that IRLS

with the truncated quadratic loss and the Geman-McClure loss might fail when

there are as little as 10% outliers in the measurements (cf. also with our results in

Figure 3.7).

In this section, we introduce the graduated non-convexity (GNC) scheme that can

make IRLS significantly less sensitive to the quality of initialization. Given a robust

cost function ρ, the basic idea of GNC is to create a smooth version of ρ, denoted

3.3 Increasing Robustness to Outliers in the SLAM Back-end 93

as ρµ, using a scalar smoothing factor µ. Tuning µ controls the amount of non-

convexity in ρµ: ρµ is convex at one end of the spectrum and recovers the original

ρ at the other end of the spectrum. Let us illustrate this using two examples.

Example 3.6 (GNC Truncated Quadratic Loss) Consider the GNC truncated

quadratic loss function

ρµ(ri(x)) =

r2i (x) if r2i (x) ∈
[
0, µ

µ+1β
2
i

]

2βi|ri(x)|
√
µ(µ+ 1)− µ(β2

i + r2i (x)) if r2i (x) ∈
[

µ
µ+1β

2
i ,

µ+1
µ β2

i

]

β2
i r2i (x) ∈

[
µ+1
µ β2

i ,+∞
]
.

(3.24)

ρµ is convex for µ approaching zero and retrieves the truncated quadratic loss

in (3.13) for µ approaching infinity.

Example 3.7 (GNC Geman-McClure Loss) Consider the GNC Geman-McClure

loss function

ρµ(ri(x)) =
µβ2

i r
2
i (x)

µβ2
i + r2i (x)

. (3.25)

ρµ is convex for µ approaching ∞ and recovers the G-M loss (3.17) when µ = 1.

(a) (b)

Figure 3.8 Graduated Non-Convexity with control parameter µ for (a) Truncated
Quadratic loss and (b) Geman-McClure loss. [1218] (©2020 IEEE)

Figure 3.8(a) and (b) plot the GNC truncated quadratic loss and the GNC

Geman-McClure loss, respectively. Observe how increasing or decreasing the control

parameter µ adds more non-convexity to the function.

One nice property of the smoothed GNC functions in (3.24) and (3.25) is that

the B-R duality still applies. For the GNC truncated quadratic loss (3.24), applying

94 Robustness to Incorrect Data Association and Outliers

B-R duality leads to the outlier process

Φρµ
(wi) =

µ(1− wi)

µ+ wi
β2
i .

For the GNC Geman-McClure loss (3.25), applying B-R duality leads to the outlier

process

Φρµ
(wi) = µβ2

i (
√
wi − 1)2.

We are now ready to state the GNC algorithm, which at each iteration performs

three steps

1 Variable update: solve a weighted least squares problem using the current

weights w
(t)
i

x(t) ∈ arg min
x

∑

i

w
(t)
i r2i (x). (3.26)

2 Weight update: update the weights using x(t)

w
(t+1)
i ∈ arg min

wi∈[0,1]

Φρµ
(wi) + wir

2
i (x(t)), i = 1, . . . , N. (3.27)

3 Control parameter update: Increase or decrease µ to add more nonconvexity

to ρµ.

The GNC algorithm is similar to the IRLS algorithm, except that it starts with a

convex, smoothed function ρµ and then iteratively updates the control parameter µ

to gradually add more non-convexity to ρµ to approach the original loss function ρ.

Depending on the definition of the smoothed loss ρµ, one would recover the original

ρ by either increasing or decreasing µ. For instance, the smoother GNC truncated

quadratic loss recovers the original truncated quadratic loss when µ is large, hence

µ is increased by a constant factor γ > 1 at each GNC iteration (e.g., γ = 1.4

in [1218]). Conversely, the smoother Geman-McClure loss recovers the original GM

loss when µ is close to 1, hence µ is divided by γ > 1 at each GNC iteration.

Figure 3.9 showcases the SLAM trajectories obtained by applying GNC on the

same three datasets of Figure 3.6, with two different robust losses: the Geman-

McClure loss and the truncated quadratic loss. We implemented GNC using GT-

SAM’s GNCOptimizer. By comparing the figure with Figure 3.6 and Figure 3.7

we observe that GNC ensures better convergence (i.e., it is less prone to being

stuck in local minima) and recovers fairly accurate trajectories in all the three

datasets. While GNC has been shown to be extremely resilient to outliers (e.g.,

it has shown to tolerate around 80-90% incorrect loop closures in real-world prob-

lems [1218, 171]), we remark that the approach does not provide any convergence

guarantees. Moreover, its performance has been empirically seen to be problem-

dependent, and while it leads to superb performance in pose-graph optimization

problems, its performance largely degrades in other perception problems [1011].

3.3 Increasing Robustness to Outliers in the SLAM Back-end 95

M3500 SubT Victoria Park

G
ro
u
n
d
T
ru
th

(a) (b) (c)

G
N
C

+
G
M

(d) (e) (f)

G
N
C

+
T
L
S

(g) (h) (i)

Figure 3.9 Solving SLAM problems with outliers using robust loss functions and graduated
non-convexity (GNC): (a)-(c) Ground truth trajectories for the M3500, SubT, and Victoria
Park datasets. (d)-(f) Trajectory estimates obtained using the Geman-McClure loss. (g)-
(i) Trajectory estimates obtained using the truncated quadratic loss. Measurements are
visualized as colored edges. In particular, an edge is colored in gray if it is correctly
classified as inlier or outlier by the optimization (i.e., an inlier that falls in the quadratic
region of the Huber or truncated quadratic loss); it is colored in red if it is an outlier
incorrectly classified as an inlier (a “false positive”); it is colored in blue if it is an inlier
incorrectly classified as an outlier (a “false negative”).

Below we showcase a problem when GNC fails and also show that combining

front-end and back-end outlier rejection can be beneficial. Towards this goal, we

are going to consider a slightly more challenging SLAM setup compared to the

ones discussed above. Earlier in this chapter, we considered pose-graph optimiza-

tion problems (e.g., Figure 3.1) where the odometry is reliable but there might be

outliers in the loop closures or in the landmark measurements. This setting essen-

tially assumes the presence of an “odometry backbone” that largely simplifies the

problem by providing a set of trusted measurements while also allowing building

an initial guess for the robot poses. While this assumption is realistic in many

96 Robustness to Incorrect Data Association and Outliers

problems,14 certain SLAM applications might lack an odometry backbone. For in-

stance, certain odometry sensors might produce incorrect measurements, e.g., due

to wheel slippage in wheel odometry, or incorrect lidar alignment in lidar odometry.

Another example arises in multi-robot SLAM, where each robot has an odometry

backbone, but the overall SLAM problem (including the trajectory of all robots)

does not [735].

M3500 SubT Victoria Park

G
N
C

(a) (b) (c)

P
C
M

(d) (e) (f)

P
C
M

+
G
N
C

(g) (h) (i)

Figure 3.10 SLAM problems with outliers in both the loop closures and landmark mea-
surements, as well as the odometry: (a)-(c) Trajectory estimates obtained using GNC
with the truncated quadratic loss. (d)-(f) Trajectory estimates obtained using PCM for
front-end outlier rejection followed by least squares optimization. (g)-(i) Trajectory esti-
mates obtained using PCM for front-end outlier rejection followed by GNC with truncated
quadratic loss.

Robustly solving SLAM problems where both odometry and loop closure mea-

surements can be outliers is extremely hard. To showcase the shortcomings of the

14 The fact that odometric measurements are computed between consecutive frames makes data
association relatively simpler, in particular when the rate of the sensor (e.g., camera framerate) is
much faster than the motion of the robot. Intuitively, consecutive frames will provide snapshots of
the scene from similar viewpoints, thus reducing sources of errors for feature matching, including
illumination changes, occlusions, lack of viewpoint invariance, or perceptual aliasing.

3.4 Further References and New Trends 97

approaches we discussed, in this more complex setting with potentially incorrect

odometry measurements, we first modify the pose-graph problems in Figure 3.1

by corrupting two randomly selected odometry measurements. Then we attempt

to solve the problem with GNC. In particular, in GNC we fix all odometry mea-

surements except the two potentially corrupted measurements as inliers. Figure

3.10 shows the trajectories obtained by solving the problem with GNC. GNC fails

due to the corrupted initialization and converges to a local minima by categorizing

all measurements (including inliers) as outliers (blue edges). The same figure also

shows the result of using PCM to filter out gross outliers before using a least-squares

back-end. PCM is agnostic to the initial guess, hence is able to converge to better

solutions in the case of the SubT and Victoria Park datasets (Figure 3.10 (e) and

(f)). Interestingly, we get best results in the SubT and Victoria Park datasets by

combining front-end outlier rejection (PCM) with GNC. At the same time, all three

methods (GNC, PCM, and PCM+GNC) fail to converge to acceptable solutions in

the M3500 dataset, confirming the hardness of this SLAM setup and the limitations

of existing SLAM algorithms in terms of outlier rejection.

3.4 Further References and New Trends

Consensus Maximization. While in this chapter we discussed the most basic in-

stantiation of a RANSAC algorithm (according to the initial proposal in [336]), it is

worth mentioning that the literature offers many RANSAC variants, including vari-

ants that refine estimates through local optimization [224], use better scores (rather

than the size of the consensus set) in the RANSAC iterations (e.g., MLESAC [879]),

or bias the sampling in the RANSAC iterations (e.g., PROSAC [223]). The recent

literature also includes differentiable variants of RANSAC [1172] and variants that

attempt to find the inliers when the parameter γ in (3.4) is unknown (e.g., [53]). A

recent survey and evaluation of RANSAC variants can be found in [1113].

Beyond RANSAC, the literature also includes approaches for exact consensus

maximization, typically based on branch-and-bound [71, 443, 1285, 658, 1032, 211,

515, 138, 1221, 1220]. Despite its global optimality guarantees, branch-and-bound

has exponential runtime in the worst case and does not scale to high-dimensional

problems.

Pairwise Consistency Maximization. The PCM approach described in Sec-

tion 3.2.2 was originally proposed in the context of multi-robot SLAM in [735],

where this approach showed particular promise. Graph-theoretic outlier rejection

has also been investigated in computer vision. Segundo and Artieda [972] build

an association graph and find the maximum clique for 2D image feature match-

ing. Perera and Barnes [876] segment objects under rigid body motion with a

clique formulation. Leordeanu and Hebert [646] establish image matches by find-

ing strongly-connected clusters in the correspondence graph with an approximate

spectral method. Enqvist et al. [317] develop an outlier rejection algorithm for

98 Robustness to Incorrect Data Association and Outliers

3D-3D and 2D-3D registration based on approximate vertex cover. Yang and Car-

lone [1213, 1219] and Parra et al. [139] investigate graph-theoretic outlier rejection

based on maximum clique for 3D-3D registration. The idea of checking consistency

across a subset of measurements also arises in Latif et al. [635], which perform

loop-closure outlier rejection by clustering measurements together and checking

for consistency using a Chi-squared-based test. The PCM paper [735], similarly

to the discussion in this chapter, focuses on pairwise consistency. More recently,

PCM has been extended to group-k consistency (i.e., the case where the consis-

tency constraint (3.7) involves k measurements instead of only 2 measurements)

in [1011, 1012, 340]. These papers essentially generalize the notion of consistency

graphs to consistency hypergraphs, where each hyper-edge involves k nodes. Re-

lated work also considers soft variations of the maximum clique problem, where

the binary condition (3.7) is relaxed to produce continuous weights on the edges

of the consistency graph [720, 719]. These methods have been used in practical

applications, including subterranean exploration [306], lidar point-cloud localiza-

tion [721], multi-robot metrics-semantic mapping [1099], and global localization in

unstructured environments [40].

Alternating Minimization and Graduated Non-Convexity. M-estimation

has been a popular approach for robust estimation in robotics [105] and vision [983,

179]. Tavish et al. [1079] investigate the performance of different loss functions. Sev-

eral papers investigate formulations with auxiliary variables as the one in (3.16),

without realizing the connection to M-estimation provided by the Black-Rangarajan

duality (Theorem 3.4). For instance, Sünderhauf and Protzel [1064, 1063] and Agar-

wal et al. [18] augment the problem with latent binary variables responsible for de-

activating outliers. Lee et al. [644] use expectation maximization. Olson and Agar-

wal [833] use a max-mixture distribution to approximate multi-modal measurement

noise. Recently, Barron [64] proposes a single parametrized function that generalizes

a family of robust loss functions in M-estimation. Chebrolu et al. [180] design an

expectation-maximization algorithm to simultaneously estimate the unknown quan-

tity x and choose a suitable robust loss function ρ. The graduated non-convexity

algorithm was first introduced in [93, 92] for outlier rejection in early vision applica-

tions; more recently, the algorithm was used for point cloud registration [1292, 1219],

SLAM [1218], and other applications [41]. Recently, Peng et al. [867] has proposed

an algorithm similar to GNC and IRLS, that is based on the idea of smooth ma-

jorization in optimization and can be applied to a broad set of robust losses. More-

over, [867] derives global and local convergence guarantees for GNC.

Certifiable Algorithms. The algorithms described so far can be broadly di-

vided into two categories: (i) fast heuristics (e.g., RANSAC or local solvers for

M-estimation), which are efficient but provide little performance guarantees, and

(ii) global solvers (e.g., branch-and-bound), which offer optimality guarantees but

scale poorly with the problem size. Recent years have seen the advent of a new

type of methods, called certifiable algorithms, that try to strike a balance between

3.4 Further References and New Trends 99

tractability and optimality. Certifiable algorithms relax non-convex robust estima-

tion problems into convex semidefinite programs (SDP),15 whose solutions can be

obtained in polynomial time and provide readily checkable a posteriori global opti-

mality certificates. Certifiable algorithms for robust estimation have been proposed

in the context of rotation estimation [1214], 3D-3D registration [1219], and pose-

graph optimization [626, 159]. A fairly general approach to derive certifiable algo-

rithms for problems with outliers is described in [1215, 1217], while connections with

parallel work in statistics is discussed in [153]. With few notable exceptions, these

algorithms, albeit running in polynomial time, are still computationally expensive

and typically much slower than heuristics methods. In some cases, the insights be-

hind these algorithms can be used to certify optimality of a solution obtained with

a fast heuristic [1215], hence getting the best of both worlds.

15 We are going to review the notion of certifiable algorithms in the context of SLAM in Chapter 6.

4

Differentiable Optimization
Chen Wang, Krishna Murthy Jatavallabhula, and Mustafa Mukadam

4.1 Introduction

As presented in Chapter 1, the design of a contemporary SLAM system generally

adheres to a front-end and back-end architecture. In this structure, the front-end

is typically responsible for pre-processing sensor data and generating an initial

estimate of the robot’s trajectory and the map of the environment, while the back-

end refines these initial estimates to improve overall accuracy. Recent advances in

machine learning have provided new approaches, based on deep neural networks,

that have the potential to enhance some of the functionalities in the SLAM front-

end. For instance, deep learning-based methods can exhibit impressive performance

in feature detection and matching [976, 275, 1262] and front-end motion estimation

[1165, 1086]. These methods train a neural network from a large dataset of examples,

and then make estimations without being explicitly programmed to perform the

task. Meanwhile, geometry-based techniques persist as an essential element for the

SLAM back-end, primarily due to their generality and effectiveness in producing a

globally consistent estimate by solving an optimization problem.

While in principle one could just “plug” a learning-based SLAM front-end in the

SLAM architecture and feed the corresponding outputs to the back-end, the use

of learning-based techniques opens the door for a less unidirectional information

exchange. In particular, the back-end can now provide feedback to the front-end,

enabling it to learn directly from the back-end estimates in a way that the two

modules can more harmoniously cooperate to reduce the estimation errors. Rec-

onciling geometric approaches with deep learning to leverage their complementary

strengths is a common thread in a large body of recent work in SLAM. In particular,

an emerging trend is to differentiate through geometry-based optimization problems

arising in the SLAM back-end. Intuitively, differentiating through an optimization

problem allows understanding how the optimal solution of that problem (e.g., our

SLAM estimate) depends on the parameters of that problem — in our case, the

measurements produced by a learning-based front-end; this in turns allows opti-

mizing the front-end to maximize the SLAM accuracy. One could think about this

as a bilevel optimization problem, i.e., an upper-level optimization process subject

4.1 Introduction 101

to a lower-level optimization — in particular, a neural network based-optimization

to train the front-end, subject to a geometry-based optimization that computes the

SLAM solution for a given front-end output.

The ability to compute gradients end-to-end through an optimization is the core

of solving a bilevel optimization problem, which allows neural models to take ad-

vantage of geometric priors captured by the optimization. The flexibility of such a

scheme has led to promising state-of-the-art results in a wide range of applications

such as structure from motion [1084], motion planning [88, 1212], SLAM [519, 1086],

bundle adjustment [1072, 1262], state estimation [1239, 188], and image align-

ment [724].

In this chapter, we illustrate the basics of how to differentiate through nonlinear

least squares problems, such as the ones arising in SLAM. Specifically, Section 4.1.1

restates the non-linear least square (NLS) problem. Section 4.2 describes how to

differentiate through the NLS problem. Section 4.3 shows how to differentiate prob-

lems defined on manifold. Section 4.4 discusses numerical challenges of the above

differentiation and introduces related machine learning libraries. Finally, Section 4.5

provides examples of differentiable optimization in contemporary SLAM systems.

4.1.1 Recap on Nonlinear Least Squares

Non-linear least squares (NLS) estimate the parameters of a model by minimizing

the sum of the squares of the mismatch between observed values and those predicted

by the model. Unlike linear least squares, NLS involves a model that is non-linear

in the parameters. Beyond our factors graphs in Chapter 1, this approach is widely

used in many fields such as statistics, physics, and engineering, where it is useful

for fitting complex models to data when the relationship between variables is not

straightforward, enabling more accurate and robust predictions.

Specifically, NLS aim to find variables x ∈ Rn by solving:

x∗ = arg min
x

L(x) = arg min
x

=
1

2

∑

i

||wici(xi)︸ ︷︷ ︸
ri(xi)

||2, (4.1)

where the objective L(x) is a sum of squared vector-valued residual terms ri, each

a function of xi ⊂ x that are (non-disjoint) subsets of the optimization variables

x = {xi}. While for now we assume xi to be vectors, later in the chapter we

generalize the discussion to the case where the variables belong to a manifold. For

flexibility, here we represent a residual ri(xi) = wici(xi) as a product of a weight

wi and vector cost ci.

As explained in Chapter 1, a NLS is normally solved by iteratively lineariz-

ing the nonlinear objective around the current variables to get the linear system

(
∑

i J
⊤
i Ji)δx = (

∑
i J

⊤
i ri), then solving the linear system to find the update δx,

and finally updating the variables x ← x + δx, until convergence. We have also

102 Differentiable Optimization

Inputs

𝒰	(𝒚, 𝒙∗)

ℒ	(𝒚, 𝒙)

Neural
Network

𝑓𝒚

Upper-level Cost

Lower-level Cost

𝑥!
𝑥" 𝑥#

𝑥$𝑥%𝑥&

Nonlinear
Least Squares

𝑔𝒙
Attributes

Solution

Figure 4.1 A modern SLAM system often involves both neural networks and nonlinear
least squares. To eliminate compound errors introduced by optimizing the two modules
separately, we can optimize the system in an end-to-end manner by formulating the entire
system as a bilevel optimization, which involves an upper-level cost and a lower-level cost.

commented in Chapter 2 that the addition in the update step is more generally a

retraction mapping for variables that belong to a manifold. In the linear system,

Ji = [∂ri/∂xi] are the Jacobians of residuals with respect to the variables. This

iterative method above, called Gauss-Newton (GN), is a nonlinear optimizer that is

(approximately) second-order, since
∑

i J
⊤
i Ji is an approximation of the Hessian.

To improve robustness and convergence, variations like Levenberg-Marquardt (LM)

dampen the linear system, while others adjust the step size for the update with line

search, e.g., Dogleg introduced in Chapter 1.

4.2 Differentiation Through Nonlinear Least Squares

To seamlessly merge deep learning with nonlinear least squares, differentiable non-

linear least squares (DNLS) are often required to solve the optimization problem

illustrated in Figure 4.1. This necessitates gradients of the solution x∗ with re-

spect to any upper-level neural model parameters y that parameterize the objective

U(x;y) and, in turn, any costs ci(xi;y) or initialization for variables xinit(y). The

goal is to learn these parameters y end-to-end with a lower-level learning objective

L defined as a function of x. This results in a bilevel optimization (BLO), which

can be written as:

y∗ = arg min
y∈Θ

U(y,x∗), (4.2a)

s. t. x∗ = arg min
x∈Ψ

L(y,x), (4.2b)

where L : Rm×Rn → R is a lower-level (LL) cost, U : Rm×Rn → R is a upper-level

(UL) cost, x ∈ Ψ and y ∈ Θ are the feasible sets.

In practice, the variables x are often parameters with explicit physical meanings

4.2 Differentiation Through Nonlinear Least Squares 103

such as camera poses, while y are parameters without physical meanings such as

weights in a neural network. We next present two examples to explain this.

Example 4.1 Imagine a SLAM system that leverages a neural network (param-

eterized by y) for feature extraction/matching, while utilizing bundle adjustment

(BA) for pose estimation (parameterized by x), which take the feature matching

as an input. In this example, the UL cost (4.2a) can be feature matching error

for optimizing the network, while the LL cost L (4.2b) can be the reprojection

error for BA. Intuitively, the optimal solution x∗ for the camera poses and land-

mark positions plays the role of a supervisory signal in the neural network training.

Therefore, optimizing the BLO (4.2) allows us to further reduce the matching error

via back-propagating the BA reprojection errors [1262].

Example 4.2 Imagine a full SLAM system that uses a neural network for front-

end pose estimation, while leverages pose-graph optimization (PGO) as the back-

end to eliminate odometry drifts. In this example, both UL and LL costs can be the

pose-graph error. The difference is the UL cost optimizes the network parameterized

by y, while the LL cost optimizes the camera poses parameterized by x. As a result,

the front-end network can leverage global geometric knowledge obtained through

pose-graph optimization by back-propagating the pose residuals from the back-end

PGO [354].

BLO is a long-standing and well-researched problem [1148, 524, 686]. Solving a

BLO often relies on gradient-descent techniques. Specifically, the UL optimization

performs updates in the form y ← y + δy, where δy is a step in the direction of

the negative gradient. Therefore, we need compute the gradient of U with respect

to the UL variable y, which can be written as

∇yU =
∂U(y,x∗)

∂y
+
∂U(y,x∗)

∂x∗
∂x∗(y)

∂y
, (4.3)

where the term ∂x∗(y)
∂y involves indirect gradient computation. Since other direct

gradient terms in (4.3) are easy to obtain, the challenge of solving a BLO (4.2)

is to compute the term ∂x∗(y)
∂y . For this purpose, a series of techniques have been

developed from either explicit or implicit perspectives. This involves recurrent dif-

ferentiation through dynamical systems or implicit differentiation theory, which are

often referred to as unrolled differentiation and implicit differentiation, re-

spectively. These algorithms have been summarized in [686, 1148] and here we list

a generic framework incorporating both methods in Algorithm 1. We next explain

the unrolled differentiation and implicit differentiation, respectively.

4.2.1 Unrolled Differentiation

Unrolled Differentiation needs automatic differentiation (AutoDiff) through the LL

optimization to solve a BLO problem. Specifically, given an initialization x0 =

104 Differentiable Optimization

Algorithm 1 Solving BLO by Unrolled Differentiation or Implicit Differentiation.

1: Initialization: y0, x0.

2: while Not Convergent (∥yk+1 − yk∥ is large enough) do

3: Obtain xT by solving (4.2b) by a generic optimizer O with T steps.

4: Efficient estimation of upper-level gradients in (4.3) via

5: Unrolled Differentiation: ∇̂yk
U = ∂U(yk,xT)

∂yk
via AutoDiff in (4.7).

6: Implicit Differentiation (Algorithm 2): Compute

∇̂yk
U =

∂U
∂yk

∣∣∣
xT

+
∂U
∂x∗

∂x∗

∂yk

∣∣∣
xT

,

where the implicit derivatives ∂x∗

∂yk
can be obtained by solving an equation de-

rived via lower-level optimality conditions (surveyed in following sections).

7:

8: Compute yk+1 via gradients using ∇̂yk
U .

9: end while

Φ0(y) at step t = 0, the iterative process of unrolled LL optimization is

xt = Φt(xt−1;y), t = 1, · · · , T, (4.4)

where Φt denotes an updating scheme based on the LL problem at the t-th step

and T is the number of iterations. One updating scheme is the gradient descent:

Φt(xt−1;y) = xt−1 − ηt ·
∂L(xt−1,y)

∂xt−1
, (4.5)

where ηt is a learning rate and the term ∂L(xt−1,y)
∂xt−1

can be computed from AutoDiff.1

Therefore, we can compute the ∇yU(y) by substituting xT approximately for x∗

and the full unrolled system can be defined as

x∗ ≈ xT = Φ(y) = (ΦT ◦ · · · ◦ Φ1 ◦ Φ0) (y), (4.6)

where the symbol ◦ denotes the function composition. As a result, we only need to

consider the following problem instead of a bilevel optimization in (4.2):

min
y∈Θ

U(y,Φ(y)), (4.7)

which needs to compute ∂Φ(y)
∂y via AutoDiff instead of calculating (4.3). It is worth

noting that there exist two approaches for computing the recurrent gradients, one

of which corresponds to backward propagation in a reverse-mode way [864], and

the other corresponds to the forward-mode way [934]. We omit the details of the

two approaches of AutoDiff and refer the readers to the AutoDiff libraries such as

1 While here we mention gradient descent, the same ideas can be extended to other iterative
optimization methods, such as Gauss-Newton.

4.2 Differentiation Through Nonlinear Least Squares 105

PyTorch [856] for deep learning and PyPose [1147] and Theseus [880] for SLAM. A

review of these approaches can also be found in Liu et al. [686].

4.2.2 Truncated Unrolled Differentiation

The reverse and forward modes are two precise recurrent gradient calculation meth-

ods but are time-consuming with the full iterative propagation. This is due to the

complicated long-term dependencies of the UL problem on xt, where t = 0, 1, · · · , T .

This difficulty is further aggravated when both y and x are high-dimensional vec-

tors. To overcome this challenge, the truncated unrolled differentiation has been

investigated as a way to compute high-quality approximate gradients with signifi-

cantly less computation time and memory. Specifically, by ignoring the long-term

dependencies and approximating the gradient of (4.5) with partial history, i.e.,

storing only the last M iterations (t = T, T − 1, · · · , T −M), we can significantly

reduce the time and space complexity. It has been proved by Shaban et al. [997]

that using fewer backward steps to compute the gradients could perform compa-

rably to optimization with the exact one, while requiring much less memory and

computation.

In case of more stringent computational and memory constraints, truncated un-

rolled differentiation is still often a bottleneck in modern robotic applications.

Therefore, researchers have also tried to further simplify the truncated differen-

tiation by only performing a one-step iteration in (4.4) to remove the recursive

structure [683], i.e.,

∇yU =
∂U(y,x1(y))

∂y
+
∂U(y,x1(y))

∂x1

∂x1(y)

∂y
, (4.8)

where the term ∂x1(y)
∂y is a Hessian that can be calculated from (4.5) as

∂x1(y)

∂y
= −∂

2L(x0,y)

∂x0∂y
. (4.9)

Since calculating a Hessian is time-consuming in some applications, we can resort to

numerical solutions that apply small perturbations to the variables x and calculate

an approximation of the second term in (4.8) as a whole:

∂U(y,x1(y))

∂x1

∂x1(y)

∂y
≈

∂L(x+
0 ,y)

∂y − L(x−
0 ,y)

∂y

2ϵ
, (4.10)

where ϵ is a small scalar and x±
0 = x0 ± ϵ∂U(y,x1(y))

∂x1
is a small perturbation. This

bypasses an explicit calculation of the Jacobian ∂x1(y)
∂y . Nevertheless, we need to

pay attention to the perturbation model if non-Euclidean variables are involved,

e.g., variables belonging to Lie Groups. Fortunately, the AutoDiff of Lie Group

for Hessian-vector and Jacobian-vector multiplications are supported in modern

libraries, such as PyPose [1147], which will be introduced in Section 4.4.

106 Differentiable Optimization

4.2.3 Implicit Differentiation

It is intuitive that the term ∂x∗(y)
∂y in (4.3) is dependent on the LL cost (4.2b), thus

implicit differentiation can be used to derive a solution to the gradient.

Example 4.3 In calculus, implicit differentiation refers to the method makes

use of the chain rule to differentiate implicit function. To differentiate an implicit

function y(x), defined by an equation R(x, y) = 0, it is not generally possible to

solve it explicitly for y and then differentiate. Instead, one can totally differentiate

R(x, y) = 0 with respect to x and then solve the resulting linear equation for dy
dx to

explicitly get the derivative in terms of x and y. For instance, consider an implicit

function x + y + 5 = 0, differentiating it with respect to x on its both sides gives
dy
dx + dx

dx + d
dx (5) = 0⇒ dy

dx + 1 + 0 = 0. Solving for dy
dx gives dy

dx = −1.

Assume the LL cost L is at least twice differentiable w.r.t. both y and x, then

we have ∂L(x∗(y),y)
∂x∗(y) = 0 due to the optimality condition where x∗ is a stationary

point. Derive the equation ∂L(x∗(y),y)
∂x∗(y) = 0 on both sides w.r.t. y giving us

∂2L(x∗(y),y)

∂x∗(y)∂y
+
∂2L(x∗(y),y)

∂x∗(y)∂x∗(y)
· ∂x

∗(y)

∂y
= 0. (4.11)

This leads to the indirect gradient ∂x∗(y)
∂y as

∂x∗(y)

∂y
= −

(
∂2L(x∗(y),y)

∂x∗(y)∂x∗(y)

)−1
∂2L(x∗(y),y)

∂x∗(y)∂y
, (4.12)

The strength of (4.12) is that we convert the indirect gradient among the variables

y and x to direct gradients of L at the cost of an inversion of Hessian matrix.

However, the weakness is that a Hessian is often too large to compute, thus it is

common to solve a linear system leveraging the fast Hessian-vector product.

Example 4.4 Assume both UL and LU costs have a network with merely 1

million (106) parameters (32-bit float numbers), thus each network only needs a

space of 106 × 4Byte = 4MB to store, while their Hessian matrix needs a space of

(106)2×4Byte = 4TB to store. This indicates that a Hessian matrix cannot even be

explicitly stored in the memory of a low-power computer, thus directly calculating

its inversion is more impractical.

Recollect that our goal is to compute the gradient in (4.3), substituting (4.12)

into (4.3) gives us:

∇yU =
∂U(y,x∗)

∂y
− ∂U(y,x∗)

∂x∗︸ ︷︷ ︸
vT

(
∂2L(x∗(y),y)

∂x∗(y)∂x∗(y)

)−1

︸ ︷︷ ︸
(HT)−1

∂2L(x∗(y),y)

∂x∗(y)∂y

=
∂U(y,x∗)

∂y
− qT · ∂

2L(x∗(y),y)

∂x∗(y)∂y

. (4.13)

4.2 Differentiation Through Nonlinear Least Squares 107

Then we can solve the linear system Hq = v for qT by optimizing

q∗ = min argq Q(q) = min argq

1

2
qTHq − qTv, (4.14)

using efficient linear solvers such as a simple gradient descent or conjugate gradient

method [467]. For gradient descent, we need to compute the gradient ofQ as ∂Q(q)
∂q =

Hq − v, where Hq can be computed using the fast Hessian-vector product, i.e., a

Hessian-vector product is the gradient of a gradient-vector product:

Hq =
∂2L
∂x∂x

· q =
∂
(
∂L
∂x · q

)

∂x
, (4.15)

where ∂L
∂x · q is a scalar. This means that the Hessian matrix H is not explicitly

computed or stored. We summarize the computation of implicit differentiation with

linear systems in Algorithm 2. The algorithm using a conjugate gradient is similar.

Algorithm 2 Computing Implicit Differentiation via Linear System.

1: Input: The current UL variable y and the optimal LL variable x∗.

2: Initialization: k = 1, learning rate η.

3: while Not Convergent (∥qk − qk−1∥ is large enough) do

4: Perform gradient descent:

qk = qk−1 − η (Hqk−1 − v) , (4.16)

where Hqk−1 is computed via the fast Hessian-vector product.

5: end while

6: Assign q = qk
7: Compute ∇yU in (4.3) as:

∇yU =
∂U(y,x∗)

∂y
−
(
∂2L(x∗(y),y)

∂y∂x∗(y)
· q
)T

︸ ︷︷ ︸
(Hyx·q)T

, (4.17)

whereHyx ·q can also be computed efficiently using the Hessian-vector product.

Approximations. Implicit differentiation is complicated to implement but there

is one approximation, which is to ignore the implicit components and only use the

direct part ∇̂yU ≈ ∂U
∂y

∣∣∣
xT

. This is equivalent to taking the solution xT from the

LL optimization as constants in the UL problem. Such an approximation is more

efficient but introduces an error term

ϵ ∼
∣∣∣∣
∂U

∂x∗
∂x∗

∂y

∣∣∣∣ . (4.18)

Nevertheless, it is useful when the implicit gradients contain products of small

second-order derivatives, which depends on the specific NLS problems.

108 Differentiable Optimization

4.3 Differentiation on Manifold

Given that the state of a system within SLAM is bound to evolve on specific

manifolds, optimization on manifolds plays a crucial role in solving back-end SLAM

problems. We next derive the Jacobians required to differentiate with respect to

variables belonging to Lie groups, which is an essential step for differentiation on

the manifold.

4.3.1 Derivatives on the Lie Group

Since we introduced the basic concepts of Lie group, Lie algebra, and their basic

operations (e.g., exponential and logarithmic maps) in Chapter 2, this section will

briefly recap those concepts but mainly focus on the definition of their derivatives,

which is essential for solving a differentiable optimization problem.

Consider a Lie group’s manifold M, each point χ on this smooth manifold pos-

sesses a unique tangent space, denoted by TχM, where the fundamental principles

of calculus are valid. The Lie algebra, represented as m, is a vector space that can

be locally defined to the point χ as m = TχM. The exponential map exp : m→M
projects elements from the Lie algebra to the Lie group, while the logarithmic map

log :M→ m serves as its inverse, establishing a bi-directional relationship:

χ = exp(τ∧)⇔ τ∧ = log(χ), (4.19)

where hat ∧ is a linear invertible map, and τ∧ ∈ m. By representing the coordinates

within the Lie algebra as vectors τ in Rn, we can define mappings between vector

τ and the Lie group χ:

χ = Exp (τ)⇔ τ = Log (χ) , (4.20)

where we redefined the exponential and logarithm maps to directly use a vector as

input and output, respectively.

To calculate derivatives on Lie groups, it is crucial to first understand the relative

change between two manifold elements, say χ1 and χ2. These changes are quantified

by first defining the ⊕ and ⊖ operators, which capture the concept of displacement

on the manifold, as described in (4.21) and (4.22) below:

χ2 = χ1 ⊕ τ ≜ χ1 ◦ Exp (τ) ,

τ = χ2 ⊖ χ1 ≜ Log
(
χ−1

1 ◦ χ2

)
.

(4.21)

The placement of τ on the right-hand side in (4.21) signifies that it is expressed in

the local frame at χ1. Conversely, the left operators in (4.22) reflect a global frame

perspective:

χ2 = ε⊕ χ1 ≜ Exp (ε) ◦ χ1,

ε = χ2 ⊖ χ1 ≜ Log
(
χ2 ◦ χ−1

1

)
,

(4.22)

4.3 Differentiation on Manifold 109

where ε is expressed in the global frame. Both τ and ε can be viewed as incremen-

tal perturbations to the manifold elements. By using corresponding composition

operators ⊕ and ⊖, the variations are expressed as vectors in the tangent space.

With the right ⊕ and ⊖ operators in place, we use the Jacobian matrix J to

describe perturbations on manifolds. The Jacobian captures the essence of infinites-

imal perturbations τ within the tangent space m:

∂f(χ)

∂χ
≜ lim

τ→0

f(χ⊕ τ)⊖ f(χ)

τ

= lim
τ→0

f(χ ◦ Exp (τ))⊖ f(χ)

τ

= lim
τ→0

Log
(
f(χ)−1 ◦ f(χ ◦ Exp (τ))

)

τ
.

(4.23)

Let g(τ) = Log
(
f(χ)−1 ◦ f(χ ◦ Exp (τ))

)
, then the right Jacobian JR can be ex-

pressed as the derivative of g(τ) at τ = 0:

∂f(χ)

∂χ
= JR =

∂g(τ)

∂τ

∣∣∣∣
τ=0

. (4.24)

In this way, the derivatives of f(χ) with respect to χ in the manifold are represented

by the Jacobian matrix JR ∈ Rm×n, where m and n are the dimensions of the

Lie groups M and N , respectively. The right Jacobian matrix performs a linear

mapping from the tangent space m to the tangent space n = Tf(χ)N .

Similarly, consider an infinitesimal perturbation ε ∈ TgM applied to the Lie

group element χ, the left Jacobian JL can be defined with the left plus and minus

operators:

∂f(χ)

∂χ
≜ lim

ε→0

f(ε⊕ χ)⊖ f(χ)

ε

= lim
ε→0

f(Exp (ε) ◦ χ)⊖ f(χ)

ε

= lim
ε→0

Log
(
f(Exp (ε) ◦ χ) ◦ f(χ)−1

)

ε

=
∂Log

(
f(Exp (ε) ◦ χ) ◦ f(χ)−1

)

∂ε

∣∣∣∣
ε=0

.

(4.25)

The resulting left Jacobian JL ∈ Rn×m is also a linear mapping, but in the global

tangent space from TgM to TgN .

To delve into the local perturbations around a point χ1, we consider perturbations

τ as τ = χ⊖χ1, with χ being a perturbed version of χ1. The covariance matrices

Σχ defined on the tangent space are derived using the expectation operator E,

enabling the representation of uncertainties and their propagation:

Σχ ≜ E[ττ⊤] = E[(χ⊖ χ1)(χ⊖ χ1)⊤]. (4.26)

110 Differentiable Optimization

These covariance matrices facilitate the establishment of Gaussian distributions

on the manifold, expressed as χ ∼ N (χ1,Σχ). It is important to note that the

covariance matrices Σχ are defined on the tangent space Tχ1
M, which allows the

uncertainty in the manifold to be represented by a vector and be propagated in the

form of covariance matrices.

Example 4.5 Consider a robot equipped with an inertial measurement unit

(IMU) and a camera. Given noisy observations RIMU and RCam from both sen-

sors, the orientation of the robot can be estimated by minimizing the discrepancy

between the measurements, which can be formulated as a nonlinear least squares

problem on the manifold SO(3):

R̂ = arg min
R∈SO(3)

f(R,RIMU,RCam), (4.27)

where f(·) is the cost function that quantifies the differences between the estimated

orientation R and the sensor measurements RIMU and RCam. With the Jacobian

matrices in place, the optimization on the manifold SO(3) for the pose estimation

can be effectively managed. The cost function f(·) can be detailed as:

f(R) = ∥Log
(
R−1

IMUR
)
∥2 + ∥Log

(
R−1

CamR
)
∥2. (4.28)

To minimize f(R), we need to compute its gradient with respect to R on the

manifold SO(3). The gradient can be derived using the right Jacobian JR as:

∇f(R) =2

(
∂Log

(
R−1

IMUR
)

∂R

)⊤

Log
(
R−1

IMUR
)

+ 2

(
∂Log

(
R−1

CamR
)

∂R

)⊤

Log
(
R−1

CamR
)
.

(4.29)

The gradient ∇f(R) can be used in conjunction with optimization algorithms like

gradient descent which moves along the tangent space and reprojecting back to the

manifold to update the pose R iteratively:

Rk+1 = RkExp (−α∇f(R)) , (4.30)

where α is the step size. This iterative process continues until the cost function

f(R) converges to a minimum, providing an optimal pose estimate R̂ that aligns

with the sensor measurements.

4.3.2 Differentiation Operations on Manifold

For typical manifold operations, we can derive closed-form expressions for the Jaco-

bians associated with inversion, composition, and group actions. These expressions

4.3 Differentiation on Manifold 111

facilitate a comprehensive approach to optimization in SLAM, by enabling the

computation of function derivatives on manifolds with the chain rule:

∂Z
∂χ

=
∂Z
∂Y

∂Y
∂χ

, (4.31)

where Z = g(Y), and Y = f(χ).

Jacobians of inversion can be derived through the application of the function

f(χ) = χ−1 with (4.23) for the right Jacobian JR, which leads to:

∂χ−1

∂χ
≜ lim

τ→0

Log
(
(χ−1)−1(χExp (τ))−1

)

τ

= lim
τ→0

Log
(
χExp (τ)

−1
χ−1

)

τ

= lim
τ→0

(χ(−τ)∧χ−1)∨

τ
.

(4.32)

Jacobians of composition can be derived through the application of the func-

tion f(χ) = χ ◦ χ1 with the Equation (4.23). The derivative of the composition

operator χ ◦ χ1 with respect to χ is:

∂(χ ◦ χ1)

∂χ
≜ lim

τ→0

Log
(
(χχ1)−1(χExp (τ)χ1)

)

τ

= lim
τ→0

Log
(
χ−1

1 Exp (τ)χ1

)

τ

= lim
τ→0

(χ−1
1 τ∧χ1)∨

τ
.

(4.33)

The derivative of the composition operator χ ◦ χ1 with respect to χ1 is:

∂(χ ◦ χ1)

∂χ1
≜ lim

τ→0

Log
(
(χχ1)−1(χχ1Exp (τ))

)

τ

= lim
τ→0

Log (Exp (τ))

τ

= I.

(4.34)

Jacobians of the manifold M are characterized by the right Jacobian of χ

which is derived from the exponential map of τ ∈ Rm. This is expressed as:

Jr(τ) ≜
τ∂Exp (τ)

∂τ
. (4.35)

The right Jacobian conveys minor changes in τ to modifications in the local tangent

space at Exp (τ). Similarly, the left Jacobian of χ maps changes of τ to variations

within the global tangent space of the manifold. This is expressed as:

Jl(τ) ≜
ε∂Exp (τ)

∂τ
. (4.36)

112 Differentiable Optimization

Jacobians of group action depends on the specific group action set v ∈ V.

The group action is defined as:

Jχ·v
χ ≜

χDχ · v
Dχ

,

Jχ·v
v ≜

vDχ · v
Dv

,

(4.37)

where χ ∈M and v ∈ V.

Example 4.6 Consider a robotic arm with two joints, R1 and R2, each repre-

sented by an element in SO(3). The final orientation of the robot’s end-effector is

determined by the composition of the joint rotations:

R = R1 ◦R2. (4.38)

To evaluate the impact of small perturbations τ in R1 and R2 on the end-effector

orientation R. It can be quantified using the Jacobians of composition:

∂(R1 ◦R2)

∂R1
= lim

τ→0

(R−1
2 τ∧R2)∨

τ
,

∂(R1 ◦R2)

∂R2
= I.

(4.39)

This example implies that adjustments to the first joint R1 affect the final ori-

entation R through a transformation influenced by the current state of the second

joint R2. However, changes in the second joint R2 directly impact R without being

influenced by the first joint R1.

4.4 Modern Libraries

4.4.1 Numerical Challenges of Automatic Differentiation

Automatic Differentiation (AutoDiff) is a cornerstone technique for computing

derivatives accurately and efficiently in various optimization contexts, including

differentiation on manifolds. Differentiation on manifolds poses unique challenges

due to the complex geometrical properties inherent in manifold structures, which

can affect the performance and applicability of AutoDiff. In differential optimiza-

tion, these challenges become pronounced as AutoDiff interacts with the curved

space of manifolds, potentially introducing numerical instability and inaccuracies.

This section delves into the specific numerical issues that arise when using au-

tomatic differentiation for manifold-based optimization tasks. Particular attention

will be paid to the complexities involved in maintaining numerical stability and pre-

cision in the presence of manifold constraints, such as those found in constrained

optimization and in systems defined by differential equations on manifolds. For

simplicity, we will take the PyPose library [1147] as an example, which defines a

4.4 Modern Libraries 113

general data structure, LieTensor for Lie Group and Lie Algebra. Specifically, we

will show its numerical challenges and how PyPose tackle this challenge.

Analytical Foundations of Exponential Mapping to Quaternions. The

exponential map is a fundamental concept in the theory of Lie groups and is partic-

ularly critical when transitioning between Lie algebras and Lie groups represented

by quaternions. This mapping enables the translation of angular velocities from the

algebraic structure in R3 to rotational orientations in the group of unit quaternions

S3. Analytically, the exponential map for quaternions is derived from the Rodrigues’

rotation formula, which relates a vector in R3 to the corresponding rotation. Given

a vector x in R3, representing the axis of rotation scaled by the rotation angle, the

quaternion representation of the rotation is given by:

Exp(ν) =

[
sin

(∥ν∥
2

)
ν⊤

∥ν∥ , cos

(∥x∥
2

)]⊤
(4.40)

where ∥ν∥ represents the magnitude of ν, corresponding to the angle of rotation,

and ν
∥ν∥ is the unit vector in the direction of ν.

One of the challenges of implementing a differentiable LieTensor is that one

often need to calculate numerically problematic terms such as sin ν
ν in (4.40) for the

Exp and Log mapping [1087]. The direct computation of sine and cosine functions

for very small angles can lead to precision issues due to the finite representation of

floating-point numbers in computer systems. To manage these issues and maintain

numerical stability, PyPose takes the Taylor expansion to avoid calculating the

division by zero.

Exp(ν) =

[
νT γe, cos(

∥ν∥
2

)

]T
if ∥ν∥ > eps

[
νT γo, 1− ∥ν∥

2

8
+
∥ν∥4
384

]T
otherwise,

(4.41)

where γe =
sin(

∥ν∥
2)

∥ν∥ when ∥ν∥ is significant, and γo = 1
2−

∥ν∥2

48 + ∥ν∥4

3840 for small ∥ν∥,
ensuring precise calculations across all ranges of rotation magnitudes. Here, eps is

the smallest machine number where 1 + eps ̸= 1. This analytical-to-numerical pro-

gression demonstrates the importance of accurate and stable methods for computing

exponential maps in applications that require high fidelity in rotation representa-

tion, such as in 3D graphics, robotics, and aerospace engineering.

LieTensor is different from the existing libraries in several aspects: (1) PyPose

supports auto-diff for any order gradient and is compatible with most popular de-

vices, such as CPU, GPU, TPU, and Apple silicon GPU, while other libraries like

LieTorch [1087] implement customized CUDA kernels and only support 1st-order

gradient. (2) LieTensor supports parallel computing of gradient with the vmap

operator, which allows it to compute Jacobian matrices much faster. (3) Libraries

such as LieTorch, JaxLie [1239], and Theseus only support Lie groups, while Py-

114 Differentiable Optimization

Pose supports both Lie groups and Lie algebras. As a result, one can directly call

the Exp and Log maps from a LieTensor instance, which is more flexible and

user-friendly. Moreover, the gradient with respect to both types can be automat-

ically calculated and back-propagated. The readers may find a list of supported

LieTensor operations in [2] and the tutorial of PyPose is available in [4]. The

usages of a LieTensor and its automatic differentiation can be found at https:

//github.com/pypose/slambook-snippets/blob/main/lietensor.ipynb.

4.4.2 Implementation of Differentiable Optimization

To enable end-to-end learning with bilevel optimization, one need to integrate gen-

eral optimizers beyond the gradient-based methods such as SGD [936] and Adam

[587] required by neural methods, since many problems in SLAM such as bundle

adjustment and factor graph optimization require other optimizations algorithms

such as constrained or 2nd-order optimization [58]. Moreover, practical problems

have outliers, hence one needs to robustify the loss as described in Chapter 3. Next

we consider an Iteratively Reweighted Least Squares (IRLS) approach to SLAM

as introduced in Section 3.3, and present the intuition behind the optimization-

oriented interfaces of PyPose, including solver, kernel, corrector, and strategy

for using the 2nd-order Levenberg-Marquardt (LM) optimizer.

Let us start by considering a weighted least square problem:

min
y

∑

i

(hi(xi)− zi)T Σi (hi(xi)− zi) , (4.42)

where h(·) is a regression model (Module), x ∈ Rn is the parameters to be op-

timized, hi deontes prediction for the i-th input sample, Σi ∈ Rd×d is a square

information matrix. The solution to (4.42) of an LM algorithm is computed by it-

eratively updating an estimate xt via xt ← xt−1 + δt, where the update step δt is

computed as:
∑

i

(Λi + λ · diag(Λi)) δt = −
∑

i

JT
i Σiri, (4.43)

where ri = hi(xi)− zi is the i-th residual error, Ji is the Jacobian of h computed

at xt−1, Λi is an approximated Hessian matrix computed as Λi = JT
i ΣiJi, and λ

is a damping factor. To find step δt, one needs a linear solver:

A · δt = β, (4.44)

where A =
∑

i (Λi + λ · diag(Λi)), β = −∑i J
T
i Σiri. In practice, the square ma-

trix A is often positive-definite, so we could leverage standard linear solvers such as

Cholesky. If the Jacobian Ji is large and sparse, we may also use sparse solvers such

as sparse Cholesky [167] or preconditioned conjugate gradient (PCG) [467] solver.

In practice, one often introduces robust kernel functions ρ : R 7→ R into (4.42) to

https://github.com/pypose/slambook-snippets/blob/main/lietensor.ipynb
https://github.com/pypose/slambook-snippets/blob/main/lietensor.ipynb

4.4 Modern Libraries 115

reduce the effect of outliers:

min
y

∑

i

ρ
(
rTi Σiri

)
, (4.45)

where ρ is designed to down-weigh measurements with large residuals ri. In this

case, we need to adjust (4.43) to account for the presence of the robust kernel.

A popular way is to use an IRLS method, Triggs’ correction [1111], which is also

adopted by the Ceres [22] library. However, it needs 2nd-order derivative of the ker-

nel function ρ, which is always negative. This can lead 2nd-order optimizers includ-

ing LM to be unstable [1111]. Alternatively, PyPose introduces an IRLS method,

FastTriggs, which is faster yet more stable than Triggs by only involving the

1st-order derivative:

rρi =
√
ρ′(ci)ri, Jρ

i =
√
ρ′(ci)Ji, (4.46)

where ci = rTi Σiri, r
ρ
i and Jρ

i are the corrected model residual and Jacobian due to

the introduction of kernel functions, respectively. More details about FastTriggs

and its proof can be found in [1], while IRLS was introduced in Section 3.3.

A simple LM optimizer may not converge to the global optimum if the initial

guess is too far from the optimum. For this reason, we often need other strate-

gies such as adaptive damping, dogleg, and trust region methods [704] to re-

strict each step, preventing it from stepping “too far”. To adopt those strategies,

one may simply pass a strategy instance, e.g., TrustRegion, to an optimizer.

In summary, PyPose supports easy extensions for the aforementioned algorithms

by simply passing optimizer arguments to their constructor, including solver,

strategy, kernel, and corrector. A list of available algorithms and examples can

be found in [3]. The usages of a 2nd-order optimizatoin can be found at https:

//github.com/pypose/slambook-snippets/blob/main/optimization.ipynb.

4.4.3 Related Open-source Libraries

Open-source libraries related to differentiable optimization can be divided into three

groups: (1) linear algebra, (2) machine learning libraries, and (3) specialized opti-

mization libraries.

Linear Algebra Libraries are essential to machine learning and robotics re-

search. NumPy [829], a linear algebra library for Python, offers comprehensive

operations on vectors and matrices while enjoying higher running speed due to its

underlying well-optimized C code. Eigen [420], a high performance C++ linear al-

gebra library, has been used in many projects such as TensorFlow [9], Ceres [22],

GTSAM [260], and g2o [410]. ArrayFire [734], a GPU acceleration library for C,

C++, Fortran, and Python, contains simple APIs and provides GPU-tuned func-

tions.

https://github.com/pypose/slambook-snippets/blob/main/optimization.ipynb
https://github.com/pypose/slambook-snippets/blob/main/optimization.ipynb

116 Differentiable Optimization

Machine Learning Libraries focus more on operations on tensors (i.e., high-

dimensional matrices) and automatic differentiation. Early machine learning frame-

works, such as Torch [236], OpenNN [836], and MATLAB [745], provide primitive

tools for researchers to develop neural networks. However, they only support CPU

computation and lack concise APIs, which plague engineers using them in applica-

tions. A few years later, deep learning frameworks such as Chainer [1105], Theano

[31], and Caffe [525] arose to handle the increasing size and complexity of neural

networks while supporting multi-GPU training with convenient APIs for users to

build and train their neural networks. Furthermore, the recent frameworks, such

as TensorFlow [9], PyTorch [856], and MXNet [190], provide a comprehensive and

flexible ecosystem (e.g., APIs for multiple programming languages, distributed data

parallel training, and facilitating tools for benchmark and deployment). Gvnn [437]

introduced differentiable transformation layers into Torch-based framework, lead-

ing to end-to-end geometric learning. JAX [116] can automatically differentiate

native Python and NumPy functions and is an extensible system for composable

function transformations. In many ways, the existence of these frameworks facili-

tated and promoted the growth of deep learning. Recently, more efforts have been

taken to combine standard optimization tools with deep learning. Recent work like

Theseus [880] and CvxpyLayer [25] showed how to embed differentiable optimiza-

tion within deep neural networks. PyPose [1147] incorporates 2nd-order optimizers

such as Gaussian-Newton and Levenberg-Marquardt and can compute any order

gradients of Lie groups and Lie algebras, which are essential to robotics.

Other Specialized Optimization Libraries have been developed and lever-

aged in robotics. To mention a few, Ceres [22] is an open-source C++ library for

large-scale nonlinear least squares optimization problems and has been widely used

in SLAM. Pyomo [441] and JuMP [300] are optimization frameworks that have

been widely used due to their flexibility in supporting a diverse set of tools for

constructing, solving, and analyzing optimization models. CasADi [39] has been

used to solve many real-world control problems in robotics due to its fast and ef-

fective implementations of different numerical methods for optimal control. Pose-

and factor-graph optimization also play an important role in robotics. For exam-

ple, g2o [410] and GTSAM [260] are open-source C++ frameworks for graph-based

nonlinear optimization, which provide concise APIs for constructing new problems

and have been leveraged to solve several optimization problems in SLAM.

Optimization libraries have also been widely used in robotic control problems.

To name a few, IPOPT [1143] is an open-source C++ solver for nonlinear program-

ming problems based on interior-point methods and is widely used in robotics and

control. Similarly, OpenOCL [598] supports a large class of optimization problems

such as continuous time, discrete time, constrained, unconstrained, multi-phase,

and trajectory optimization problems for real-time model-predictive control. An-

other library for large-scale optimal control and estimation problems is CT [391],

which provides standard interfaces for different optimal control solvers and can be

4.5 Final Considerations & Recent Trends 117

extended to a broad class of dynamical systems in robotic applications. Drake [1083]

has solvers for common control problems and that can be directly integrated with

its simulation tool boxes. Its system completeness made it favorable to researchers.

4.5 Final Considerations & Recent Trends

Deep learning methods have witnessed significant development in recent years

[1281]. As data-driven approaches, they are believed to perform better on visual

tracking than traditional handcrafted features. Most studies on the subject em-

ployed end-to-end structures, including both supervised methods such DeepVO

[1161] and TartanVO [1165] and unsupervised methods such as UnDeepVO [663]

and Unsupervised VIO [1171]. It is generally observed that the supervised ap-

proaches achieve higher performance compared to their unsupervised counterparts

since they can learn from a diverse range of ground truths such as pose, flow, and

depth. Nevertheless, obtaining such ground truths in the real world is a labor-

consuming process [1164].

Recently, hybrid methods have received increasing attention as they integrate

the strengths of both geometry-based and deep-learning approaches. Several stud-

ies have explored the potential of integrating Bundle Adjustment (BA) with deep

learning methods to impose topological consistency between frames, such as attach-

ing a BA layer to a learning network such as BA-Net [1072] and DROID-SLAM

[1086]. Additionally, some works focused on compressing image features into codes

(embedded features) and optimizing the pose-code graph during inference such as

DeepFactors [244]. Furthermore, DiffPoseNet [848] is proposed to predict poses and

normal flows using networks and fine-tune the coarse predictions through a Cheiral-

ity layer. However, in these works, the learning-based methods and geometry-based

optimization are decoupled and separately used in different sub-modules. The lack

of integration between the front-end and back-end may result in sub-optimal per-

formance. Besides, they only back-propagate the pose error “through” bundle ad-

justment, thus the supervision is from the ground truth poses. In this case, BA

is just a special layer of the network. Recently, iSLAM [354] connects the front-

end and back-end bidirectionally and enforces the learning model to learn from

geometric optimization through a bilevel optimization framework, which achieves

performance improvement without external supervision. Some other tasks can also

be formulated as bilevel optimization, e.g., reinforcement learning [1033], local plan-

ning [1212], global planning [193], feature matching [1262], and multi-robot routing

[426].

5

Dense Map Representations
Victor Reijgwart, Jens Behley, Teresa Vidal-Calleja, Helen Oleynikova,

Lionel Ott, Cyrill Stachniss and Ayoung Kim

We now shift our focus to a different aspect of SLAM, specifically its mapping com-

ponent. The mapping problem is approached with the assumption that the robot’s

pose is known, and the objective is to construct a dense map of its surroundings.

Indeed, typical approaches first solve for the robot trajectory using the SLAM back-

end —as discussed in the previous chapters— and then reconstruct a dense map

given the trajectory. In this chapter, we illustrate the details of the dense map

representation, focusing on the map elements, data structures, and methods.

Early mapping approaches were predominantly based on sparse, landmark-based

solutions as discussed in Chapter 1 that extract only a few salient features from

the environment. However, the increase in compute capabilities paired with the

advent of accurate 3D range sensors, such as mechanical 3D LiDARs or RGB-D

cameras that provide detailed 3D range measurements at high frequencies, led to an

increasing research interest in dense map representations. Dense maps are crucial

for downstream tasks that require a detailed understanding of the environment,

such as planning, navigation, manipulation and precise localization. This chapter

explains how these dense methods leverage the full spectrum of range sensor data

to refine and update comprehensive maps.

The chapter begins by presenting key sensor types that facilitate dense mapping,

primarily focusing on range sensors that produce detailed range measurements.

The chapter continues with an introduction to fundamental representation elements

and data structures in Section 5.2, that we then tailor to specific applications in

Section 5.4. Contrasting with sparse landmark-based mapping, the choice of a dense

map representation hinges on the sensor types used and the intended downstream

applications. Key factors influencing the selection of the representation type are

summarized in Section 5.5.

5.1 Range Sensing Preliminaries

Before we delve into dense map representations, we briefly summarize a key sensing

modality, range sensors, often used for SLAM, providing the necessary context for

the following discussion. Such sensors produce range measurements to the objects

5.1 Range Sensing Preliminaries 119

Figure 5.1 Single ray and multi-ray types for LiDAR sensors. Sample data from real-world
is visualized to show RGB, depth, and LiDAR range image.

in the environment, including LiDAR sensors, time-of-flight (TOF) cameras, RGB-

D cameras, and stereo cameras. Here, we concentrate on the most commonly used

LiDAR sensors and RGB-D cameras that are predominately used in outdoor and

indoor environments for SLAM and dense mapping.

5.1.1 Sensor Measurement Model

Let us start with a brief summary of the sensing mechanism and associated measure-

ment model. In the case of LiDAR sensors,1 the range measurements are generated

using laser beams that are emitted, reflected by the environment, and then detected

[941]. By measuring the time temit when the laser beam is emitted and the time of

detection tdetect, we can derive the range r using the speed of light c as follows:

r =
c (tdetect − temit)

2
. (5.1)

A single ray measurement can be enhanced into a two-dimensional (2D) or three-

dimensional (3D) collection of points by employing an array of rays that move in a

designated pattern, such as a 360-degree rotation or a specific shape. The collection

of points generated by the sensor is referred to as point clouds, which serve as the

fundamental element for creating maps. The LiDAR measurements can also be

represented using a range image R ∈ RB×M , where the range of each of the B

beams is stored for a single complete turn of the sensor, i.e., a complete 360◦

rotation. Thus, we have M measurements in the horizontal field of view of the

sensor for each of the B beams.

Another commonly used range sensor in robotics applications are RGB-D cam-

eras, such as Microsoft’s Kinect and Azure Kinect DK, and Intel’s RealSense. RGB-

D cameras provide besides the RGB image IRGB ∈ R3×H×W of height H and width

W , a depth map ID ∈ RH×W of the same dimension, where each pixel location

contains the depth or range. To generate the depth map ID, early RGB-D cameras

1 We illustrate this chapter using simple 2D and mechanically rotating 3D LiDARs, while other
solid-state and flash LiDARs will be introduced in Chapter 8

120 Dense Map Representations

use a structured infrared (IR) light source with a known pattern that is projected

onto the environment. The distance of individual pixels is then determined from

the distortion of the known pattern. As sunlight usually interferes with this sensing

mechanism, such RGB-D cameras using projected light are mainly used in indoor

environments. Fortunately, newer generations of RGB-D sensors introduce an IR

texture projector or TOF less affected by interferences, supporting outdoor appli-

cations.

5.1.2 Conversion to Point Cloud

Using the intrinsics of a range sensor (e.g., a LiDAR or RGB-D camera), we can

convert a range image R or a depth map ID into a point cloud P = {p1, . . . ,pN},
where points pi ∈ R3 are expressed in the local coordinate frame of the sensor. The

point is the most fundamental unit in the map representation and will be discussed

further in this chapter.

Figure 5.2

For conversion from LiDAR, the sensors provide an

intrinsic calibration for each beam (ϕi,j , θi,j), where 1 ≤
i < B and 1 ≤ j < M , consisting of the azimuthal angle

ϕi,j ∈ [0, 2π] and polar/inclination angle θi,j ∈ [−π, π]

as depicted in Figure 5.2. Using these known angles of

each beam, we can convert a range measurement ri,j
at Ri,j into a three-dimensional point p = (x, y, z) as

follows:

x = ri,j cos(θi,j) cos(ϕi,j) (5.2)

y = ri,j cos(θi,j) sin(ϕi,j) (5.3)

z = ri,j sin(θi,j) (5.4)

For an RGB-D camera, we commonly use a pinhole camera model to convert

the ranges ru,v = Ru,v at pixel location (u, v) into a three-dimensional coordinate.

For this, we use the intrinsics of the camera K ∈ ℜ3×4 to convert a homogeneous

coordinate x = (u, v, ru,v) in the image coordinate into a point p in the camera

coordinate:

p = K−1x. (5.5)

The resulting point cloud is said to be organized or unorganized depending on how

the points are structured. When converted from a depth map, the point cloud is

organized, and each point location is structured with respect to the pixel location of

the associate depth map. This can be exploited to compute neighboring points by a

simple indexing. On the other hand, the point cloud generated by a LiDAR sensor

is more complicated. For example, the generated point cloud is organized in the

static 3D mechanical LiDAR. However, the organization of the point cloud no longer

5.2 Foundations of Mapping 121

Figure 5.3 Examples of common dense representations.

holds in the case of non-repeated pattern solid-state, flash LiDARs, or mechanically

rotating LiDAR under motion distortion. In many cases, the unorganized points

are distorted due to the movement of the sensor and measurement neighborhood

in the range image is not necessarily correlated to spatial neighborhood. Therefore,

an estimate of the motion of the sensor while completing a sweep, e.g., inertial

measurement unit (IMU) measurements or odometry information, together with

the information of the per-beam time is necessary to undistort an LiDAR point

cloud to account for the motion of the sensor [1137, 264, 1226]. For more details on

motion distortion and compensation, refer to Chapter 8.

5.2 Foundations of Mapping

A map, generated with sensors’ information and data processing approaches, is

a symbolic structure that models the environment [1095, 142]. One thing to be

noted here is that the map representation can be diverse, and many different rep-

resentations exist for the same spatial information (as in Figure 5.3). The choice

and accuracy of the scene representation strongly impact the performance of the

task at hand, and thus the representation should be determined by the use case.

For instance, motion estimation and localization in robotics favor sparse repre-

sentation, such as 3D points features [793, 903] in order to exploit these features

for consistent robot pose estimation. On the other hand, a key objective of scene

reconstruction is an accurate, dense, and high-resolution map, for example, for

inspection purposes [514, 828, 928]. Similarly, path planning tasks require dense

information such as obstacle occupancy or closest distance to collision for obsta-

cles avoidance [780, 312, 1114]. Overall, this chapter examines the following three

questions.

Q1. What quantity do we need to estimate for dense mapping? The

most commonly used quantities to represent the environment are occupancy and

distance. Occupancy is a key property in mapping for distinguishing between free

and occupied space. Distance estimation provides a more robot-centric interpre-

tation of free and occupied space by measuring the range to nearby surfaces or

objects.

122 Dense Map Representations

Figure 5.4 The representation can be either explicit or implicit. The illustration is simpli-
fied for clarity. In reality, the abstraction is not clearly separable and can often be applied
in a combined manner.

Q2. How should the world be represented? This is the question of what

space abstraction we use for representation. Broadly, representation can be either

explicit or implicit. Explicit space abstractions are further classified based on the

type of geometry they utilize, while implicit representation can be categorized based

on their choice of functions. The list of abstraction types are illustrated in Figure

5.4.

Q3. What data structure and storage should be used? The chosen repre-

sentation should be stored in memory for later use. The data structure and storage

method should be selected based on the specific application and intended usage.

In the literature, a wide variety of approaches exist for generating a dense rep-

resentation of the scene using range sensors, varying in terms of their estimated

quantities, space abstraction, storage structure, continuity, and application areas.

Beginning the discussion on different representations, we first explore the primary

quantities estimated from range measurements. The focus is on understanding the

key quantities predominantly estimated in the mapping phase. We will provide a

concise overview of the basic definitions of each quantity, elaborating their signifi-

cance and the specific contexts in which they play a crucial role.

5.2.1 Occupancy Maps

Since their introduction over three decades ago by Elfes and Moravec [312, 780], oc-

cupancy grids have been widely used. Their simplicity and computational efficiency

have made occupancy grids2 popular when mapping indoor (and even outdoor)

environments. In the simplest scenario, the estimated quantity is the probability

of a cell being occupied. In this case, the occupancy of the cell is modeled as a

probability of that cell containing an obstacle, with occupancy equal to 1 for occu-

2 Occupancy mapping can be conducted without grid-based methods (e.g., GPOM [822]). In this
chapter, we will focus on grid-based mapping for simplicity.

5.2 Foundations of Mapping 123

pied cells and 0 for cells deemed empty. Essentially occupancy mapping is a binary

classification problem to predict the binary class probability of each cell.

Figure 5.5 A simple ray-casting example in 2D. Given a range measurement at a certain
(computed or estimated) azimuth, the return of the range measurement indicates the
existence of an obstacle.

Given a set of sensor measurements z1:t and a set of sensor poses x1:t, the proba-

bility of being occupied for each cell in the map m is modeled as p(m|z1:t,x1:t). A

sample map is shown in Figure 5.5. Assuming that each cell mk is independent and

that the measurements are conditionally independent, the update of occupancy can

be formulated efficiently using the well-known log-odds form [780],

l(mk|z1:t) = l(mk|z1:t − 1) + l(mk|zt) , (5.6)

where l(·|·) = log(o(·|·)), and o(·|·) is the odds form:

o(mk|z1:t) =
p(mk|z1:t)

1− p(mk|z1:t)
. (5.7)

The main advantage of occupancy mapping is shown in (5.6), where only the

previous occupancy value and the inverse sensor model l(mk|zt) are needed to up-

date the probability through a simple addition. Despite these benefits, occupancy

grids rely on very strong assumptions of the environment to be efficient. Notably,

the assumption that the likelihood of occupancy in one cell is independent of other

cells disregard spatial correlations that can be important to infer occupancy in

unobserved nearby regions. Additionally, traditional occupancy grids require the

discretization of the environment be defined a priori which makes the spatial reso-

lution constant throughout the map.

5.2.2 Distance Fields

Another way of representing the geometry surrounding the robot is not through

probabilities of occupancy, but rather by describing the boundary between free and

occupied space. In an ideal world, we could describe the shape and location of this

124 Dense Map Representations

boundary using an analytical function in three variables (x, y and z) which reaches 0

whenever a point p = (x, y, z) lies on the surface. In other words, the function’s zero

crossings correspond to the surface itself. Such a function is known as an implicit

surface. By convention, the function’s sign is negative when p lies inside an object

and positive outside. A simple example in Figure 5.6 illustrates how this implicit

function values are determined.

1.0 0.5 0.0 0.5 1.0
X

1.0

0.5

0.0

0.5

1.0
Y

1.0

0.5

0.0

0.5

1.0

Figure 5.6 A solid 2D disk represented as an explicit surface (black outline) and implicit
surface (colored field). The implicit surface function is negative inside the object (blue)
and positive outside (red). Note how the function’s zero crossings correspond to the surface
itself.

There are many advantages to continuous implicit surface representations. Given

that there is no fixed resolution, they can represent objects of arbitrary shapes at

any level of detail. Furthermore, they make it possible to check if a given point in

space is inside or outside an obstacle by simply evaluating the function’s sign.

Different types of functions can be employed to model implicit surfaces, with

the Euclidean Signed Distance Function (ESDF) being a prevalent option. At any

query point, the ESDF expresses the distance to the nearest surface (indicated by

the magnitude of the ESDF) and whether the point is inside an obstacle (indicated

by the sign of the ESDF). ESDF representations are commonly used by accelerated

geometric algorithms for tasks such as collision checking. Furthermore, high-quality

proximity gradients can be derived from the ESDF for optimization-based motion

planning and shape registration.

The ESDF is computed by finding the (Euclidean) closest surface point for each

point in the map. For a known surface, this can efficiently be done using techniques

such as Fast Marching. However, for surface estimation, the projective signed dis-

tance is more commonly used as it can efficiently be computed from measurements

and is better suited for filtering. Given a measurement ray going through a query

point, the projective distance is defined as the distance from the beam’s endpoint to

the query point along the ray. This eliminates the need to search the closest point

5.3 Map Representations 125

explicitly. Although the projective distance overestimates the Euclidean distance,

its zero crossings (the estimated surface) remain correct. The standard approach of

estimating implicit surfaces, proposed by Curless and Levoy [242] and popularized

in the field of robotics by KinectFusion [807], combines the projective signed dis-

tances for all measurements using a simple weighted average. To reduce the impact

of overestimates, the projective signed distance function is typically clamped to a

fixed range, named the truncation band, in which case it is called the Truncated

Signed Distance Function (TSDF). Note that ESDFs can efficiently be computed

from TSDFs and occupancy maps, as will be described in Section 5.4.4.

5.2.3 Occupancy Maps or Distance Fields?

Being volumetric methods, a shared aspect of these estimated quantities in occu-

pancy and implicit representations is that they model the geometry by estimating

a quantity of interest everywhere in the observed volume. However, each represen-

tation fundamentally prioritizes different things. Which option is best, therefore,

depends on the application. We will briefly summarize two key differences.

Directness in modeling: Given that measurement rays directly tell us which

parts of space are free, occupied or unobserved, maps based on occupancy proba-

bilities can be updated using fewer heuristics and assumptions. In contrast, implicit

surfaces typically model the distance to the surface. This can be computed exactly

for a known surface, but not from partial measurements. For surface estimation,

they therefore rely on distance proxies such as the previously introduced TSDF.

Smoothness: Implicit surface maps are inherently smoother than occupancy

maps, which model a binary property. The smoothness of implicit surfaces has many

benefits. Most importantly, it makes them differentiable. The resulting proximity

gradients are valuable for many applications. Smoothness also reduces the approx-

imation errors resulting from discretization and makes it possible to obtain good,

sub-pixel resolution estimates through interpolation. However, since discontinuities

cannot be represented smoothly, implicit surfaces tend to miss thin obstacles.

5.3 Map Representations

5.3.1 Explicitness of Target Spatial Structures

As summarized in Figure 5.4, the representation can be classified based on their ex-

plicitness and target space. In 3D mapping, representing volume is straightforward;

however, surfaces are equally important in robotic mapping for enabling down-

stream tasks. We can consider four major categorization: explicit surface, implicit

surface, explicit volume, and implicit volume representations.

For surfaces, we can either explicitly or implicitly represent a surface. Defined

as a 2D manifold, explicit type of representation aims to characterize the space

126 Dense Map Representations

in terms of their boundary of the objects in the scene. The simplest abstraction

that can represent the boundary is directly the point cloud produced by the range

sensors. Another general representation of the surface is the polygon mesh (Section

5.4.3), which comprises vertices, edges, and faces. These meshes have the ability

to encode the directed surfaces of a volume by forming connected closed polygons,

more commonly triangles. Surfels (Section 5.4.2) are also popular abstraction widely

used in mapping. Surface representations are a key for any visualization application,

but also are used for rendering simulated environments, augmented reality or for

computed aided design and 3D printing.

Similar strategies are employed in 3D volume modeling. Naive point-based rep-

resentations are commonly used in LiDAR SLAM. Additionally, occupancy or

distance-based voxels (Section 5.4.4) are popular choices for explicit representation.

When storing volumetric maps, careful consideration of data storage is necessary

to minimize computational costs. Implicit representations for volumetric mapping

are also utilized, typically through functions. GP (Section 5.4.5) and Hilbert maps

(Section 5.4.6) are well-known examples of implicit representations.

5.3.2 Types of Spatial Abstractions

5.3.2.1 Points

Given range measurements, a straight-forward dense map representation is using

clouds. For generation, we accumulate the point clouds Pt recorded at time t in the

local coordinate frame F t using the estimated global pose T 1
t in a global map point

cloud PM . Also common practice is to assume our global coordinate frame of PM

is given in the coordinate frame of the first point cloud F1.

Since simply accumulating point clouds P1, . . . ,Pt does not scale to larger envi-

ronments, a common strategy is to discard redundant measurements of the same

spatial location. To this end, most methods [1264, 264, 1137] use efficient nearest

neighbor search, such as voxel grids or hierarchical tree-based representations (see

Section 5.3.3), to subsample and store the point clouds, e.g.,, store only a limited

number of points per voxel [264, 1137] or only specific points that meet a certain cri-

terion are stored [1264]. Additionally, a representation of only keyframes where only

a few point clouds are explicitly stored is possible, but this requires to determine

when a keyframe or submap needs to be generated.

Being the most elemental representation form, a point cloud map can be con-

verted into other representations, e.g., a mesh via Poisson surface reconstruc-

tion [1135] or a Signed Distance Function (SDF) via marching cubes [1136]. Unfor-

tunately, this is feasible only with additional data, such as the viewpoint of a point’s

measurement. Yet, this information may be lost when merging multiple measure-

ments into a point cloud map. Therefore, assumptions about the surface’s direction

are often required to discern inside or outside regions.

5.3 Map Representations 127

(a)

(b)

Figure 5.7 Qualitative comparison of maps generated by accumulating point clouds and
surfels from a sequence of LiDAR scans from the KITTI dataset [381] Sequence 07. (a)
Point cloud map. The brightness of points indicates the remission of the LiDAR measure-
ments. (b) Corresponding surfel map based on circular disks. The complete map with all
accumulated point clouds use 2.95GB, while the corresponding surfel map by SuMa [73]
uses only 160MB.

5.3.2.2 Surfels

While point cloud maps directly represent the measurements, the stored points

do not contain surface information or can represent from which direction a point

has been measured. With surfels [877], we can encode such information by adding

directional information to a point. Surfels are commonly represented via circular or

elliptic discs [557, 73, 1181, 110, 109], or more generally ellipsoids [1046, 1047, 290,

1313] modeled with a a Gaussian. So-called splatting [1313, 109] allows to integrate

texture information but also blend overlapping surfels into coherent renderings of

a specific viewpoint.

A commonly employed circular surfel representing a circular disk is defined by

a location p ∈ R3, a normal direction n ∈ R3, and a radius r ∈ R. As rendering

primitive such surface patches can be efficiently rendered using the capabilities of

modern graphics processing units (GPUs), which can be exploited to efficiently

128 Dense Map Representations

render arbitrary views. This accelerates point-to-surfel associations and leads to

the substantial memory reduction.

Figure 5.7 qualitatively compares a point cloud-based and a surfel-based map

representation. A dense point cloud can accurately represent the environment with

a high level of detail, but at the cost of memory. In contrast, while losing fine details

as multiple measurements get aggregated into a single surfel, significant memory

usage can be reduced while preserving the main structural details of larger surfaces.

Closely related to the explicit geometric representation of surfaces via surfels,

i.e., small circular surface patches, is the representation via a normal distributions

transform (NDT) [89, 1041]. Using NDT, the space is subdivided into voxels and the

points inside a voxel are approximated via a normal distribution N (µ,Σ), having

estimated mean µ and covariance from the enclosed points Σ. The eigenvalues

λ1 < λ2 < λ3 and corresponding eigenvectors v1,v2,v3 of the covariance can be

used to estimate the surface properties inside a voxel. For planar surfaces (λ1 ≪ λ2),

the eigenvector v1 of the smallest eigenvalue λ1 corresponds to the surface normal.

Thus, for planar surfaces the NDT represents a surfel, and can also more accurately

represent point distributions that cannot be approximated via a surfel. In that sense,

the NDT is a hybrid representation that is explicit due to the space division into

a voxel grid, but also implicit due to the representation of voxels via a normal

distribution which continuously represents the space inside a voxel.

5.3.2.3 Meshes

While describing local surface properties, both point clouds and surfel maps are still

relatively sparse as they do not model the surface’s connectivity. One way to get a

more complete understanding is to use meshes, which describe the surface as a set

of points that are connected to form a collection of polygons. This, in turn, makes it

possible to represent watertight surfaces, query and interpolate new surface points,

and efficiently iterate along a connected surface.

In meshing terminology, each polygon is referred to as a face, and each corner

point as a vertex. The most common types are triangle meshes, where each face is

bounded by three vertices, and quad meshes, whose faces are bound by four vertices.

Note that a polygon, or face, can always be broken down into an equivalent set of

triangles; hence, triangle meshes are not only the simplest but also the most general.

A mesh is a very flexible and memory-efficient representation because the number

of faces and vertices can be directly adapted to the surface complexity and required

detail. For example, a plane of any size can be represented with just two triangular

faces and four vertices. Furthermore, meshes are well-suited for parallel processing

and rendering. Meshes are often used in applications that overlap with computer

graphics, such as rendering, surface analysis, manipulation, and deformation, and

more generally in applications involving digital models, simulation, or surface-based

algorithms, such as path planning for ground robots.

5.3 Map Representations 129

5.3.2.4 Voxels

Point clouds and meshes are well suited to represent properties of the environment

that are defined along surfaces. However, certain estimated quantities, including

occupancy and Signed Distance, are defined throughout the entire volume. One

straightforward way to store and process volumetric properties is to discretize them

over a regular grid. Discretized occupancy and Signed Distance maps are called

occupancy grids and Signed Distance Fields, respectively.

Generalizing the concept of 2D pixels, the cells in a 3D grid are referred to as

voxels. Given a grid’s regular structure, each voxel can easily be assigned a unique

index and stored in a data structure. Note that a voxel is merely a container or, more

formally, a space partition. The significance of its contents varies from one method

to another. In a classic occupancy grid, a voxel’s value represents the likelihood

that any point in the voxel is occupied. Hence, the occupancy at an arbitrary point

in the map is equal to the value of the voxel that contains the point. However, a

voxel’s value does not have to represent a constant little cube. For example, voxels

in a Signed Distance Field estimate the signed distance at each voxel’s center.

To retrieve the signed distance at an arbitrary point, one would therefore query

the voxels that neighbor the point and obtain the point’s value using interpolation.

Finally, some applications even use (sparse) voxel grids to store and efficiently query

non-volumetric properties, such as points or surface colors.

5.3.2.5 Continuous Functions

Functions are a key abstraction for mapping in a continuous manner. The problem of

mapping in this case is reduced to fitting a parametric or non-parametric function,

i.e., solving a regression problem. Most of the above-mentioned space abstractions

require the discretization of the environment to be defined a priori, which usually

makes the spatial resolution constant throughout the map. Continuous functions,

however, parametric or non-parametric, give more flexibility allowing the resolution

to be recomputed and also provide interpolation capabilities to fill up data gaps.

Some parametric functions such as infinite lines in 2D [1110] and planes in

3D [542, 382, 1110] require making strict assumptions about the environment and

limit the representation of the scene. However, these representations are efficient

in terms of memory consumption and computational complexity. Control points-

based functions (e.g., B-splines [937]) or non-parametric (e.g., GP-based) have the

ability to model the environment with fewer assumptions, still in a continuous man-

ner. From occupancy [822], implicit surface [1183, 643], distance fields [1192], and

surface itself [1126], GP-based representations are a popular choice to represent

the environment —despite their high computational complexity— because of their

probabilistic nature, which enables uncertainty quantification and inference over

both observed and unseen areas [386].

A key advantage of the continuous functions for mapping is that if they are chosen

130 Dense Map Representations

Figure 5.8 The algorithm works by projecting the cubes into the implicit surface, querying
the sign of the values at the corners of the cubes, and looking up which one of the 15 config-
urations these values map to. (Image credit: Ryoshoru, “Marching cubes”, licensed under
CC BY 4.0. Source: https://commons.wikimedia.org/wiki/File:MarchingCubesEdit.svg)

to be at least once differentiable they will be able to provide gradients. Gradient

information can be key for localisation to compute surface normals [1193], loop

closure to compute terrain features [385], for data fusion [643] and planning [1193]

applications.

5.3.2.6 Conversions

The abstractions listed above are not always used exclusively; they are often con-

verted from one form to another or employed simultaneously in multiple forms.

For instance, explicit geometry, such as points and meshes, can be transformed

into an implicit surface. One flexible method to compute the signed distance at any

point in space is through a closest point lookup, which can be performed against

any explicit geometry and on-demand, only when and where needed. Alternatively,

the signed distance can be computed across all points on a regular grid using

wavefront propagation, which can efficiently be implemented via the fast march-

ing method [996].

Conversely, it is common to convert implicit surfaces into mesh representations.

The original technique for converting distance fields into meshes is known as March-

ing Cubes [703]. The algorithm divides the implicit surface into a grid of fixed-size

cubes, which it processes independently. Each cube generates a set of triangle ele-

ments based on the implicit surface’s values at its eight corners (Figure 5.8). The

positions of their vertices are then refined through linear interpolation. Meshes, in-

cluding those from BIM or CAD models, can, in turn, be sampled to create points

or surfels.

Occasionally, a discrete representation must be converted into a continuous one.

This is typically achieved by solving an optimization problem over the parameters

5.3 Map Representations 131

(a)

(b)

Figure 5.9 (a) Mapping of logical grid coordinates to an underlying naive array-based
storage through a function f(·) that uniquely maps coordinates to linear indices. (b)
Storage of unordered data directly into an array structure.

of the continuous representation, minimizing the fitting error with respect to the

discrete data.

5.3.3 Data Structures and Storage

Previously introduced abstractions all need to be stored in memory. In this section,

we explore how various abstractions are stored in memory by examining the choice

of data structures along with their advantages and disadvantages.

5.3.3.1 Naive Data Storage

For many representations a simple dynamically resizeable array is a reasonable

starting point. For data with a pre-defined spatial partitioning two things are

needed, the type of data to store and a conversion function from a spatial coordinate

to an index coordinate. This is often used when building maps representing occu-

pancy or signed distance values. For irregular data, only the type of data to store

is needed, for example point clouds or surfels. The naive storage of ordered data

using a mapping function and unordered pointcloud data is illustrated in Figure

5.9.

The benefit of this naive approach is that it is simple and provides fast random

access. The trade-off is, that large amounts of memory can be required for such a

representation. Also while read and modify operations are fast, changing the spatial

dimension of the representation can be very costly as the content of the entire data

structure needs to be copied.

5.3.3.2 Hash Map

A natural extension to address the limitations of the naive storage method described

above is to use a hash table. This approach divides the map into shards, applies

132 Dense Map Representations

a hash function to convert the coordinates of each shard into a single value, and

stores the sharded data in a table indexed by this hash value. The shards are

typically chosen to represent map subregions with well-established coordinates, such

as cubes in a regular grid. These cubes may correspond to individual voxels or fixed-

size groups of voxels, referred to as voxel blocks. Alternatively, they can also store

other elements like points, surfels, or mesh fragments contained in their respective

subregions.

A hash table retains the fast O(1) look-up time of a fixed array while allowing

the map to grow dynamically without reallocation. Three key considerations must

be addressed when using a hash table for dense map storage:

1 Granularity of the sharding: Smaller shards improve sparsity by allocating

data only where necessary. However, the number of shards should not grow too

large, as this reduces the hash table’s insertion performance and memory effi-

ciency. This trade-off is particularly relevant when hash maps are used to store

properties that only exist along the surface.

2 Hash function: An ideal hash function distributes keys evenly across the table,

even when the data is spatially adjacent, as is often the case in mapping scenarios.

3 Collision resolution: The method for handling hash collisions, whether through

linear chaining (where each entry contains a linked list) or open addressing, sig-

nificantly affects the performance of the hash table.

In most cases, hash tables offer a good balance of fast access and efficient insertion

and deletion of data. However, they may require initial tuning to perform well for

a given application.

5.3.3.3 Tree-based Data Structures

Another option to efficiently store spatial data while only occupying memory for

relevant parts of the environment is to use hierarchical, tree-based representations.

Just like hash tables, trees generally enable efficient access and insertions. However,

their unique strength is their hierarchical structure, which can be used to efficiently

store multi-resolution data and speed up spatial operations such as nearest neigh-

bor search. The most prominent tree variants are kD-trees [79], bounding volume

hierarchies (BVH) [231], and octrees [759].

Among them, the octree efficiently searches neighbors with the capability to

integrate novel measurements incrementally. The octree is a tree representing each

node by a so-called octant that refers to a subspace. An octant is defined by a

center c ∈ R3 and an extent e ∈ R, corresponding to an axis-aligned bounding-box.

Each octant has potentially 8 child octants of extent 1
2e, as depicted in Figure 5.10.

Common practice is to store points only in the leaf octants (i.e., octants without

children) and determine subsets of points at inner octants of the tree structure by

tree traversal.

5.3 Map Representations 133

Figure 5.10 Example of an octree and its octants at different levels of the tree hierarchy.
Each level of an octree subdivides the space in more fine-grained octants. Note that deeper
levels of the octree only represent the occupied space.

To construct an octree, we iteratively divide space into octants within an axis-

aligned bounding box encompassing a point cloud P. Each division splits P into

subsets P1, . . . ,P8, corresponding to 8 child octants of half extent 1
2e. Non-empty

subsets Pi form child octants with center c and extent 1
2e, stopping at a specific

octant size or a minimal point count. Once constructed, updates and insertions can

efficiently be performed by traversing the tree structure and adding inner nodes as

needed. When new data is inserted that falls outside of the tree’s root octant, the

tree can be extended by creating a new root node and assigning the new data and

the old root node to its children.

In contrast to voxel grids, an octree represents only data-containing subspaces,

enabling efficient storage of occupied space. However, this memory efficiency re-

quires tree traversal to access specific leaf octants, potentially leading to increased

runtime to locate points. Additionally, the tree structure itself must be explicitly

represented, incurring extra memory overhead. Several recent approaches address

these memory overheads [313, 826, 77].

5.3.3.4 Hybrid Data Structures

To balance memory requirements and runtime for data access, several data struc-

tures combine the advantages of different data structures in specific ways, leading

to hybrid representations. In this tradeoff, we accept less efficient memory usage

but enable more efficient memory access.

For example, hashed voxel grids [814] combine the strengths of dense voxel grids

and hash tables by splitting the environment into fixed-sized, dense blocks (e.g.

8×8×8 voxels), which are in turn stored in a hash table. Thanks to the hash table’s

flexibility, blocks only need to be allocated in locations that contain meaningful

information (e.g. near the surface). At the same time, using a plain 3D array to

store the voxels inside each block ensures that operations remain simple, efficient,

and even suitable to GPU acceleration.

Another option is to combine hash tables with trees. In a similar vein to hashed

voxel grids, the VDB 3 data structure [798, 797] splits the space into hashed blocks,

but stores a hierarchical tree inside each block. This data structure provides all the

3 VDB refers to sparse volumetric data and stands for several different thing as Voxel Data Base or
Volumetric Data Blocks. Here we follow the terminology used in [798].

134 Dense Map Representations

Section Space Abstraction Type Representing Map Entities

5.4.1 Points Surface

5.4.2 Surfels Surface

5.4.3 Mesh Surface (connected)

5.4.4 Voxels Occupancy or Implicit surface

5.4.5 - 5.4.6 Continuous function Occupancy or Implicit surface

Table 5.1 Summary of presented mapping methods.

benefits of hierarchical trees, including multi-resolution representation and efficient

nearest neighbor lookups. However, since each block has a fixed size, the maximum

tree height is constant regardless of the size of the environment. Lookups and in-

sertions can therefore be performed in constant time, and significantly faster than

when using pure trees.

5.4 Constructing Maps: Methods and Practices

So far, we have explored the target quantities to estimate and the various space

abstractions available for mapping. In this section, we will examine in detail the

methods used to construct these map elements. The approaches are categorized by

their main space abstraction, as shown in Table 5.1. Note that some of the methods

use additional space abstractions to improve performance, for example, by grouping

points into voxels for more efficient storage and faster queries.

5.4.1 Points

As mentioned in Section 5.3.2.1, naively storing points by accumulating the mea-

sured point clouds will not scale to large-scale environments and will lead to re-

dundantly represented measurements. Therefore, most approaches [1264, 264, 1137]

adopt a point-based representation in combination with a voxel grid or octree to

represent the dense map. Moreover, the selection of a data structure is driven by the

requirement for efficient nearest neighbor searches, essential for conducting scan reg-

istration through iterative closest point (ICP), where point correspondences must

be iteratively established.

In order to handle large-scale environments, some methods, such as the well-

known LiDAR SLAM LOAM [1264], filter the raw point clouds to extract corner

and surface points thereby significantly reducing the point cloud size. A voxel grid

is applied to store only a subset of points in the map representation, pruning redun-

dant measurements. Stemming from the point-based voxelization used in LOAM,

several follow-up approaches [1004, 1150, 845, 673, 901, 1005] refine the extraction

of points [1004, 1150, 845], improve the optimization pipeline [845, 673], or integrate

information of an IMU [901, 1005].

5.4 Constructing Maps: Methods and Practices 135

Another branch of methods handles the amount of point cloud data differently

to avoid reliance on a capable feature extraction approach. Regularly sampling the

point clouds via a voxel grid [264] significantly reduces the number of points per

LiDAR scan and removes potentially redundant information. The key insight is

here that points in the voxel grid are not aggregated and averaged, but original

measurements are retained. Following these insights, Dellenbach et al. [264] and

Vizzo et al. [1137] use this strategy to downsample an input point cloud, only

storing a restricted number of points inside a voxel grid map.

Overall, as also mentioned in Section 5.3.2.1, the (hashed) voxel grid serves dual

purposes: it abstracts space by storing a limited number of point measurements per

voxel, and it facilitates accelerated nearest neighbor search through direct indexing

of neighboring voxels.

5.4.2 Surfels

For surfels, similar strategies can be applied as for point clouds, but notably Stückler

et al. [1046] and follow-up work by Dröschel et al. [290] use an octree to represent

surfels at multiple levels in the octree hierarchy for data association. The so-called

multi-resolution surfel maps indirectly represent the surfels via accumulated mean

and covariance statistics, like a NDT.

In contrast, Whelan et al. [1181] store surfels as a simple list and exploit efficient

rendering techniques to produce a projection for data association for RGB-D SLAM

in indoor environments. In this case, surfels are explicit geometric primitives and,

therefore, need to be directly handled to update the surfel properties (i.e.,, size

and direction) accordingly [557]. A key contribution of Whelan et al. is leveraging

a map deformation that directly deforms the surfels instead of relying on a pose

graph optimization, which enables the use of the measurements represented by the

surfels to deform the map on a loop closure detection. A similar strategy for map

deformation of surfels was employed by Park et al. [852].

Similarly, Behley et al. [73] target outdoor environments, which makes it neces-

sary to represent the surfels via multiple submaps of 100 m×100 m spatial extent

that can be off-loaded from GPU memory. In contrast to ElasticFusiuon [1181],

the approach relies on pose graph optimization but exploits that surfels can be

freely positioned and ties surfels to poses enabling a straight-forward deformation

of the map with pose-graph-optimized poses, which was also adopted by other ap-

proaches [1156].

5.4.3 Meshes

As introduced ealier, meshes offer an expressive, flexible way to represent connected

surfaces. Mesh generation methods can be split into two families of approaches.

136 Dense Map Representations

The first family directly converts the measured points into a mesh. In contrast, the

second family splits the problem into two steps: reconstructing an implicit surface,

followed by iso-surface extraction to get the final mesh (see Section 5.3.2.6).

Methods in the first family typically work directly by computing the Delaunay

triangulation of the input point set and identifying the subset of Delaunay triangles

that lie on the surface. A detailed overview of such methods is provided in [163].

When building directly from points, the mesh implicitly adapts itself to the sam-

pling density. This can be an advantage, as it provides adaptive resolution, but it

also means these methods are more sensitive to sampling irregularities and holes. In

practice, direct meshing methods are chosen when the entire surface can be sampled

densely with a very accurate depth sensor, for example, using surveying equipment.

The second family of approaches uses an implicit surface as an intermediate step,

to simplify the process of fusing and filtering the data before extracting the final

surface mesh. One intuitive way to generate the implicit surface from data is to

estimate the distance to the surface at each point on a regular grid. As described in

Section 5.2.2, the implicit surface’s sign must also be set according to whether each

point is inside or outside an object. This information is often determined based on

estimated surface normals, which can for example be obtained by applying Principal

Component Analysis (PCA) over a small surrounding area. However, as indicated

in [484], such methods may yield implicit surfaces that are discontinuous. Tack-

ling this issue, Carr et al. [161] model the implicit surface using a collection of

Radial Basis Functions (RBFs) and fit these to the input points by solving a global

optimization problem. The resulting implicit surfaces are smooth by construction

and faithfully fill holes based on the global context. Unfortunately, solving the

underlying large, dense optimization problem is computationally expensive. Shen

et al. [1008] overcome this limitation by locally approximating the input points

using moving least squares (MLS). Going one step further, Poisson Surface Recon-

struction [553] fits the implicit function to the normals of the measured points by

solving a partial differential equation (PDE), resulting in a sparse, computationally

tractable optimization problem that is particularly robust to noise.

In robotics applications, constructing a mesh from a live sensor stream is often de-

sirable. One way to make surface reconstruction efficient enough to run in real-time

is to use incremental updates. TSDF-based surface reconstruction is particularly

popular in practice given its inherently incremental nature and general simplicity.

This method falls under the second family of approaches and estimates the implicit

surface by averaging projective distances. Since the cost of updating the TSDF, or

implicit surface in general, overshadows the cost of the mesh extraction, real-time

methods primarily focus on optimizing the former.

5.4 Constructing Maps: Methods and Practices 137

5.4.4 Voxels

Voxel-based methods are among the most commonly used volumetric represen-

tations in 3D reconstruction and robotics. Instead of covering a swath of existing

literature chronologically, this section will focus on concepts commonly encountered

in practice and organize them according to three fundamental decision criteria: the

chosen estimated quantity, data structure, and scalability considerations.

5.4.4.1 Methods by their Estimated Quantity

The first choice in a voxel-based mapping framework is which quantity to estimate,

with the most common options being occupancy (see Section 5.2.1) or a distance

metric (see Section 5.2.2). The previous discussion in Section 5.2.3 can be used to

decide between the two.

Since the introduction of the original continuous probabilistic occupancy mea-

surement model for sonar [780], simplified piecewise-constant models have been

developed to reduce computational costs [486]. This shift was influenced by the ad-

vent of LiDAR technology and the growing interest in transitioning from 2D to 3D

maps. More recently, Loop et al. [699] presented a continuous probabilistic model

that, instead of inflating objects, converges to an occupancy probability of 0.5 along

objects’ surfaces. Occupancy estimation, popular for collision avoidance due to its

superior recall, is limited by its discontinuous nature and uninformative gradients

compared to distance-based methods (see Section 5.2.3).

For distance metrics, we must not only estimate the positive part of the distance

field but also extrapolate negative distances behind the surface since the surface

is represented by the signed distance field’s zero-crossings. To limit the accuracy

impact of fusing imperfect positive and negative distances estimates (see Section

5.2.2), the updates are typically clamped to a small truncation band around the

surface boundary. However, distance-based methods remain prone to erasing geom-

etry. For example, when thin objects are observed from opposing sides, averaging

the observed positive and hallucinated negative distances makes the zero-crossings

flip around or disappear. Some works have analyzed the effect of the truncation

band and weight drop-offs on the quality of the final reconstruction [140]. Fun-

damentally, the problem can be reduced but not eliminated. Overall, the surfaces

estimated by TSDFs outperform occupancy methods along smooth surfaces at the

cost of lower recall on thin objects.

The distance information provided by TSDFs is inherently valuable. However,

instead of being conservative, TSDFs strictly overestimate the Euclidean distance.

To address this safety concern, voxblox [828] popularized incrementally building

ESDFs. Voxblox fuses the sensor data into a TSDF and then updates its ESDF

using a brushfire algorithm [636]. Subsequently, FIESTA [433] proposed a hybrid

approach that incrementally updates an ESDF map from an occupancy map in-

stead.

138 Dense Map Representations

5.4.4.2 Methods by Data Structure

The simplest data structure for volumetric mapping is a static 3D array. As shown

by KinectFusion [807], this data structure yields good results for small and fixed-

size scenes. However, many applications require the ability to dynamically expand

the map at runtime, while only allocating voxels where needed to save memory.

To address these concerns, Niessner proposed a voxel-block hashing scheme [814],

which groups the voxels into blocks (e.g., 8×8×8 voxels) that are stored in a hash-

map. This data structure was quickly adopted for TSDFs, providing constant-time

(O(1)) lookups and dynamic insertions. Of course, it can also be used to store

occupancy probabilities, as shown by FIESTA [433]. Compared to hashing voxels

individually, grouping them in blocks offers an adjustable trade-off between the

hash table’s size and the granularity at which voxels are allocated.

Naturally, voxels can also be stored using tree structures. Octomap [486] first

popularized using an octree to store occupancy probabilities and has been the de

facto standard for volumetric mapping for many years. A significant advantage of

using trees is that they inherently support multi-resolution, while a major limitation

is that encoding the tree’s structure introduces a significant memory overhead, and

that the cell lookup time is proportional to the tree’s height. Most recent approaches

address this limitation by leveraging hybrid data structures. Supereight [1129], for

example, proposes to use a standard (dynamic) octree for the first levels and static

octrees for the last few levels. These static octrees can be seen as octrees stored using

a fixed-sized array. This removes the memory overhead of encoding parent-child

relationships with pointers, at the cost of reducing granularity since static octrees

are allocated as a block. The VDB [798] data structure was first introduced for the

visual effects (VFX) industry and subsequently used by several volumetric mapping

frameworks [729, 1136]. As discussed in Section 5.3.3.4, it combines block-hashing

with trees to obtain the best of both worlds: good memory efficiency, hash-like

constant time lookups and insertions, and tree-like multi-resolution.

A practical consideration is that downstream tasks often demand storing ad-

ditional information, such as colors, semantics [407, 947] or an ESDF [828, 433]

alongside the occupancy probabilities or TSDF. Although virtually any data struc-

ture can be extended to support additional channels, the required implementation

effort scales with how complicated the underlying data structure is. This further

motivates using simple data structures (e.g. voxel-block hashing) or flexible, third-

party libraries.

5.4.4.3 Methods by Measurement Integration Algorithm

The algorithm used to update the map based on depth measurements is referred

to as the measurement integrator. It updates the estimated quantity for each ob-

served voxel by applying the measurement model. The two main approaches used

to integrate measurements are ray-tracing and projection-based methods.

5.4 Constructing Maps: Methods and Practices 139

For each measured point, ray tracing integrators cast a ray from the sensor to the

point and update all the voxels intersected by the ray. An advantage of this approach

is that it is very general, and only requires that the position of the sensor’s origin is

known. However, voxels may be hit by multiple rays, especially if they are near the

sensor. This leads to duplicated efforts, and handling the resulting race conditions

in parallel implementations creates implementation and performance overheads.

In contrast, projection-based methods directly iterate over the observed voxels

and look up the ray(s) needed to compute their update by projecting each voxel into

sensor coordinates. Iterating over the map instead of the rays inherently avoids race

conditions. Projection-based methods are, therefore, prevalent in multi-threaded

and GPU-accelerated volumetric mapping frameworks. The predictable access pat-

tern resulting from directly iterating over the map also reduces memory bottlenecks.

Yet, a major disadvantage is the need for explicit knowledge of the sensor’s full pose

and projection model. This method is also harder to use with disorganized point

clouds, including the clouds obtained after applying LiDAR motion-undistortion.

5.4.4.4 Methods by Scalability

Memory and computational costs are two of the main bottlenecks in volumetric

mapping. For fixed-resolution methods, the memory and computational complexi-

ties grow linearly with the map’s total volume and cubically with the chosen resolu-

tion. Reducing these complexities is of significant research interest, as it is necessary

to create detailed maps that scale beyond small, restricted volumes.

Early works in volumetric mapping mainly focused on reducing memory usage.

For example, Octomap [486] proposes to use its octree’s inner nodes to store their

children’s max or average occupancy. By recursively pruning out leaf nodes whose

estimated quantities are close to their parent, constant areas in the map are au-

tomatically represented with fewer, lower resolution nodes. This adaptation to the

environment’s geometry is very effective in practice since environments predomi-

nantly consist of free space. Furthermore, storing min, max, or average values in

the octree’s inner nodes could be valuable for downstream tasks, as it enables map

queries at lower resolutions and the use of hierarchical algorithms for tasks such as

fast collision checking or exploration planning. Yet, a core limitation of Octomap

is that it integrates all measurements at the highest resolution, meaning that the

scaling of its computational complexity remains cubic.

Multi-resolution can also be leveraged to reduce the computational cost of mea-

surement updates. Given that measurement rays are emitted at fixed angles, re-

sulting in fewer rays hitting distant geometry, it seems logical to lower the update

resolution as the distance increases. This can be achieved through multi-resolution

ray-tracing [294] or multi-resolution projective integration [1129]. Supereight2 [355]

reduces the computational complexity further by adjusting the update resolution to

the entropy of the measurement updates. Such methods significantly enhance the

update performance, yet a remaining challenge is that the map’s different resolution

140 Dense Map Representations

levels still have to be synchronized explicitly. One way to eliminate this synchro-

nization requirement is to encode only the differences between each resolution level,

instead of storing absolute values in each octree node. This can formally be done by

applying wavelet decomposition. Wavelet-encoded maps can efficiently be queried

at any resolution at any time. Using this property, wavemap [929] reduces the com-

putational complexity even further by updating the map in a coarse-to-fine manner.

In addition to adjusting the update resolution to the measurement entropy, it also

skips uninformative updates, such as when the occupancy for an area in the map

has converged to being free, and all measurements agree.

5.4.5 GPs

As mentioned in Section 5.3.2.5, formulating the mapping problem as a regression

problem is desired to obtain a continuous representation. Moreover, if the aim is

to limit the number of assumptions about the environment, solving a non-linear

regression problem with non-parametric methods is ideal. GP [916] is a stochastic,

non-parametric, non-linear regression approach. It allows estimating the value of

an unknown function at an arbitrary query point given noisy and sparse measure-

ments at other points. We already learned in Chapter 2.2 how GP can be used for

continuous time trajectory representation. As will be apparent, GP are also an ap-

pealing solution for mapping continuous quantities, and they have been extensively

used in the robotics literature to model continuously spatial phenomena with depth

sensors [1126, 822, 385, 582].

The information in GP models is contained in its meanm(x) and kernel functions

K(x,x′) and model the estimated continuous quantity as

f(x) ∼ GP (m(x),K(x,x′)) . (5.8)

Let X = {xj ∈ RD} be a set of locations with measurements y, with yj =

f(xj) + ϵj of the estimated quantity taken at the locations xj . For J number

of training pair (xj , yj), we assume the noise ϵj to be i.i.d following Gaussian

ϵj ∼ N (0, σ2
j). Given a set of testing locations X∗ = {x∗

n ∈ RD | n = 0, . . . , N},
we can express the joint distribution of the function values and the observed target

values as,
[
y

f∗

]
= N

(
1,

[
K(X,X) + σ2

j I K (X,X∗)

K (X∗,X) K (X∗,X∗)

])
, (5.9)

where K =
[
K(xi,xj)

]
ij

. Thus the conditional distribution of (f∗ | X,y,X∗) ∼
N
(
f∗, cov (f∗)

)
, with the mean equation is given by,

f∗ = K (X∗,X)
[
K(X,X) + σ2

j I
]−1

y, (5.10)

5.4 Constructing Maps: Methods and Practices 141

and the covariance equation is,

cov (f∗) = K (X∗,X∗)−K (X∗,X)
[
K(X,X) + σ2

j I
]−1

K (X,X∗) . (5.11)

Here, (5.10) and (5.11) are the predictive equations for the estimated quantitative.

GPs have proven particularly powerful to represent spatially correlated data,

hence overcoming the traditional assumption of independence between cells, charac-

teristic of the occupancy grid method for mapping environments. Gaussian Process

Occupancy Map (GPOM)s [822] collects sensor observations and the corresponding

labels (free or occupied) as training data; the map cells comprise testing locations,

which are related to the training data as shown in (5.9). After the regression is

performed using (5.10) and (5.11), the cell’s probability of occupancy is obtained

by “squashing” regression outputs into occupancy probabilities using binary clas-

sification functions.

In its original formulation GPOM is a batch mapping technique with cubic com-

putational complexity (O(J3+J2N)). Approaches that aim to tacking this compu-

tational complexity especially for incremental GP map building have been proposed

following this work, for example [582, 583, 1155, 386].

A key advantage of mapping with GP-based functions is that the estimated quan-

tity can be linearly operated [974] and still produce a GP as an output. Given that

derivatives and, therefore gradients, are linear operations, the differentiation out-

put of the estimated quantity is probabilistic. A continuous representation of the

uncertainty in the environment can be used to highlight unexplored regions and

optimize a robot’s search plan [386, 684]. The continuity property of the GP map

can improve the flexibility of a planner by inferring directly on collected sensor data

without being limited by the resolution of a grid/voxel cell.

5.4.5.1 Gaussian Process Implicit Surface

Implicit surfaces can also be represented by a GP. Gaussian process implicit sur-

face (GPIS) techniques [1183, 743, 684, 513] use a GP approach to estimate a

probabilistic and continuous representation of the implicit surface given noisy mea-

surements. Furthermore, GPIS can be also used to estimate not only the surface

but also the distance field in a continuous manner [584, 1040, 643, 1192].

In the GPIS formulation, let us consider the distance field d to be estimated from

the distance to the nearest surface di given the the points on the surface and its

corresponding gradient ∇d computed through linear operators [974]. Then d with

∇d can be modelled by the joint GP with zero mean (given that at the surface the

distance is zero):
[
d

∇d

]
∼ GP(0,K(X,X′)). (5.12)

GPIS approaches have the ability to estimate a continuous implicit surface and

the normal of the surface through the gradient, both with uncertainty. Some works

142 Dense Map Representations

have considered the use of parametric function priors to capture given shapes more

accurately [743, 513]. Other approaches aimed to estimate not only the implicit

surface but the full distance field. Given the nature of the vanilla version of the

GPIS formulation, the distance is well approximated near the measurements, i.e.,

on the surface, but falls back to the mean, which in this case is zero, faraway from

the surface. To estimate the full distance field in a continuous and probabilistic

formulation further away from the surface, works have considered applying a non-

linear operation to a GPIS-like formulation [1192, 1193, 641].

All these works have to deal with the computational complexity of the GP-

based formulation, but as an exchange, a continuous, generative, and probabilistic

representation of the environment, given only point clouds can be achieved.

5.4.6 Hilbert Maps

Hilbert Map (HM)s [911] are in many ways similar to GPOMs [822]. Both are con-

tinuous probabilistic models that do not discretize the space, unlike voxel-based

methods, and in contrast to point-based methods are capable of interpolating miss-

ing data. As stated, the major challenge in GPOM is high computational expense.

Thus the design goals of Hilbert maps were the following: (i) process data contin-

uously in an online manner, (ii) model dependence between observations, and (iii)

incorporate measurement uncertainty.

To achieve these goals, training a logistic regressor with stochastic gradient de-

scent in a projected feature space is often leveraged. The classifier and optimizer

combination enables online model updates using large amounts of data while the

feature projection permits representing intricate spatial details with such a simple

classifier.

The feature projection serves the same idea as the kernel in a GP, but instead

of a full covariance we use an approximation. There are many options for this, in-

cluding Nystroem [1182], Random Fourier Features [908], and Sparse Kernel [762],

which is what we will be using. To goal of the sparse kernel is to limit the range

at which observations have an influence which improves convergence and compu-

tational efficiency. The outcome is a kernel that drops to exactly 0 at a specific

distance.

This kernel allows us to project points in 2D or 3D space into significantly higher

dimensions by placing inducing kernels at regular intervals over the space to be

mapped. Furthermore, this enables computing high-dimensional feature space rep-

resentations of input data to be trained the logistic regression classifier using mini-

batch stochastic gradient descent. Lastly, training is done by sampling free space

points along the range measurement, while adding the return as an obstacle point.

One challenge faced by HMs is the expressivity of the used kernel. A radial basis

function (RBF), as used in Figure 5.11, is a circle or a sphere and their values need

to be combined to reconstruct intricate details of the environment. Therefore there

5.4 Constructing Maps: Methods and Practices 143

(a) (b) (c)

Figure 5.11 (a) The observations by a robot using a 2D LiDAR sensor, which is turned
into a dataset (b) Free (green) and occupied (red) points. These are then used to train a
Hilbert Map as seen in (c).

is a tradeoff in the form of number of kernels and their lengthscale affecting the

computational cost, reconstruction detail, and interpolation ability.

5.4.7 Deep Learning in Mapping

With the recent interest of the computer vision and robotics community in novel

view synthesis using neural radiance fields (NeRFs) [770], which provided com-

pelling results for image generation via a simple multi-layer perceptron (MLP),

several approaches investigated the usage of neural representations to estimate a

SDF. Learning to predict a SDF at arbitrary spatial location leads to a continuous

representation that can be turned into meshes at arbitrary resolutions, but also can

lead to more complete representation due to the interpolation capabilities of the

learned function.

Similar to implict representations, the representation is learned from input data

and approximated to provide a continuous function that can be queried at arbitary

locations. While often these neural representations are learned offline with given

poses, there has been recently also an interest in incremental approaches [1052, 1288]

and approaches that estimate poses on-the-fly using a neural representation [1052,

973].

In particular, the approach of Sucar et al. [1052] uses a neural network to predict

the SDF value of an arbitrary point in the scene based on RGB-D frames. Follow-up

approaches extended this approach by separating the spatial representation of the

features via voxel grids [869, 1304], octrees [1288], points [973, 269], etc. from the

neural representation. In these approaches, small but descriptive features are stored

in a spatial representation and used to determine with a small, neural network the

SDF value of an arbitrary point in the scene. This allows to decouple the learned

function from the spatial representation, which makes it possible to rely on small

144 Dense Map Representations

neural decoders to turn features into signed distance values, but also being effective

for large-scale scenes, such as outdoor environments.

The area of deep learning-based mapping, reconstruction, and SLAM is currently

rapidly evolving and integrating ideas from classical representation, such as surfel

splatting [556, 747], to achieve remarkable results in terms of reconstruction qual-

ity, but also capabilities. In particular, the ability to render novel views and gen-

erate new data at arbitary positions could be potentially exploited for robot learn-

ing without relying on simulated environments. For example, NeRF and Gaussian

splatting [1313, 109] have gained considerable popularity, demonstrating significant

potential in various SLAM-related works. These will be further detailed in Chapter

14.

5.5 Usage Considerations

All map representations trade off distinctive, often complementary, strengths and

weaknesses. When choosing a map representation for a given application or robotic

system, it is therefore important to carefully consider how the map will be used in

all downstream tasks. Further factors to consider are the operating environment and

available sensors. We will start by discussing environmental factors, which motivate

several clear-cut choices, followed by more nuanced task-dependent considerations.

Finally, we conclude this chapter with a brief discussion on usage considerations

related to the existing methods presented in Section 5.4.

5.5.1 Environmental Aspects

Operating environments can be categorized as either structured or unstructured.

In tightly controlled spaces, such as automated factories, custom map representa-

tions – tailored to the robot’s task and specific objects it will encounter – typically

outperform general dense representations in terms of efficiency and accuracy. In

contrast, the dense representations covered in this chapter can model objects of

arbitrary shapes and work in any environment. When operating in changing or

partially unknown environments, it is often important for robots to be able to

distinguish observed free space from unobserved space. This information allows

path planners to avoid unsafe motions through unobserved space, which could be

occupied, and can also be used for exploration planning. Explicit surface repre-

sentations, including points, surfels, and meshes, generally cannot distinguish be-

tween free and unobserved space, while all occupancy-based methods do. Implicit

surface-based methods can also provide this distinction, though very often for more

reconstruction-focused applications, this information is discarded farther from the

surface to save computational and memory costs.

Another consideration is scalability. Explicit representations tend to be more

memory efficient than implicit representations, as they only describe the surface

5.5 Usage Considerations 145

itself and their fidelity can easily be adapted to the detail required for each part

of the scene. When free-space information is required, multi-resolution approaches

can offer significant improvements over fixed-resolution voxelized representations in

terms of accuracy, memory, and their ability to capture very thin objects.

One final consideration is whether the environment has a significant amount of

dynamic objects and the degree to which these should be modeled. From the per-

spective of map representations, most existing approaches can be grouped into one

of three categories. The first set of approaches does not consider dynamics and

directly fuses all measurements into one of the representations introduced in this

chapter. In practice, this might already suffice when using implicit representations,

since their free-space updates typically do a good job at erasing leftovers of objects

after they moved. The second category of approaches tries to only integrate the

environment’s static elements into the map, by explicitly detecting and discarding

all measurements corresponding to dynamic objects. This approach is particularly

popular when using explicit maps, where leftovers are more tedious to remove, and

generally makes it possible to generate clean maps even in highly dynamic spaces.

The last set of solutions not only represents the background but also the moving el-

ements in the scene. Note that this is commonly done using hybrid representations,

mixing fundamental geometric representations introduced in this chapter with be-

spoke representations at the object level. For a detailed discussion on SLAM in

dynamic environments, including concrete methods to implement the above and

more advanced approaches, we refer the reader to chapter 15.

5.5.2 Downstream Task Types

In addition to the environment, it is equally important to consider what map infor-

mation is necessary for the robot’s required tasks. While any given operation can

typically be performed on all representations, the efficiency and implementation

complexity tend to vary greatly. The biggest difference lies in whether the opera-

tion is performed along the surface or in Cartesian space. As shown in Table 5.2,

implicit representations generally allow for simple, efficient filtering of properties

that are expressed in Cartesian coordinates, such as occupancy. In contrast, ex-

plicit representations are well suited to filter properties that are expressed along

the surface, such as visual textures. This explains why explicit representations are

generally more sensitive to the quality of the depth measurements, but can create

very detailed, visually appealing 3D reconstructions. On the other hand, implicit

methods are well suited for fusing noisy depth measurements, such as RGB-D cam-

era data.

In terms of queries, explicit representations make it possible to directly iterate

over the surface. This explains their popularity in rendering and graphics applica-

tions, and for tasks such as coverage path planning. However, they require addi-

tional steps, such as nearest neighbor lookups, to answer queries in Cartesian coor-

146 Dense Map Representations

Efficient in

Operation Explicit representation Implicit representation

Filter measurements Along the surface In Cartesian space

(texture,...) (occupancy,...)

Query and iterate In surface coordinates In Cartesian coordinates

(coverage planning,...) (collision checking,...)

Modify surface Geometry Topology

(deformation,...) (merge, cut, simplify,...)

Table 5.2 Complementary strengths and weaknesses of explicit and implicit

surface representations.

dinates. The exact opposite is true for implicit representations, which are therefore

commonly used for collision checking tasks.

Finally, explicit representations allow for efficient modifications of the surface’s

geometry, including deformations. In practice, maps are often constructed by in-

tegrating depth measurements using pose estimates from an imperfect, drifting

odometry system. Over time, the accumulated pose errors also lead to inconsisten-

cies in the dense map. Just like in SLAM systems, these errors can be eliminated by

deforming the dense map when detecting loop closures. Although both explicit and

implicit surfaces can be deformed, this operation is inherently simpler and more

efficient when using an explicit representation. In contrast, using an implicit repre-

sentation simplifies and improves the efficiency of operations affecting the surface’s

topology, or connectivity. Implicit representations are therefore often used to merge

surface estimates, combine or subtract object shapes, and simplify surfaces.

It is important to remember that different representations can also be used in

tandem to leverage their respective strengths. One good example of a hybrid ap-

proach is TSDF-based meshing (Section 5.4.3), where noisy depth measurements

are first conveniently filtered using an implicit surface representation (TSDF) which

is then converted to an explicit representation (mesh) using Marching Cubes. When

deciding whether the advantages of hybrid representations outweigh the overhead

they introduce, it is worth considering how the conversions can be limited to only

happen locally and infrequently.

5.5.3 Summary of Mapping Methods

We now conclude our discussion by summarizing the key differences between the

existing methods presented in this chapter. Starting with the explicit representa-

tions, using a collection of points to describe the surface is simple and requires the

fewest assumptions, but it is also the least informative. Beyond infinitesimal points,

surfels represent the surface’s properties over small neighborhoods, or patches. Fi-

nally, meshes explicitly represent the surface’s connectivity and allow its properties

5.5 Usage Considerations 147

to smoothly be interpolated. However, estimating the surface’s connectivity requires

the most assumptions and comes at a significant computational cost.

In terms of implicit representations, a particular advantage of implicit surfaces

over occupancy maps is that they offer fast, high-quality distance information and

gradients which are beneficial for optimization-based planning. However, filtering

occupancy estimates requires less assumptions and, for voxel-based methods, oc-

cupancy maps are better at capturing thin obstacles. In cases with particularly

noisy or sparse depth measurements, non-voxelized implicit representations, based

on GPs and Hilbert Maps, provide particularly good uncertainty estimates. As they

explicitly consider the geometry’s spatial correlations, they are generally also better

at interpolating partially observed surfaces.

One rapidly advancing research area is that of learning-based methods. In terms

of learning-based implicit representations, NeRFs have been shown to enable promis-

ing new capabilities, particularly for semantic modeling and spatial reasoning. More

recently, Gaussian splatting [560] – an explicit learning-based representation bear-

ing similarities to surfels – lead to an increasing interest into approaches using

splatting [556, 747, 1256]. Researchers are actively working on improving the com-

putational and memory footprint of these approaches, testing what new skills they

can enable, and exploring how they can be integrated into complete robotic systems.

Looking ahead, we suspect that learning-based methods can increase the generality

and expressiveness of dense representation, while improving their ability to handle

noisy measurements, incomplete observations and dynamic objects through learned

priors.

Acknowledgment

The authors thank Lan Wu for her support in preparing this chapter.

6

Certifiably Optimal Solvers and Theoretical
Properties of SLAM

David M. Rosen, Kasra Khosoussi, Connor Holmes, Gamini Dissanayake,

Timothy Barfoot, and Luca Carlone

Chapters 1–3 have discussed how to formalize the estimation problems arising in

SLAM as optimization problems, using maximum a posteriori estimation or (more

generally) M-estimation. Moreover, these chapters have introduced iterative local

solvers (e.g., Gauss-Newton, Levenberg-Marquardt, gradient descent) that look for

a solution of the resulting optimization by iteratively refining a given initial guess.

In this chapter, we take a closer look at the optimization problems arising in

SLAM and address two fundamental questions. First, can we design efficient algo-

rithms that are guaranteed to compute a globally optimal solution of these problems,

possibly without an initial guess? And second, how accurate is the optimal solution

as an estimate of the ground truth, and what factors affect its accuracy?

The first question is about computation and reliability: the question starts from

the observation that SLAM requires solving nonconvex optimization problems,

which have multiple local minima. Depending upon the quality of the initial guess,

iterative algorithms can get stuck in local minima, and hence produce incorrect

estimates. Moreover, iterative methods do not provide tools to detect convergence

to suboptimal solutions, which leads to trustworthiness and reliability concerns in

practical applications. In Section 6.1, we show that despite the nonconvexity of

typical SLAM problems, we can design certifiably optimal algorithms that solve the

SLAM optimization to provable optimality, and can discern sub-optimal solutions

from optimal ones. These algorithms are based on a mathematical tool, known as

semidefinite relaxation, which we review in Section 6.1.1. The chapter presents cer-

tifiable algorithms for pose graph optimization (SE-Sync, Section 6.1.2), landmark-

based SLAM with range and bearing measurements (Section 6.1.3), and then dis-

cusses extensions to other SLAM problems, including problems with range-only

measurements, anisotropic noise, and outliers (Section 6.1.4).

The second question is concerned with fundamental limits and estimation errors:

when designing a SLAM system, one often wants to ensure that the robot pose

estimate and the map estimate are close to the ground truth, since large errors may

induce failure in downstream tasks, including motion planning. Understanding fun-

damental limits is not only useful for analytical purposes but has very practical

implications: as we discuss below, these limits are influenced by the structure of

6.1 Certifiably Optimal Solvers for SLAM 149

the factor graph, and we can actively control this structure by carefully driving

the robot (e.g., forcing it to revisit places or landmarks). Therefore, in Section 6.2

we discuss information-theoretic limits on the achievable accuracy of the SLAM

estimate. In particular, Section 6.2.1 introduces the Cramér-Rao Lower Bound to

quantify the estimation error in SLAM, and Section 6.2.2 draws connections be-

tween this bound and the graphical structure of the SLAM problem.

As we will see, investigating these questions reveals deep connections between the

algebraic, geometric, and graph-theoretic structures encoded in the SLAM problem,

and the computational and statistical hardness of solving it. As usual, we conclude

the chapter with an outlook to recent trends and references in Section 6.3.

6.1 Certifiably Optimal Solvers for SLAM

SLAM is conventionally formulated as a high-dimensional and nonconvex problem.

Finding the global solution to a general nonconvex optimization problem is in-

herently challenging, primarily due to the existence of numerous local minima. In

particular, many special cases of SLAM are known to be NP-hard, including, e.g.,

angular synchronization, rotation averaging, and pose graph optimization. It fol-

lows that there is no algorithm that is capable of efficiently solving these problems

in general, unless P = NP [944].

Despite this theoretical complexity, early SLAM research consistently demon-

strated surprising convergence to solutions close to the ground truth. SLAM al-

gorithms are typically initialized with robot poses computed using odometry. In a

well-calibrated mobile robot, odometry drift can be reduced to less than one per-

cent of the distance traveled. Thus, the unexpectedly reliable convergence of SLAM

was initially attributed to the availability of high-quality initial estimates.

However, subsequent research has shown that even in the presence of poor or in-

consistent initializations, a range of optimization techniques, including Stochastic

Gradient Descent, Levenberg–Marquardt, and preconditioned conjugate gradient

methods, can often recover near-optimal solutions. These findings suggest that,

despite being a nonlinear and nonconvex problem, SLAM possesses an intrinsic

structure that make it particularly amenable to solution through specialized op-

timization strategies. At the same time, these results show that simply applying

off-the-shelf local optimization methods (such as gradient descent or quasi-Newton

methods) can produce egregiously wrong estimates, even if the underlying instance

of the SLAM problem is well-posed.

This insight has motivated the development of algorithmic frameworks that ex-

plicitly leverage the graph-theoretic and geometric underpinnings of the SLAM

problem to obtain improved convergence properties and guarantees. One of the

most exciting recent advances in SLAM has been the development of practical op-

timization algorithms that — despite this problem’s general intractability — are

nevertheless provably capable of recovering certifiably globally optimal solutions of

150 Certifiably Optimal Solvers and Theoretical Properties of SLAM

common SLAM formulations (e.g., pose graph optimization) under mild condi-

tions. These techniques, called certifiably correct optimization methods, are based

on convex relaxation (rather than local optimization). Moreover, they are certifiably

optimal in the sense that upon computing a solution to the optimization problem,

they will be able to quantify how suboptimal that estimate is, and possibly certify

its optimality. Such a statement does not contradicts the NP-hardness of the prob-

lem: in worst-case scenarios, these algorithms can still fail to produce a certificate

of optimality for a solution they compute and only provide a suboptimality bound.

However, these algorithms remain of practical interest for two main reasons: (i) in

practice, they do produce an optimality certificate for virtually all SLAM problems

of practical interest (e.g., for reasonable amounts of measurement noise), and (ii)

the failure to produce an optimality certificate is in itself informative, since it might

trigger a warning to downstream tasks not to trust the SLAM estimate, or for the

robot to take fail-safe measures.

In this subsection we provide a brief introduction to certifiably correct estima-

tion methods for SLAM. We begin by considering Shor’s relaxation, one of the

fundamental tools that is used to construct the convex relaxations underpinning

certifiable estimation techniques. Next, we show how to apply Shor’s relaxation to

produce a certifiably correct estimation method (SE-Sync) to solve the fundamen-

tal problem of pose graph optimization. Finally, we discuss discuss extensions of

SE-Sync and Shor’s relaxation to a broader range of SLAM problems.

6.1.1 Shor’s Relaxation

In this subsection we introduce Shor’s relaxation, one of the fundamental tools that

we will use to construct the convex relaxations underpinning certifiable estimators.

In brief, Shor’s relaxation is a procedure for constructing convex relaxations of

quadratically constrained quadratic programs (QCQPs); that is, optimization prob-

lems in which the objective and constraint functions are quadratics. As we will see

in the next section, many common SLAM formulations can be cast as QCQPs.

We introduce Shor’s relaxation by describing its application to a generic QCQP,

and then tailor it to SLAM in the next section. Consider the following QCQP:

p∗ = min
x∈Rn

xTCx

s.t. xTAix = bi i = 1, . . . ,m.
(QCQP)

where C,A1, . . . ,Am ∈ Sn are symmetric matrices and b = (b1, . . . , bm) ∈ Rm is a

vector. We will show how to produce a convex relaxation of (QCQP) by applying

a sequence of simple algebraic manipulations to (QCQP).

To begin, if M ∈ Sn is any symmetric matrix, we may exploit the cyclic property

of the trace to rewrite the quadratic form xTMx determined by M according to

xTMx = tr
(
xTMx

)
= tr

(
MxxT

)
. (6.1)

6.1 Certifiably Optimal Solvers for SLAM 151

Applying (6.1) to (QCQP), we thus obtain the equivalent form:

p∗ = min
x∈Rn

tr
(
CxxT

)

s.t. tr
(
Aixx

T
)

= bi, i = 1, . . . ,m.
(6.2)

Now observe that the decision variable x only enters problem (6.2) through outer

products of the form X ≜ xxT; note that every such matrix X is symmetric,

rank-1, and positive-semidefinite (by construction). Conversely, if X ∈ Sn+ is a

positive-semidefinite matrix and rank (X) = 1, it is easily shown (by considering

a symmetric eigendecomposition) that X admits a symmetric factorization of the

form X = xxT for some x ∈ Rn. Putting these observations together, we thus have

the equivalence

X ∈ Sn+ and rank (X) = 1 ⇐⇒ ∃x ∈ Rn such that X = xxT. (6.3)

In light of (6.3), problem (6.2) is equivalent to

p∗ = min
X∈Sn

tr (CX)

s.t. tr (AiX) = bi, i = 1, . . . ,m,

X ⪰ 0,

rank (X) = 1.

(6.4)

Thus far problems (6.2) and (6.4) are completely equivalent; however, formulation

(6.4) has the advantage that it reveals a great deal of useful structure. Indeed,

the objective and constraint functions in (6.4) are linear functions of the (matrix)

decision variable X, and the positive-semidefiniteness constraint X ⪰ 0 is convex.

Thus, the only difficulty in solving (6.4) is due to the (nonconvex) rank constraint.

Shor’s relaxation [1017] simply consists of discarding the rank constraint appear-

ing in (6.4), thereby producing the following convex relaxation of (QCQP):

d∗ = min
X∈Sn

tr (CX)

s.t. tr (AiX) = bi, i = 1, . . . ,m,

X ⪰ 0.

(SDP)

Note that (SDP) entails minimizing a linear function over the set of positive-

semidefinite matrices, subject to a set of linear equality constraints; problems of

this form are called semidefinite programs. Semidefinite programs, or SDPs, are

convex optimization problems, and hence can be solved in polynomial time.

Now let us consider the relation between problem (QCQP) and its convex relax-

ation (SDP). First, note that we obtained (QCQP) from (SDP) by expanding the

former’s feasible set (i.e., by dropping the rank constraint in (6.4)); indeed, it is

easy to see that every feasible point x ∈ Rn in (QCQP) lifts to a corresponding

feasible point X ≜ xxT for (SDP). It follows that the optimal values of (QCQP)

152 Certifiably Optimal Solvers and Theoretical Properties of SLAM

and (SDP) satisfy the relation:

d∗ ≤ p∗, (6.5)

since the latter problem minimizes the same objective over a larger feasible set.

Inequality (6.5) already provides a very useful method for assessing the quality

of candidate solutions of (QCQP). Suppose that we have a feasible point x̂ ∈ Rn of

(QCQP); for example, x̂might have been obtained by performing local optimization.

Writing f(x) ≜ xTCx for the objective, inequality (6.5) implies that we may bound

the suboptimality f(x̂)− p∗ of x̂ as a solution of (QCQP) according to

f(x̂)− p∗ ≤ f(x̂)− d∗. (6.6)

Note that while the optimal value of p∗ of (QCQP) is very hard to compute in

general, the optimal value d∗ can be computed efficiently by solving the relaxation

(SDP). Inequality (6.6) thus gives us a practical way of bounding x̂’s suboptimality

without the need to know p∗ itself. In particular, if the right-hand side of (6.6) is

small, we may conclude that x is a near-optimal solution of (QCQP).

Moreover, if we solve the relaxation (SDP) and it so happens that the resulting

minimizer X∗ = x∗x∗T has rank 1, then it immediately follows that the vector

x∗ ∈ Rn is a global minimizer for the original (nonconvex) problem (QCQP) (since

x∗ is feasible in (QCQP) and satisfies f(x∗) = d∗ in (6.6)). As we will see, it turns

out that this favorable situation actually occurs quite often for many robotic state

estimation tasks, enabling us to recover exact, globally optimal solutions for the

nonconvex problem (QCQP) from solutions of its relaxation (SDP).

6.1.2 SE-Sync: Certifiably Correct Pose Graph Optimization

In this subsection we show how one can apply Shor’s relaxation to develop a cer-

tifiably correct algorithm (SE-Sync) for solving the fundamental problem of pose

graph optimization (PGO). PGO is one of the simplest and most commonly used

SLAM formulations, and thus provides a natural concrete example to illustrate the

construction of certifiable estimation algorithms. Moreover, pose graph optimiza-

tion was the first SLAM formulation that was shown to be amenable for convex

relaxations [155, 157, 945], and the corresponding ideas have been shown to gener-

alize to a wide range of SLAM problems, as we will discuss below.

Our development proceeds in three stages. First, we show how to formalize pose

graph optimization as an instance of maximum likelihood estimation, and how to

reduce it to a QCQP. Next, we derive Shor’s SDP relaxation for PGO, and (cru-

cially) show that this relaxation is in fact exact for sufficiently small measurement

noise; this implies that we can recover globally optimal solutions to pose graph opti-

mization by solving its (convex) SDP relaxation. Finally, we describe a specialized,

structure-exploiting optimization algorithm that enables us to solve large-scale in-

stances of this SDP relaxation in practice.

6.1 Certifiably Optimal Solvers for SLAM 153

T1 T2
T3

T4T5T6T7

T̃12 T̃23

T̃
3
4

T̃45T̃56T̃67

T̃
5
2

T̃
6
1

Figure 6.1 An example pose graph. Here the vertices are in one-to-one correspondence
with the unknown poses Ti = (ti,Ri) ∈ SE(d) to be estimated, and the directed edges
are in one-to-one correspondence with the set of noisy measurements T̃ij ≈ T−1

i Tj of the
relative poses between them.

6.1.2.1 Pose Graph Optimization: QCQP Formulation

Pose graph optimization estimates the values of a set of n unknown poses T1, . . . ,Tn ∈
SE(d) in d-dimensional space (typically in SLAM d = 2 or 3), given noisy measure-

ments T̃ij ≈ T−1
i Tj of a set of relative pose measurements between them. In prac-

tice, the unknown poses T1, . . . ,Tn describe the trajectory of the robot (i.e., they

are sampled at discrete times along the robot trajectory), while the measurements

T̃ij are obtained by the SLAM front-end, e.g., through LiDAR scan matching, wheel

odometry, or 3D computer vision techniques. In this subsection, we show how to

formalize this estimation problem via maximum likelihood estimation. As we will

see, under suitable assumptions on the noise, the resulting optimization problem is

a QCQP.

To begin, it is often convenient to model the data defining this estimation problem

using a pose graph
−→G ,1 constructed as follows. Let G = (V, E) be a simple undirected

graph whose nodes i ∈ V are in one-to-one correspondence with the unknown poses

Ti and whose edges {i, j} ∈ E are in one-to-one correspondence with the set of

available measurements.2 We will assume (without loss of generality) that G is

connected.3 The pose graph
−→G = (V,−→E) is then obtained from G by assigning

an orientation for each of the latter’s edges (cf. Figure 6.1). By convention, the

measurement T̃ij , which describes (a noisy version of) the pose Tj in the coordinate

frame of the pose Ti, is associated with a directed edge from i to j.

In order to formalize pose graph optimization as a maximum likelihood estima-

tion, we must posit a noise model for the available measurements {T̃ij}. To do so,

1 A pose graph is a special instance of a factor graph, where the variable nodes are poses and the
factor nodes relate pairs of poses.

2 The assumption that G is simple is not actually required for our methods, but will help to ease
notational burden by avoiding the need to distinguish between multiple parallel edges.

3 If G is not connected, then the pose graph optimization problem decomposes into a set of
independent estimation problems over the connected components of G; thus, the general case is
always reducible to the case of a connected graph.

154 Certifiably Optimal Solvers and Theoretical Properties of SLAM

we will make use of the isotropic Langevin distribution L(M , κ): this is an expo-

nential family distribution over SO(d) whose probability density function is given

by

p(R;M , κ) =
1

cd(κ)
exp

(
κtr
(
MTR

))
, (6.7)

whereM ∈ SO(d) and κ ≥ 0 are parameters, and cd(κ) is a normalization constant.

Note that M plays the role of a location parameter (called the mode), while κ ≥ 0

is a scalar concentration parameter. The isotropic Langevin distribution admits

a particularly simple generative description in dimensions 2 and 3: to produce a

sample R̃ ∼ L(M , κ), we first sample a rotation angle θ ∼ vonMises(0, 2κ) from

the von Mises distribution on the circle, and then set R̃ = M ·R(θ) if d = 2, or

R̃ = M exp(θv∧) if d = 3, where v ∼ U(S2) is a uniformly sampled rotation axis

[943]. Intuitively, one can think of this distribution as an analogue of the Gaussian

distribution over the (non-Euclidean) manifold of rotations.

Given a pose-graph
−→G = (V,−→E), we will assume that each measurement T̃ij =

(t̃ij , R̃ij) ∈ SE(d) is obtained by sampling from the following probabilistic genera-

tive model:

t̃ij = t̄ij + tϵij , tϵij ∼ N
(
0, τ−1

ij Id
)
,

R̃ij = R̄ijR
ϵ
ij , Rϵ

ij ∼ L (Id, κij) ,
∀(i, j) ∈ −→E , (6.8)

where T̄ij = (t̄ij , R̄ij) ∈ SE(d) is the true (latent) value of the relative pose be-

tween Ti and Tj . Model (6.8) assumes the translation component t̃ij of the ijth

measurement is corrupted by additive mean-zero isotropic Gaussian noise with con-

centration parameter τij > 0, and the rotational component R̃ij is corrupted by

multiplicative isotropic Langevin noise with mode Id and concentration parameter

κij ≥ 0.

The primary motivation behind our use of the noise model (6.8) (as opposed

to the more ‘generic’ exponentiated-Gaussian noise model over general Lie groups

mentioned in Chapter 2) is that its associated maximum likelihood estimation takes

a particularly simple algebraic form. Indeed, given a set of noisy measurements

T̃ij sampled from (6.8), a straightforward calculation shows that the associated

maximum likelihood estimation is

Problem 1 (Pose Graph Optimization)

p∗MLE = min
ti∈Rd

Ri∈SO(d)

∑

(i,j)∈−→E

κij∥Rj −RiR̃ij∥2F + τij
∥∥tj − ti −Rit̃ij

∥∥2
2
. (6.9)

In particular, note that the objective appearing in (6.9) is a simple (quadratic) lin-

ear least-squares loss. In the next subsection, we will exploit this fact to derive a

convex relaxation of Problem 1 via Shor’s relaxation.

6.1 Certifiably Optimal Solvers for SLAM 155

6.1.2.2 Applying Shor’s Relaxation to Pose Graph Optimization

In this subsection we show how one can apply Shor’s relaxation to derive a convex

relaxation of the pose graph optimization Problem 1.

Simplifying the Maximum Likelihood Estimator. Our first step will be to

rewrite Problem 1 in a more compact form that only involves rotations, and reveals

the correspondence between the optimization problem (6.9) and the underlying

graphs G and
−→G from which it is constructed. To that end, we introduce several

matrices constructed from these graphs, and refer the reader to the box on the

next page for a primer on (algebraic) graph theory (specifically, the incidence and

Laplacian matrices).

156 Certifiably Optimal Solvers and Theoretical Properties of SLAM

Elements of Algebraic Graph Theory. Algebraic graph theory studies how to

use algebra (e.g., matrices, vectors) to represent, analyze, and extract information

from graphs. Here we review some basic concepts to support the explanations and

connections drawn in this chapter. We also point the reader to Chapter 1, which

draws connections between graphs and probabilistic graphical models.

A directed graph
−→G is a pair (V, E), where V is a finite set of nodes, and E is a set

of edges, where each edge contains an ordered pair of nodes. An edge e ∈ E is in

the form e = (i, j), meaning that edge e, incident on nodes i and j, leaves node i

and is directed towards node j (i is the tail of the edge, and j is the head).

For a graph with n nodes and m edges, the incidence matrixA ∈ Rm×n of a directed

graph
−→G is a matrix with entries in {−1, 0,+1} that describes the structure of the

graph. Each row of A corresponds to an edge, and the column corresponding to

edge e = (i, j) has only two non-zero elements, one on the i-th column (equal to

−1) and the other on the j-th column (equal to +1).4 For instance, the incidence

matrix of the graph in Figure 6.1 is:

A =

x1 x2 x3 x4 x5 x6 x7

−1 +1 e12
−1 +1 e23

−1 +1 e34
−1 +1 e45

−1 +1 e56
−1 +1 e67

+1 −1 e52
+1 −1 e61

(6.10)

The Laplacian matrix L ∈ Rn×n is defined as L ≜ ATA and also captures the

connectivity of the graph. In particular, the i-th diagonal element of L corresponds

to the node degree of the i-th node in the graph (i.e., the number of nodes connected

to node i), while an off-diagonal element in position (i, j) is equal to −1 if there is

an edge (regardless of its orientation) connecting node i and j or is zero otherwise.

For instance, the Laplacian matrix of the graph in Figure 6.1 is:

L =

x1 x2 x3 x4 x5 x6 x7

+2 −1 −1 x1

−1 +3 −1 −1 x2

−1 +2 −1 x3

−1 +2 −1 x4

−1 −1 +3 −1 x5

−1 −1 +3 −1 x6

−1 +1 x7

(6.11)

We remark that the Laplacian matrix no longer captures the directionality of the

edges in the graph since the off-diagonal entries are −1 when there is an edge

connecting the corresponding nodes regardless of its orientation.

The smallest eigenvalue of the Laplacian matrix is always equal to zero and the

corresponding eigenvector is the vector with all entries equal to one (this can be

easily seen from the fact that the entries on each row sum up to zero, henceL·1 = 0).

It turns out that the number of zero eigenvalues corresponds to the number of

connected components in the graph: a connected graph (where there is path of

edges between any pair of nodes, regardless of the orientation of the edges) has a

single zero eigenvalue, a graph formed by two disconnected subgraphs has two zero

eigenvalues, etc. Moreover, for a connected graph, the second smallest eigenvalue is

a measure of how well-connected the graph is, and is also known as the algebraic

connectivity or Fiedler value of the graph.

6.1 Certifiably Optimal Solvers for SLAM 157

Let us define some key matrices that are related to the graph Laplacian matrix

and that will be used in our derivation. We define the translational weight graph

Wτ = (V, E , {τij}) to be the weighted undirected graph with node set V, edge set

E , and edge weights τij for {i, j} ∈ E , and let L(Wτ) ∈ Sn+ denote its Laplacian:

L(Wτ)ij =

∑
{i,k}∈E τik, i = j,

−τij , {i, j} ∈ E ,
0, {i, j} /∈ E .

(6.12)

This is simply a weighted version of the Laplacian matrix we defined above. Sim-

ilarly, we write L(G̃ρ) ∈ Sdn+ for the connection Laplacian determined by the ro-

tational measurements R̃ij and precisions κij ; this is the symmetric (d× d)-block-

structured matrix defined by

L(G̃ρ)ij ≜

(∑
{i,k}∈E κik

)
Id, i = j,

−κijR̃ij , (i, j) ∈ −→E ,
−κjiR̃T

ji, (j, i) ∈ −→E ,
0d×d, {i, j} /∈ E .

(6.13)

We also define a few matrices constructed from the set of translation observations

t̃ij . We let Ṽ ∈ Rn×dn be the (1 × d)-block-structured matrix with (i, j)-blocks

determined by

Ṽij ≜

∑
{k∈V|(j,k)∈−→E } τjk t̃

T
jk, i = j,

−τjit̃Tji, (j, i) ∈ −→E ,
01×d, otherwise,

(6.14)

Let T̃ ∈ Rm×dn be the (1 × d)-block-structured matrix with rows and columns

indexed by e ∈ −→E and k ∈ V, respectively, and whose (e, k)-block is given by

T̃ek ≜

{
−t̃Tkj , e = (k, j) ∈ −→E ,
01×d, otherwise,

(6.15)

and Ω ≜ Diag(τe1 , . . . , τem) ∈ Sm denote the diagonal matrix constructed from

the translation measurement precisions. Finally, we also aggregate the rotation

and translation state estimates into the block matrices R ≜
(
R1 · · · Rn

)
∈

SO(d)n ⊂ Rd×dn and t ≜
(
t1 . . . tn

)
∈ Rdn.

With these definitions in hand, let us return to Problem 1. Observe that if we fix

a value of the rotational states R1, . . . ,Rn, problem (6.9) reduces to a linear least-

squares problem in the remaining translational decision variables t1, . . . , tn ∈ Rd.

Consequently, we may solve for an optimal assignment t∗(R) of the translational

states as functions of the rotational states R:

t∗(R) = −vec
(
R∗Ṽ TL(Wτ)†

)
. (6.16)

158 Certifiably Optimal Solvers and Theoretical Properties of SLAM

By substituting the optimal assignment (6.16) into (6.9), we may thus analytically

eliminate the translational states from the pose-graph SLAM MLE, producing the

following simplified (but equivalent) problem involving only the rotational states:

Problem 2 (Rotation-Only Pose Graph Optimization)

p∗MLE = min
R∈SO(d)n

tr
(
Q̃RTR

)
(6.17a)

Q̃ = L(G̃ρ) + T̃ TΩ
1
2ΠΩ

1
2 T̃ , (6.17b)

where Π ∈ Rm×m is the matrix of the orthogonal projection π : Rm →
ker(A(

−→G)Ω
1
2) onto the kernel of the weighted incidence matrix A(

−→G)Ω
1
2 of
−→G .

We observe that (6.17) involves only n rotation matrices (rather than n poses)

and the problem now resembles the standard problem of multiple rotation averag-

ing [442] (but with a more involved expression for the data matrix Q̃). On the more

technical side, we note that although Π is generically dense, by exploiting the fact

that it is derived from the graph
−→G , one can show that it admits the decomposition:

Π = Im −Ω
1
2 Ā(
−→G)TL−TL−1Ā(

−→G)Ω
1
2 (6.18)

where Ā(
−→G)Ω

1
2 = LQ1 is a thin LQ decomposition of Ā(

−→G)Ω
1
2 and Ā(

−→G) is the

reduced incidence matrix of
−→G obtained by deleting one of A(

−→G)’s rows. Note that

expression (6.18) requires only the lower-triangular factor L, which will be sparse

whenever the underlying graph
−→G is, and can be obtained efficiently in practice.

The sparse decomposition (6.17b)–(6.18) of the data matrix Q̃ will play a critical

role in our implementation of efficient optimization methods (cf. Sec. 6.1.2.3).

Forming the Relaxation. Now we derive the semidefinite relaxation of Problem

1 that we will solve in practice, taking advantage of the simplified form (6.17).

We begin by relaxing the condition R ∈ SO(d)n to R ∈ O(d)n. The advantage of

the latter condition versus the former is that since orthogonal matrices are defined

by a set of (quadratic) orthonormality constraints, the orthogonal relaxation of

Problem 2 is a homogeneous QCQP. Indeed, writing

BlockDiagd×d : Rdn×dn → Rd×dn

BlockDiagd×d(M) ≜ (M11, . . . ,Mnn)
(6.19)

for the linear map that extracts the n diagonal blocks of a (d× d)-block-structured

matrix M , we may expresss the orthogonal relaxation of (6.17) in an extrinsically-

constrained form as

p∗O = min
R∈Rd×dn

tr
(
Q̃RTR

)
s.t. BlockDiagd×d(RTR) = (Id, . . . , Id). (6.20)

In turn, since (6.20) is a homogeneous QCQP, we may apply the matrix-valued

generalization of Shor’s relaxation to obtain the following semidefinite relaxation

of the simplified pose graph optimization problem (6.17):

6.1 Certifiably Optimal Solvers for SLAM 159

Problem 3 (Semidefinite Relaxation for Pose Graph Optimization)

p∗SDP = min
Z∈Sdn+

tr
(
Q̃Z

)
s.t. BlockDiagd×d(Z) = (Id, . . . , Id). (6.21)

As we saw in Section 6.1.1, this construction immediately implies that p∗MLE ≥
p∗O ≥ p∗SDP. Moreover, if after solving the SDP relaxation (6.21), it so happens

that the recovered minimizer Z∗ ∈ Sdn+ admits a rank-d factorization of the form

Z∗ = R∗TR∗ with R∗ ∈ SO(d)n, then R∗ will itself be a globally optimal solution

of the pose graph optimization Problem 2. The remarkable fact that justifies our

interest in the relaxation (6.21) is that this favorable situation actually occurs in

practice. Specifically, we have the following theorem (see [943] for a proof):

Theorem 6.1 (Exact Recovery of PGO Solutions from Problem 3) Let Q̄ be the

matrix of the form (6.17b) constructed using the ground-truth relative transforms

T̄ij in (6.8). There exists a constant β ≜ β(Q̄) > 0 (depending upon Q̄) such that,

if ∥Q̃− Q̄∥2 < β, then:

1 The semidefinite relaxation Problem 3 has a unique solution Z∗, and

2 Z∗ = R∗TR∗, where R∗ ∈ SO(d)n is a minimizer of the maximum likelihood

estimation Problem 2.

In brief, Theorem 6.1 guarantees that as long as the noise corrupting the available

measurements T̃ij is not too large, we can recover a global minimizer R∗ of Problem

2 (and thus also a global minimizer (R∗, t∗) of Problem 1 via (6.16)) by solving the

SDP relaxation (6.21).

6.1.2.3 Efficiently Solving the Relaxation via the Riemannian Staircase

As a semidefinite program, Problem 3 can in principle be solved efficiently, i.e., in

polynomial time. However, in practice the high computational cost of storing and

manipulating the dense matrix decision variable Z appearing in (6.21) prevents

general-purpose interior-point methods from scaling effectively to problems in which

the dimension of Z is greater than a few thousand. Unfortunately, the instances

of (6.21) arising in robotics and computer vision applications are typically one to

two orders of magnitude larger than this maximum effective problem size, placing

them well beyond the reach of general-purpose techniques. Consequently, in this

subsection we develop a specialized, structure-exploiting optimization procedure that

is capable of solving large-scale instances of Problem 3 efficiently.

Exploiting Low-rank Structure. The main idea behind our approach is to

exploit the existence of low-rank solutions to Problem 3. Specifically, note that

while the decision variable Z appearing in the relaxation (6.21) is a generic high-

dimensional PSD matrix, Theorem 6.1 guarantees that the solution Z∗ we seek

admits a very concise description in the factored form Z∗ = R∗TR∗ whenever

exactness obtains. Moreover, it turns out that even when exactness fails to hold,

160 Certifiably Optimal Solvers and Theoretical Properties of SLAM

minimizers of Problem 3 typically have a rank r not much greater than d, and

therefore also admit a concise symmetric rank decomposition of the form Z∗ =

Y ∗TY ∗ for some Y ∗ ∈ Rr×dn.

In their seminal work, Burer, Samuel and Monteiro, Renato D C [131], Burer

and Monteiro [130], proposed an elegant general approach to exploit the existence

of such low-rank solutions: simply replace every instance of the decision variable

Z in (6.21) with a symmetric rank-r factorization of the form Y TY (for some

Y ∈ Rr×dn) to produce the following Burer-Monteiro factorization of (6.21):

p∗SDPLR(r) = min
Y ∈Rr×dn

tr
(
Q̃Y TY

)
s.t. BlockDiagd×d(Y TY) = (Id, . . . , Id).

(6.22)

We remark that since Y TY is symmetric and PSD by construction, in (6.22) it

is no longer necessary to explicitly enforce the positive-semidefiniteness constraint

from the original SDP (6.21). Moreover, we note that this problem is strikingly

similar to the problem we relaxed (6.20), with the important distinction that now

the matrix Y has size r × dn instead of d× dn, with r > d; in other words, (6.22)

reformulates the problem in a higher-dimensional space compared to (6.20).

If the maximum rank parameter r in (6.22) is chosen to be “small” (i.e., r ≪ dn),

then dim(Rr×dn) = rnd ≪ (dn + 1)dn/2 = dim(Sdn+); that is, the search space for

(6.22) is much lower-dimensional than the search space for (6.21). Consequently,

Burer, Samuel and Monteiro, Renato D C proposed to apply fast nonlinear pro-

gramming algorithms to the low-dimensional NLP (6.22) in order to search for a

low-rank factor Y ∗ ∈ Rr×dn of a minimizer Z∗ = Y ∗TY ∗ of the original SDP

(6.21).

Exploiting Geometric Structure. Note that if we additionally partition Y

into r× d blocks as Y = (Y1, . . . ,Yn) ∈ Rr×dn, then the block-diagonal constraints

appearing in (6.22) are equivalent to Y T
i Yi = Id for all i ∈ [n]; geometrically, this

condition states that the columns of each block Yi ∈ Rr×d form an orthonormal

frame. In general, the set of all orthonormal k-frames in Rp,

St(k, p) ≜
{
Y ∈ Rp×k | Y TY = Ik

}
, (6.23)

forms a smooth compact matrix manifold, called the Stiefel manifold. This implies

that the equality-constrained nonlinear program (6.22) is equivalent to the following

unconstrained optimization problem defined on a product of Stiefel manifolds:

Problem 4 (Burer-Monteiro-factored SDP relaxation as manifold optimization)

p∗SDPLR(r) = min
Y ∈St(d,r)n

tr
(
Q̃Y TY

)
. (6.24)

While formulations (6.22) and (6.24) are equivalent, the latter provides important

computational advantages. In particular, recognizing that the feasible set is a prod-

uct of Stiefel manifolds enables us to apply specialized algorithms for optimization

6.1 Certifiably Optimal Solvers for SLAM 161

over smooth manifolds, which are substantially simpler, faster, and more accurate

than general-purpose equality-constrained nonlinear programming techniques [113].

Ensuring Global Optimality. While the reduction from Problem 3 to Problem

4 dramatically reduces the size of the optimization problem that needs to be solved,

it comes at the expense of (re)introducing the quadratic orthonormality constraints

(6.23), which are nonconvex. It may therefore not be clear whether anything has

really been gained by relaxing Problem 2 to Problem 4, since it appears that we may

have simply replaced one difficult nonconvex optimization problem with another.

The following remarkable result (adapted from Boumal et al. [111]) justifies this

approach:

Theorem 6.2 (A Sufficient Condition for Global Optimality in Problem 4) If

Y ∈ St(d, r)n is a (row) rank-deficient second-order critical point of Problem 4,

then Y is a global minimizer of Problem 4 and Z∗ = Y TY is a solution of the

semidefinite relaxation Problem 3.

Theorem 6.2 immediately suggests a simple procedure, the Riemannian Stair-

case, for recovering solutions Z∗ of Problem 3 by applying fast local optimization

algorithms to a sequence of instances of Problem 4. In brief, starting at some (small)

initial maximum rank r ≥ d, we apply a local solver to (6.24) (more precisely, a

second-order Riemannian optimization algorithm) to recover a second-order critical

point Y ∗ ∈ St(d, r)n. If Y ∗ is rank-deficient, then Theorem 6.2 proves that Y ∗ is

a global minimizer of (6.24), and Z∗ = Y ∗TY ∗ is a solution of (6.21). On the other

hand, if Y ∗ is not rank deficient, we can simply increase the maximum rank r and

try again. Note that since every Y ∈ Rr×dn is (row) rank-deficient for r ≥ dn+ 1,

the Riemannian Staircase is guaranteed to terminate with an optimal solution Y ∗

after finitely many iterations. However, typically only one or two “stairs” suffice.

Finally, we remark that from a practical standpoint, the Riemannian Staircase

functions as a lightweight meta-algorithm that “wraps around” the same class of fast

(second-order) local optimization algorithms commonly applied to SLAM problems

in practice. This approach thus enables us to preserve the speed of current state-of-

the-art SLAM techniques while additionally guaranteeing the recovery of globally

optimal solutions, thereby achieving the best of both worlds.

6.1.2.4 Rounding the Solution

We have just seen that the Riemannian Staircase provides an efficient algorithm

for recovering a low-rank factor Y ∗ ∈ St(d, r)n of a solution Z∗ = Y ∗TY ∗ of the

relaxation Problem 3. However, ideally we would like to extract an optimal solution

R∗ ∈ SO(d)n of the pose graph optimization Problem 2 from Z∗ whenever the re-

laxation (6.21) is exact, and a feasible approximate solution R̂ ∈ SO(d)n otherwise.

In this subsection, we describe an efficient rounding procedure that accomplishes

these aims by operating directly on the low-rank factor Y ∗ (i.e.,without the need

to explicitly construct the dense, high-dimensional matrix Z∗).

162 Certifiably Optimal Solvers and Theoretical Properties of SLAM

Algorithm 3 The SE-Sync algorithm

Input: An initial point Y ∈ St(d, r0)n, r0 ≥ d+ 1.

Output: A feasible estimate T̂ ∈ SE(d)n for the maximum likelihood estimation

Problem 1, and the lower bound p∗SDP for Problem 1’s optimal value.

1: function SE-Sync(Y)

2: Set Y ∗ ← RiemannianStaircase(Y).

3: Set p∗SDP ← F (Q̃Y ∗TY ∗).

4: Set R̂← RoundSolution(Y ∗).

5: Recover the optimal translational estimates t̂ corresponding to R̂ via (6.16).

6: Set T̂ ← (t̂, R̂).

7: return
{
T̂ , p∗SDP

}

8: end function

The main insight that underpins our approach is that, in the event that the

relaxation (6.21) is exact, R∗, Z∗, and Y ∗ will satisfy the relation

Y ∗TY ∗ = Z∗ = R∗TR∗. (6.25)

In this case, equation (6.25) implies that the low-rank factor Y ∗ ∈ Rr×dn actually

has rank d, and consequently thatR∗ can be recovered from Y ∗ by computing a thin

singular value decomposition of the latter. More generally, in the event that (6.21)

is not exact, we can still recover an optimal rank-d approximation R̂ ∈ Rd×dn of Y ∗

using a truncated singular value decomposition, and then project the individual d×d
blocks R̂i of R̂ onto SO(d) (again using an SVD) to produce a feasible approximate

solution of Problem 2.

6.1.2.5 SE-Sync: The Complete Algorithm

Combining the efficient SDP optimization approach of Section 6.1.2.3 with the

rounding procedure of Section 6.1.2.4 produces SE-Sync (Algorithm 3), our certifi-

ably correct algorithm for pose-graph SLAM [943].

When applied to an instance of pose graph optimization, SE-Sync returns a

feasible point T̂ ∈ SE(d)n of the maximum likelihood estimation Problem 1 together

with a lower bound p∗SDP ≤ p∗MLE on its optimal value. This lower bound in turn

provides an upper bound on the suboptimality of any feasible point T = (t,R) ∈
SE(d)n as a solution of Problem 1 according to

F (Q̃RTR)− p∗SDP ≥ F (Q̃RTR)− p∗MLE. (6.26)

Moreover, in the case that the relaxation in Problem 3 is exact, the estimate T̂ =

(t̂, R̂) ∈ SE(d)n returned by Algorithm 3 attains this lower bound:

F (Q̃R̂TR̂) = p∗SDP. (6.27)

6.1 Certifiably Optimal Solvers for SLAM 163

Figure 6.2 Globally optimal solutions for pose graph optimization benchmarking datasets
(From [943]).

Consequently, verifying a posteriori that (6.27) holds provides a computational cer-

tificate of T̂ ’s correctness as a solution of Problem 1. SE-Sync is thus a certifiably

correct algorithm for pose-graph SLAM, as claimed.

Sample certifiably optimal results obtained with SE-Sync are shown in Fig. 6.2

and discussed in depth in [943]. The paper [943] also reports a runtime analysis

showing that the algorithm can be as fast if not faster than traditional local solvers.

6.1.3 Landmark-based SLAM

While in the previous section we have shown how to obtain a fast certifiable algo-

rithm for pose graph optimization, in this section we show that the same derivation

applies to landmark-based SLAM, specifically for the case where the robot takes

bearing and range measurements to landmarks.

Let mn+1, . . . ,mn+ℓ ∈ Rd be the set of ℓ landmark positions that we wish to

estimate in addition to the n robot poses. It turns out that these new map variables

can be easily integrated into the existing implementation of SE-Sync. To do this, we

treat the map point variables as pose variables without any rotational component.

We assume the we have a set of Nm landmark measurements, {m̃ik}, describing

the relative position of landmark mk with respect to the i-th pose of the robot. We

also assume that these measurements are corrupted by additive mean-zero isotropic

164 Certifiably Optimal Solvers and Theoretical Properties of SLAM

Gaussian noise —the same form as the translation measurements in (6.8):

m̃ik = m̄ik +mϵ
ik, mϵ

ij ∼ N
(
0, µ−1

ij Id
)
. (6.28)

To track these new measurements, we augment the pose-graph,
−→G , with a new

set of vertices, Vm, and edges,
−→E m, with a one-to-one correspondence to the map

variables and landmark measurements, respectively. Moreover, we denote with
−→E r

the edges corresponding to relative pose measurements of the robot pose (e.g.,

odometry), which are assumed to follow the same measurement model as in (6.8).

The maximum likelihood estimation problem given the landmark measurements

and the relative pose measurements becomes:

Problem 5 (Landmark-based SLAM)

min
Ri∈SO(d)

ti∈Rd,mk∈Rd

∑

(i,j)∈−→E r

κij∥Rj −RiR̃ij∥2F + τij
∥∥tj − ti −Rit̃ij

∥∥2
2

+
∑

(i,k)∈E⃗m

µik ∥mk − ti −Rim̃ik∥2 .
(6.29)

It turns out that the remainder of the development we presented in the previ-

ous section can be used as is, if we treat the map variables as if they were pose

translations. The optimal rotation variables can be found by applying the SE-Sync

algorithm with a cost matrix Q̃ that has been modified to include the effect of the

map variables. In particular, the weight matrix Ω and measurement matrix T̃ are

redefined as follows:

Ω = BlockDiag(Ωτ ,Ωµ),

Ωτ = Diag(τ1, . . . , τNp),

Ωµ = Diag(µ1, . . . , µNm),

T̃ek =

−t̃Tkj , e = (k, j) ∈ −→E r,

−m̃T
kj , e = (k, j) ∈ −→E m,

01×d, otherwise

(6.30)

Additionally, the projection matrix Π is modified to account for the form of the new

measurement graph,
−→G = (V ∪Vm,

−→E r ∪
−→E m). Note that the connection Laplacian

L(G̃ρ) remains unaffected by the new map measurements.

Once the optimal rotations have been found, both the pose translations and the

map points can be recovered in closed form similarly to (6.16):

[
t∗T m∗T]T = −vec

(
R∗Ṽ TL(Wτ)†

)
, (6.31)

where we have assumed that the pose translation variables and map points have

been ordered appropriately and Ṽ and L(Wτ)† have also been updated to include

the map point measurements similarly to (6.30).

It is often the case in typical SLAM problems that there are many more map

points than poses. As such, when including map variables in the SE-Sync formula-

tion, it is important to ensure the algorithm remains efficient with respect to the

number of map points in the problem. In the case where the number of map points

6.1 Certifiably Optimal Solvers for SLAM 165

Figure 6.3 (a) An example of a local and global minimum for a simple landmark-based
SLAM problem. (b) Runtime for the example shown in (a). Runtime increases linearly
with respect to the size of the map and the bottleneck is the construction of the data
matrix, Q̃ (shown in blue). (c) A study of the exactness of the relaxation via corank of a
certificate matrix (exact when this metric is three). The noise on the measurements was
set to a baseline standard deviation – 0.866 meters for translation and 0.573 degrees for
rotation – scaled by the “Noise Level” multiplier indicated in the plots. In general, the
noise level for which the problem remains exact increases as the number of map points
and the pose-to-map connectivity increase. From [473] (©2023 IEEE).

is large, the bottleneck of the SE-Sync algorithm becomes the formation of the cost

matrix Q̃. It has been shown that the classical Schur-complement trick can be used

to ensure that this matrix can be constructed with time complexity that is linear

in the number of landmarks [473]. This linear dependence can be seen clearly in

Figure 6.3(b), where it is can also be seen that the computational cost of other

components of SE-Sync algorithm does not increase with the number of landmarks.

Finally, the inclusion of the landmarks in the formulation has been shown to

affect the exactness of the SDP relaxation. In particular, increasing the number of

landmarks and the connectivity of the pose-to-map measurement graph have been

shown to improve the exactness of the relaxation. More specifically, they increase

the noise level for which a given problem has an exact relaxation. A demonstration of

the effect of these parameters on a simple SLAM problem are shown in Figure 6.3(c).

6.1.4 Extensions: Range Measurements,

Anisotropic Noise, and Outliers

This section shows that the machinery presented above (i.e., Shor’s relaxation and

the Riemannian Staircase solver) can be extended to other SLAM problems (Sec-

tion 6.1.4.1). Moreover, we discuss more general tools to obtain semidefinite re-

166 Certifiably Optimal Solvers and Theoretical Properties of SLAM

laxations (which can be understood as a generalization of Shor’s relaxation) that

further expand the set of certifiable algorithms for SLAM, but create additional

challenges when solving the resulting SDP (Section 6.1.4.2).

6.1.4.1 A Fast Certifiable Algorithm for Range-Aided SLAM

In the previous section, we showed how to develop certifiable algorithms for SLAM

problems where the measurements are relative positions and relative rotations.

Here we show that the same approach can be applied to problems involving range

measurements, following the results presented in [846]. Specifically, we assume that

we can measure distances r̃ij between variables i and j, e.g., the distance between

two robot poses or between a landmark and a robot pose. The optimization problem

for range-aided SLAM can be stated as follows.

Problem 6 (Range-Aided SLAM)

min
Ri∈SO(d)

ti∈Rd

∑

(i,j)∈−→E

κij∥Rj −RiR̃ij∥2F + τij
∥∥tj − ti −Rit̃ij

∥∥2
2

+
∑

(i,j)∈−→E d

γij (∥tj − ti∥ − r̃ij)2
(6.32)

The first line in the objective function of Problem 6 is the same we have used

in the previous sections: these are relative pose measurements, e.g., corresponding

to the robot odometry. The difference in this problem is the second line, which

contains terms corresponding to the distance measurements r̃ij (the set
−→E d is the

set of pairs (i, j) such that a range measurement is available), weighted by the

inverse variance γij of these measurements. The range-only measurements r̃ij are

distinct in that they provide information about the relative distance magnitude

between poses, i and j, but no information about the bearing or relative orientation.

Moreover, Problem 6 can be used to model a variety of practical SLAM problems,

from landmark-based SLAM with distance measurements to landmarks, to multi-

robot SLAM problems where the robots take relative range measurements.5

The challenge in applying Shor’s relaxation to Problem 6 is that (6.32) is not a

QCQP: expanding the square (∥tj − ti∥ − r̃ij)2 = ∥tj − ti∥2 + 2r̃ij∥tj − ti∥ + r̃2ij
reveals that this expression is not quadratic in the variables ti and tj , due to

the unsquared norm term. To address this issue, the work [846] proposes an elegant

5 Ultra-wideband (UWB) radios are popular sensors to obtain distance-only measurements.

6.1 Certifiably Optimal Solvers for SLAM 167

reformulation of (6.32), which introduces auxiliary unit vectors bij (with ∥bij∥ = 1):

min
Ri∈SO(d)

ti∈Rd

bij∈Sd−1

∑

(i,j)∈−→E

κij∥Rj −RiR̃ij∥2F + τij
∥∥tj − ti −Rit̃ij

∥∥2
2

+
∑

(i,j)∈−→E d

γij ∥tj − ti − r̃ijbij∥2,
(6.33)

Intuitively, formulation (6.33) also infers the bearing bij between variables i and j for

which a range measurement r̃ij is available, and then recasts the corresponding term

in the objective function, namely ∥tj − ti − r̃ijbij∥2, as a range-and-bearing mea-

surement (similar to the ones we have seen in the previous sections). The advantage

in doing so is that (6.33) is now a QCQP, since the last term in the objective is now

quadratic in the unknowns, and the additional unit-norm constraints ∥bij∥2 = 1

on the bij are quadratic as well. The new formulation can then be relaxed to an

SDP using Shor’s relaxation and solved efficiently using the Riemannian Staircase,

leading to CORA [846], a fast certifiable algorithm for range-aided SLAM.

The work [846] also evaluates the exactness of the relaxation, showing that now

the relaxation becomes more brittle compared to the cases discussed in the previous

sections. For instance, when used to solve multi-robot range-aided SLAM problems,

the relaxation is typically not exact unless there are also relative pose measurements

between the robots (i.e., range-only measurements between the robots do not suf-

fice to obtain exact relaxations). However, the relaxation is still exact in a variety of

practical SLAM problems, and allows computing certifiably optimal solutions with

runtime comparable to local solvers. More generally, [846] shows that the connec-

tivity of the graph underlying the SLAM problem largely impacts the exactness of

the SDP relaxation, a phenomenon also observed in [943, 473]. As we will see in

Section 6.2, the graph connectivity also affects the accuracy of the SLAM estimate,

creating very interesting graph-theoretic insights into the SLAM problem.

6.1.4.2 Certifiable Algorithms Beyond Shor’s Relaxation:

Anisotropic Noise and Outliers

So far we have reviewed certifiable algorithms (and fast solvers) for SLAM prob-

lems that can be reformulated as QCQP. Unfortunately, not all SLAM instances fall

into this category. Below, we consider a broader class of SLAM problems, namely,

problems with anisotropic measurement noise and problems with outliers. The in-

teresting observation behind these problems is that, while they can no longer be

written as QCQP, they can often be formulated as Polynomial Optimization Prob-

lems (POPs), a generalization of QCQPs where both the objective and constraints

are polynomial functions (instead of quadratic functions). This observation is im-

portant since there exists a generalization of Shor’s relaxation, namely the Moment

(or Lasserre’s) Relaxation, that allows deriving SDP relaxations for POPs, thus

168 Certifiably Optimal Solvers and Theoretical Properties of SLAM

enabling the design of certifiable algorithms for a broader set of problems. Below,

we review examples of SLAM problems that can cannot be written as QCQPs, and

then provide an overview of the Moment Relaxation and practical considerations.

Example: Landmark-based SLAM with Anisotropic Noise. In previous

sections, we assumed the measurement noise to be isotropic. However, measure-

ments produced by common sensing modalities (e.g., stereo cameras, LiDAR, and

RADAR) typically exhibit anisotropic noise. For instance, the measurement of the

position of a landmark as observed by a stereo camera is typically more uncer-

tain along the viewing direction of the cameras, due to the uncertainty induced

by the stereo matching and triangulation process. More formally, the measurement

model for the landmark measurements becomes m̃ik = RT
i (mk − ti) + ϵik, where

ϵik ∼ N (0,Wik) and Wik is an anisotropic covariance (i.e., Wik cannot be written

as a scalar multiple of the identity matrix). In the presence of anisotropic noise, we

need to generalize the landmark-based SLAM Problem 5 as follows [473]:

Problem 7 (Landmark-based SLAM with Anisotropic Noise)

min
Ri∈SO(d)

ti∈Rd, mk∈Rd

∑

(i,j)∈−→E

κij∥Rj −RiR̃ij∥2F + τij
∥∥tj − ti −Rit̃ij

∥∥2
2

+
∑

(i,k)∈E⃗m

∥RT
i (mk − ti)− m̃ik∥2Wik

(6.34)

In (6.34), E⃗m denotes the set of edges corresponding to landmark measurements,

and, for generic vectors a and matrix W of suitable dimensions, the notation

∥a∥2W = aTWa denotes the standard Mahalanobis squared norm. This seemingly

innocuous change with respect to Problem 5 is quite consequential in practice. In-

deed, if Wik is isotropic (e.g., Wik = µ−1
ik I3) we can manipulate the expression

in (6.34) to the QCQP in Problem 5, whereas if Wik is anisotropic the problem is

quartic (i.e., it involves degree 4 polynomials in the variables).6

Example: SLAM with Outliers. So far, we assumed all measurements to be

affected by zero-mean (but possibly anisotropic) Gaussian noise. Unfortunately,

as we discussed in Chapter 3, in real SLAM problem some measurements might

be outliers. This is typically the case for loop closure or landmark measurements,

where incorrect place recognition or data association might cause adding incorrect

measurements to the SLAM back-end. As we discussed in Chapter 3, an effective

approach to mitigate the impact of outliers is to use robust loss functions. For

instance, in the presence of outliers, the landmark-based SLAM Problem 5 becomes:

6 Intuitively, when Wik = µ−1
ik I3, we can simplify the quartic function ∥RT

i (mk − ti)− m̃ik∥2
Wik

to a

quadratic one: ∥RT
i (mk − ti)− m̃ik∥2

Wik
= µik∥RT

i (mk − ti)− m̃ik∥2 = µik∥mk − ti −Rim̃ik∥2,

where in the last equality we used the rotation invariance of the ℓ2 norm.

6.1 Certifiably Optimal Solvers for SLAM 169

Problem 8 (Pose Graph Optimization with Outliers)

min
Ri∈SO(d)

ti∈Rd

∑

(i,j)∈−→E o

κij∥Rj −RiR̃ij∥2F + τij
∥∥tj − ti −Rit̃ij

∥∥2
2

+
∑

(i,k)∈E⃗m

ρ (
√
µik ∥mk − ti −Rim̃ik∥) .

(6.35)

In (6.35), ρ(·) is a robust loss function (cf. Chapter 3) which is designed to reduce

the influence of potential outliers in the landmark measurements. From Chapter 3,

we know that we can use the Black-Rangarajan duality to reformulate (6.35) as a

least-squares problem with auxiliary variables wik, one for each robust loss term.

For instance, when choosing ρ(·) to be the truncated quadratic loss, then (6.35) can

be rewritten as

min
Ri∈SO(d)

ti∈Rd

wik∈[0,1]

∑

(i,j)∈−→E o

κij∥Rj −RiR̃ij∥2F + τij
∥∥tj − ti −Rit̃ij

∥∥2
2

+
∑

(i,k)∈E⃗m

wikµik ∥mk − ti −Rim̃ik∥2 + (1− wik)β2.

(6.36)

where β is the maximum inlier error, as specified by the truncated quadratic loss.

We note that (6.36) now includes auxiliary variables wik, which indicate whether a

measurement is classified as an inlier or outlier. Interestingly, the objective function

in (6.36) includes polynomials of degree up to 3, while the constraints are still at

most quadratic functions. The work [1217] shows that the same conclusion holds for

several choices of robust losses and for other variations of the problem, including

pose graph optimization and multiple rotation averaging. Below, we discussion how

to obtain semidefinite relaxations for optimization problems involving polynomials.

Polynomial Optimization Problems and Moment Relaxation. The pre-

vious examples show how a broad range of SLAM problems can be reformulated as

optimization problems involving polynomials. More formally, they can be written

as Polynomial Optimization Problems:

min
x

p(x)

subject to hi(x) = 0, i = 1, . . . , nh

gi(x) ≤ 0, i = 1, . . . , ng,

(POP)

where the functions p, hi, gi are real polynomials in the variable x, and nh and ng
are the number of equality and inequality constraints.

Rewriting the SLAM problem as (POP) does not immediately imply any com-

putational advantage: POPs are a very general class of optimization problems

(which also includes QCQPs) and are generally intractable to solve. Our inter-

est towards (POP) stems from the fact that there exists a standard procedure,

170 Certifiably Optimal Solvers and Theoretical Properties of SLAM

known as the Moment (or Lasserre’s) relaxation, to obtain a semidefinite relax-

ation of (POP). Even more interestingly, the procedure provides tools to obtain

a hierarchy of relaxations and also guarantees that —under mild assumptions—

certain relaxations in this hierarchy are exact. While we refer the reader to [153]

and the seminal works [634, 633] for a more extensive introduction to the Moment

relaxation, below we provide a simple example to convey the underlying ideas.

To illustrate how to obtain a relaxation of a POP, consider the following problem:

min
x

p(x)

subject to hi(x) = 0, i = 1, . . . , nh
(6.37)

where, for simplicity, we assume x = [x1;x2], and that p(x) and h(x) are polynomi-

als of degree at most 4; in this simplified example we only have equality constraints.

Then, to derive the moment relaxation of (POP), we define the vector of monomials

of degree up to r = 2, where r is called the order of the relaxation:

[x]2 = [1;x1;x2;x21;x1x2;x22] (6.38)

Then, we can form the moment matrix as the following outer product:

X4 ≜ [x]2[x]
T
2 =

1 x1 x2 x2

1 x1x2 x2
2

x1 x2
1 x1x2 x3

1 x2
1x2 x1x

2
2

x2 x1x2 x2
2 x2

1x2 x1x
2
2 x3

2

x2
1 x3

1 x2
1x2 x4

1 x3
1x2 x2

1x
2
2

x1x2 x2
1x2 x1x

2
2 x3

1x2 x2
1x

2
2 x1x

3
2

x2
2 x1x

2
2 x3

2 x2
1x

2
2 x1x

3
2 x4

2

. (6.39)

Now the key observation is that we can write any polynomial of degree up to 4 as

a linear combination of the entries of X4. Therefore, we can rewrite (6.37) as:

min
X,x

tr (CX)

subject to tr (HiX) = 0, i = 1, . . . , nh

X = [x]2[x]T2

(6.40)

In full analogy with Shor’s relaxation, we can now replace the constraint X =

[x]2[x]T2 with X ⪰ 0 and rank (X) = 1 and then relax the rank constraint to

obtain a semidefinite relaxation. Importantly, the moment relaxation also adds

redundant constraints7 to improve its quality. These constraints capture the fact

that the moment matrix contains repeated entries (e.g., the term x1x2 appears 3

times in (6.40)) as well as the fact that if hi(x) = 0, then also x1 · hi(x) = 0 and

x2 · hi(x) = 0 must hold. The moment relaxation provides a systematic way to

identify all these redundant constraints, and also extends to the case of inequal-

ity constraints. Moreover, while above we derived an order r = 2 relaxation, we

can repeat the procedure for any integer r ≥ 2, obtaining larger but better SDP

7 These are constraints that are inconsequential for problem (6.40), but improve the quality of the
relaxation.

6.2 How Accurate is the Optimal Solution of a SLAM Problem? 171

relaxations (hence a hierarchy of relaxations). Indeed, the seminal work [812] es-

tablishes that the moment relaxation will produce exact relaxations (i.e., recovers

a certifiably optimal solution to the original POP) at a finite order r, under mild

assumptions. Interestingly, related work [1217, 473] has observed that moment re-

laxations of problems with anisotropic noise and outliers are already exact at a low

relaxation order. Moreover, they remain tight even when using a subset of the vari-

ables in the monomial basis (6.38) (i.e., a sparse monomial basis), which further

reduces the size of the resulting SDP.

The ‘Catch’: Solving the SDP Moment Relaxation. One important dif-

ference between the relaxations we have seen in the previous sections and the ones

discussed in this section is that the latter involve a large number of redundant

constraints in the SDP relaxation. While this difference might seem minor, the

consequences for the SDP solver are profound. In particular, SDPs with redun-

dant constraints (as the ones typically obtained from the moment relaxation) are

degenerate [34], which makes the application of the Riemannian Staircase solver

problematic for two reasons. First, constraint qualification conditions typically fail

for these problems, and these conditions are required to ensure convergence of the

Riemannian Staircase [847]. Second, degenerate SDPs have an infinite number of

dual solutions, which creates computational obstacles in the implementation of the

Riemannian Staircase. In other words, the Riemannian Staircase is no longer a vi-

able solver for the degenerate SDPs typically produced by the moment relaxation.

While the recent literature includes specialized solvers for moment relaxations of

POPs [1216], these solvers are still relatively slow compared to local solvers.

6.2 How Accurate is the Optimal Solution of a SLAM Problem?

In the previous section we discussed how to obtain certifiably optimal solutions

to certain SLAM problems. However, another fundamental question remains: how

accurate is the optimal solution compared to the ground truth? Understanding this

fundamental limit and identifying the key factors that influence estimation accuracy

provides critical guidance for both system designers and end users. For example,

at design time such insights can guide the choice of sensors the robot is equipped

with; on the other hand, at deployment time, these insights can be used to guide

the motion of the robot (and the corresponding acquisition of measurements) to

ensure robust SLAM performance. Before offering a concrete answer, we first need to

formalize the question. Modern SLAM pipelines are complex, with many interacting

subsystems affecting overall performance. Consequently, we approach this question

from an estimation-theoretic perspective, focusing on the SLAM back-end.

Some Terminology and Facts. The goal of the SLAM back-end is to estimate

unknown quantities such as robot poses and landmarks’ positions from noisy mea-

surements. These measurements are random variables because they are corrupted

by random sensor noise. An estimator is a function that maps collected noisy mea-

172 Certifiably Optimal Solvers and Theoretical Properties of SLAM

surements to an estimate of the unknown parameters. Since the estimator depends

on random measurements, it is itself a random variable. The Mean Squared Error

(MSE) is a commonly used metric for evaluating an estimator’s performance. As

the name suggests, the MSE represents the squared estimation error averaged over

all possible measurements. In the univariate case, the MSE can be expressed as

the sum of the estimator’s squared bias and its variance. The bias refers to the

difference between the ground truth and the estimator’s output, averaged over all

possible measurements. The variance captures the variability of the estimator’s out-

put around its mean. The relationship between bias and variance, and the definition

of the MSE extends naturally to the multivariate setting, where the variance is re-

placed by a covariance matrix. The MSE is still the sum of the squared norm of the

bias and the trace of the covariance matrix. Clearly, for unbiased estimators (i.e.,

estimators with zero bias), the only quantity influencing the MSE is the covariance

matrix. In the following, we show how to lower bound the covariance of the SLAM

estimate, thus getting a fundamental limit on the accuracy achievable by a SLAM

system.

6.2.1 Cramér-Rao Lower Bound and the Fisher Information Matrix

The Cramér-Rao Lower Bound (CRLB) provides a theoretical limit on the best

estimator covariance achievable by any unbiased estimator. Formally,

Cov(x̂) ⪰ I(xtrue)
−1
, (6.41)

where x̂ is any unbiased estimator of xtrue ∈ Rm, and A ⪰ B indicates that A−B
is positive semidefinite. The matrix I(xtrue) appearing on the right-hand side of

(6.41) is the Fisher information matrix (FIM), which is defined as8

[I(xtrue)]i,j ≜ Ez

[
∂

∂xi
log p(z;x)

∂

∂xj
log p(z;x)

]
. (6.42)

Here the expectation is taken over the possible realizations of measurements z

drawn from the probability density function p(z;xtrue), and the partial derivatives

of the log-likelihood function are evaluated at the true parameter value xtrue. Under

certain regularity conditions, the FIM can also be expressed as the expected value

of the Hessian of the log-likelihood:

[I(xtrue)]i,j = Ez

[
∂2

∂xi∂xj
log p(z;x)

]
. (6.43)

8 The classical CRLB assumes that the variables live in a Euclidean space. In SLAM, we often need
to estimate poses and rotation matrices. The CRLB has been extended to Riemannian submanifolds
and matrix Lie group parameters [112, 101]. In such cases, CRLB has an additional (additive) term
that depends on the curvature of the parameter space. The curvature term is often negligible when
the signal-to-noise ratio is large.

6.2 How Accurate is the Optimal Solution of a SLAM Problem? 173

This connection to the Hessian provides an intuitive understanding of the CRLB:

the CRLB establishes a lower bound on the covariance of any unbiased estima-

tor, expressed in terms of the local sensitivity (curvature) of the (expected) log-

likelihood function with respect to the parameters around the true parameter value

xtrue. If the log-likelihood is relatively flat around the true parameter value across

different realizations of measurements (i.e., in expectation), any unbiased estimator

will struggle to accurately localize the true parameter based on the observed data.

In such cases, unbiased estimators will exhibit higher variance, leading to a higher

MSE. In summary, the FIM captures the amount of information one can learn about

the true parameter’s value from measurements using any unbiased estimator.

Under certain regularity conditions, it has been shown that the maximum likeli-

hood estimator x̂mle asymptotically (i.e., when the number of measurements tends

to∞) converges (in distribution) to N
(
xtrue, I(xtrue)

−1
)
. Therefore, the maximum

likelihood estimator is asymptotically unbiased and achieves the CRLB (i.e., mini-

mum variance among all unbiased estimators). Since the true value of parameters

xtrue is unknown, we often approximate the FIM by I(x̂mle). Furthermore, it is

common to approximate the covariance of the maximum likelihood estimator x̂mle

with I(x̂mle)
−1

, the so-called Laplace approximation.

As an example, consider the common scenario where measurements are generated

by corrupting a smooth (potentially nonlinear) function with additive Gaussian

noise. In this case, the measurement model can be written as

z = h(xtrue) + ϵ, (6.44)

where ϵ ∼ N (0,Σ) is the noise. The likelihood function evaluated at x is thus

given by p(z;x) = N (h(x),Σ). Plugging this likelihood in (6.42) yields the FIM

(evaluated at x):

I(x) = J(x)⊤ Σ−1J(x), (6.45)

in which J(x) denotes the Jacobian of the measurement model h evaluated at x.9

A Scalar Measure of Uncertainty: Optimal Experimental Design Cri-

teria. In many applications (e.g., system design, active SLAM), one needs to map

the FIM, a PSD matrix, to a real number that captures a meaningful and ‘op-

timizable’ aspect of the estimation error uncertainty. Standard choices have been

investigated in the field of Optimal Experimental Design. These include the deter-

minant of the FIM (D-optimality), the trace of its inverse (A-optimality), and its

smallest eigenvalue (E-optimality). These criteria are spectral functions of the FIM

(i.e., can be computed from the eigenvalues of the FIM). Each criterion reflects a

different aspect of estimation error: the D-optimality criterion quantifies the un-

certainty hyper-volume, the A-optimality criterion measures the average variance,

and the E-optimality criterion represents the worst-case estimation variance.

9 The matrix (6.45) is often called the information matrix in the SLAM literature.

174 Certifiably Optimal Solvers and Theoretical Properties of SLAM

6.2.2 Fisher Information Matrix and Graph Laplacian

In this section, we study how the graphical structure of SLAM problems affects

the FIM. Inspecting the FIM (6.45) reveals the intuitive fact that the measurement

noise covariance matrix Σ affects the FIM: unsurprisingly, higher measurement

noise covariance increases the lower bound on the smallest achievable MSE among

all unbiased estimators in the CRLB. Additionally, the Jacobians of the measure-

ments appear in (6.45), but it is difficult to intuitively understand from this equation

how the measurements’ Jacobian affects the CRLB.10 In the following, we gain in-

sights on the structure of the Jacobians and the resulting FIM by relating them to

properties of the graph underlying the SLAM problem.

All variants of SLAM naturally admit a graphical representation as we have seen

in Chapter 1 and earlier in this chapter. The graph essentially encodes “who is ob-

serving what” and provides a concise overview of the SLAM problem. For instance,

in pose graph optimization and landmark-based SLAM, each variable (e.g., robot

pose or landmark position) is represented by a vertex, while pairwise measurements

(pose-pose or pose-landmark) correspond to edges between the respective vertices.

Next, we study how properties of the graph underlying the SLAM problem impact

the accuracy of the resulting estimate. In particular, the degree of connectivity

within the graph reflects the redundancy in measurements. Intuitively, a “better”

connected SLAM graph is expected to be more robust to noise, yielding accurate

estimates even under higher noise levels due to redundant measurements. While it is

straightforward to show from (6.45) that introducing additional measurements (i.e.,

edges) always reduces the lower bound in the CRLB (in the Loewner order),11 the

impact of different measurements varies depending on which variables are involved

in the additional measurements (i.e., the resulting graph connectivity). This is

particularly evident in the context of loop closure in SLAM: closing a “larger” loop

has a more significant effect on improving the accuracy of the SLAM solution. This

intuition has been formalized in a series of works, establishing connections between

the graphical structure of SLAM and desirable properties in both estimation and

optimization. Below we provide a brief overview of these findings.

Connections between FIM and Graph Laplacian for a Simplified PGO

Problem. The FIM in landmark-based SLAM and pose graph optimization is

closely linked connected to graph Laplacian [569, 568, 884, 197]. This relationship

is intuitive given that the measurements in these frameworks consist of pairwise rel-

ative observations between vertices. To illustrate the concept, we derive the FIM for

the simpler problem of estimating robot positions in a 3D pose graph optimization

10 Note that even without understanding the structure of the Jacobians, we can still compute the FIM
(approximated at the current estimate) and use it to assess the estimation accuracy of a given
SLAM problem. However, a deeper understanding of the FIM will allow us to predict how
modifications of the SLAM problem (e.g., driven by active data collection by the robot) will impact
the future uncertainty in the SLAM estimates, thus informing active perception and design tasks.

11 Each new measurements adds a positive semi-definite matrix to the FIM. This is known as the
“information never hurts” principle.

6.2 How Accurate is the Optimal Solution of a SLAM Problem? 175

problem when the robot orientations are known. Let zk be denote the kth relative

measurement in which pose ik observes pose jk in its local frame:

zk = R⊤
ik

(tjk − tik) + ϵk, (6.46)

where ϵk ∼ N (0, w−1
k I3) in which I3 is the 3× 3 identity matrix. Let z, t, and ϵ be

the stacked vectors of measurements, positions, and noise variables. Additionally,

let R be the block-diagonal matrix of rotation matrices such that the kth block is

the rotation matrix involved in the kth measurement:

R ≜ BlockDiag(Ri1 ,Ri2 , . . . ,Rim). (6.47)

The stacked measurement model can be expressed as:

z = R⊤(A⊗ I3)⊤t + ϵ, (6.48)

where A denotes the reduced incidence matrix of the pose graph,12, and ⊗ denotes

the Kronecker product. Therefore, the Jacobian matrix of the stacked measurement

model is given by

J = R⊤(A⊗ I3)⊤. (6.49)

The information matrix of the stacked noise vector is given by

Σ−1 = BlockDiag(w1I3, w2I3, . . . , wmI3). (6.50)

Let W denote the diagonal matrix of edge weights:

W ≜

w1 0 · · · 0

0 w2 · · · 0
...

...
. . .

...

0 0 · · · wm

 . (6.51)

Using (6.45), the FIM can be computed as follows:

I = J⊤Σ−1J (6.52a)

= (A⊗ I3)RΣ−1R⊤(A⊗ I3)⊤ (6.52b)

= (A⊗ I3)(W ⊗ I3)(A⊗ I3)⊤ (6.52c)

= (AWA⊤)⊗ I3 (6.52d)

= Lw ⊗ I3, (6.52e)

where we observed that the block diagonal entries of Σ−1 are invariant to rotation,

hence RΣ−1R⊤ = Σ−1, and we used the fact that Σ−1 = W ⊗ I3. In (6.52a),

Lw = AWA⊤ is the reduced weighted Laplacian matrix of the graph where edge

12 The reduced incidence matrix is obtained by removing the row(s) corresponding to anchored poses
from the incidence matrix (e.g., anchoring the first position to the origin of the world frame) [154].
This is done to remove gauge symmetry due to the symmetric nature of SLAM with relative
measurements.

176 Certifiably Optimal Solvers and Theoretical Properties of SLAM

weights are given by w1, w2, . . . , wm. This clearly shows that in this case (sim-

plified pose graph optimization where robot orientations are assumed known and

noise is assumed isotropic), the FIM is fully characterized by the reduced weighted

Laplacian of the underlying graph.

FIM for Other SLAM Problems. The result above can be generalized to

pose graph optimization and landmark-based SLAM problems [569, 884, 197]. In

these problems, the FIM involves both the reduced weighted Laplacian matrix of

graph and additional terms that depend on the robot trajectory. In particular, the

FIM for 3D pose-graph optimization can be written as [884, Eq. 29]:

I(x) =
m∑

k=1

Lk ⊗
(
Ad(T−1

ik
)⊤Σ−1

k Ad(T−1
ik

)
)
, (6.53)

where Tik is the pose of the robot making the kth measurement, Σk is the covari-

ance matrix of the noise corrupting the kth measurement, and Lk is the reduced

elementary Laplacian matrix of the kth edge defined as Lk ≜ aka
⊤
k where ak is

the kth column of the reduced incidence matrix of the graph. Empirical results

and theoretical analyses demonstrate that, under certain conditions, the (approx-

imate) optimal design criteria derived from the reduced Laplacian closely match

those obtained from the FIM [569, 884, 197].

Practical Considerations. The connection between the FIM and the graph

Laplacian allows approximating optimal design criteria — which are spectral func-

tions of the FIM — using the spectrum of the reduced weighted Laplacian. For

instance, the D-optimality criterion can be approximated by a function of the de-

terminant of the weighted reduced Laplacian. According to Kirchhoff’s matrix-tree

theorem, this determinant equals the weighted number of spanning trees of the

graph [569]. Since the weighted number of spanning trees serves as a measure

of connectivity in edge-weighted graphs, this result formalizes the intuition that

a graph’s connectivity directly influences estimation accuracy. Similarly, the E-

optimality criterion is related to the graph’s algebraic connectivity [283, 569, 884].

Overall, measuring uncertainty using the graph Laplacian instead of the FIM offers

two main advantages: it leads to more computationally efficient techniques (e.g., the

Laplacian has a dimension six times smaller than that of the FIM in 3D pose-graph

optimization), and it eliminates the need to solve the SLAM problem or acquire

actual measurements, as the calculations are based solely on the graph structure.

These graphical approximations of design criteria have been successfully applied

in active SLAM [197, 590, 884] — where a robot plans its trajectory to maxi-

mize the anticipated SLAM accuracy — and in measurement selection and pruning

[283, 569, 1098], where the goal is to select and retain only the most informative

measurements in lifelong SLAM problems.

6.3 New Trends 177

6.3 New Trends

Certifiable Algorithms. The first certifiable algorithm for 2D SLAM traces

back to [155], and builds on earlier work done in computer vision and related

areas, including [346, 1020]. Extensions to 3D SLAM and variations quickly fol-

lowed [157, 1112, 943, 945, 120, 158], with SE-Sync providing the first blueprint

for building fast certifiable algorithms [943]. Since then, certifiable algorithms have

been designed for a variety of problems related to SLAM,13 including rotation aver-

aging [128, 977], pose graph optimization [943, 155], landmark-based SLAM [473],

multi-robot SLAM [1097], range-aided SLAM [846], 3D registration [121, 1219],

multi-set registration [509], 2-view geometry [122, 1280, 375, 1101, 546], perspective-

n-point problems [1058], calibration [390], single-frame pose and shape estima-

tion [1012], multi-frame pose and shape estimation [999], and structure from motion

with learned depth [1251]. Recent work has also extended certifiable algorithms to

cope with anisotropic noise [474] and outliers [1217], a topic that we discuss in more

detail below.

While there has been incredible progress in this area over the last decade, three

exciting open questions remain. First of all, there are still SLAM problems that

cannot be attacked with certifiable algorithms. For instance, when doing visual

SLAM (Chapter 7), the perspective projection arising in the objective function is a

rational function rather than a polynomial; while the problem can still reformulated

as a POP by introducing extra variables, it is typically impractical to add one

variable for each keypoint measurement in an image. Similarly, the modeling of IMU

measurements (that we discuss in detail in Chapter 11) has not been conducive to

the design of certifiable algorithms. Second, except for certain problems, e.g., [943,

546, 1251, 846], where the Riemannian Staircase method can be applied as a fast

solver, SDPs might need to be solved by interior-point methods or other ad hoc

solvers. While interior-point methods are very effective and fast in solving low-

dimensional optimization problems arising in the SLAM front-end (e.g., [121, 1219,

122, 1280, 375, 1101, 546]), they become impractically slow when applied to large-

scale problems in the SLAM back-end (e.g., [473]), and ad hoc solvers — while

being more scalable — are still relatively slow compared to local solvers [1216].

Recent work to address this problem has not only investigated faster SDP solvers,

but has also focused on how to reduce the size of the SDP (e.g., by sparsifying

the monomial basis underlying the moment relaxation) [1216], or how to reduce

the number of constraints, in the attempt to make the SDP non-degenerate or

faster to solve [298]. Finally, while current works compute per-instance certificates

of optimality (i.e., they compute an estimate and possibly provide a certificate of

optimality for it), the literature lacks a fundamental understanding of when the

13 Some of these optimization problems are solved as part of the SLAM front-end, e.g., to get relative
poses from sensor measurements.

178 Certifiably Optimal Solvers and Theoretical Properties of SLAM

relaxation is expected to be exact, with only few papers providing conditions for

exactness in specific problems [1214, 866, 943, 318, 153].

Problems with Outliers. Real-world SLAM problems are typically plagued

with outliers, a problem that we discussed at length in Chapter 3. While several

works wrap outlier-free certifiable algorithms in a Graduated Non-Convexity outer

loop [1219, 1012, 999] to gain empirical robustness to outliers, recent work directly

attempts the develop certifiable algorithms for robust estimation problems involv-

ing outliers. Efforts in this direction tackled pose graph optimization [626, 159],

rotation estimation [1214], 3D registration [1219], multiple rotation averaging, ab-

solute pose estimation, and pose and shape estimation [1217]. A good summary of

these results is provided in [1217], while connections with parallel work in robust

statistics are discussed in [153]. These algorithms rely on the moment relaxation

described earlier in this chapter and the resulting SDPs are still relatively slow to

solve. An alternative approach has been to obtain solutions via local solvers, and

use the same insights behind the moment relaxation to derive methods to only

check optimality [1215].

Many interesting open questions also remain in this case.14 In the presence of

outliers, we still see the same challenges and opportunities discussed in the previous

paragraph, including how to extend certifiable algorithms to other problems with

outliers, how to design faster solvers, and how to derive conditions for exactness

(e.g., as a function of the amount of noise and outliers). At the same time, there

are additional challenges related to the presence of outliers. First of all, the SLAM

approaches discussed above assume an outlier-free odometry backbone: in other

words, only the loop-closure measurements are wrapped in a robust loss function.

The assumption of having a reliable odometry source is acceptable in many SLAM

problems, but can be restrictive in certain cases. For instance, in visual SLAM

problems, the odometry can become unreliable if the feature tracking fails, while

in multi-robot SLAM problems, there is no odometry backbone connecting the

different robots and all the inter-robot measurements can be outliers. While the

formulation of current certifiable algorithms would extend to the case where also

the odometry is wrapped in a robust loss, the resulting relaxations are known to be

loose, e.g., [846], and it is unclear how to improve them. Second, even if we compute

an optimal estimate when solving a robust estimation problem, if the majority of the

measurements are outliers, the estimate can still be grossly incorrect. An interesting

and relatively unexplored area is to design certifiable algorithms that can recover

multiple hypotheses while guaranteeing that at least one hypothesis is correct, a

setting called list decodable regression in statistics [153].

Uncertainty Quantification and Downstream Applications. While Sec-

tion 6.2 provided computational tools to bound the uncertainty in our SLAM es-

timate and potentially predict its evolution as a function of the structure of the

14 The reader also also referred to [153] to a more in-depth discussion of some of these challenges.

6.3 New Trends 179

underlying graph, it still leaves many questions open. First of all, the computation of

the covariance of the SLAM estimate relies upon the knowledge of the measurement

covariances: if the measurement covariance matrices are inaccurate, the resulting

uncertainty bounds become unreliable. Recent work uses learning to estimate the

measurement covariances or even the entire measurement model [1026, 896, 1239]

(see also Chapter 4 for a broader discussion on differentiable optimization). Second,

the traditional approach to compute a covariance for the estimate does not account

for the potential presence of outliers. In the presence of outliers, the covariance

estimates can be incorrect and the distribution of potential estimates (e.g., of the

robot trajectory) can become highly multimodal, hence limiting the use of the co-

variance estimates described earlier in this chapter. Finally, there is a growing liter-

ature using uncertainty quantification to guide active perception and active SLAM

(see [883] for a survey) and to determine how to subselect measurements during

life-long SLAM or in the presence of resource constraints [283, 569, 1098, 156].

PART TWO

SLAM IN PRACTICE

II

Prelude
Ayoung Kim, Timothy Barfoot, Luca Carlone,

Frank Dellaert, and Daniel Cremers

Part I laid the foundations by introducing the basic language of factor graphs

and their role as a SLAM back-end. Building on this groundwork, Part II focuses

on the characteristics and integration of various sensor modalities used in SLAM,

which directly impacts the SLAM front-end. Together, these two parts provide a

cohesive understanding of the SLAM pipeline: the back-end, discussed in Part I,

addresses the underlying optimization problem, while the front-end, covered in this

part, tackles sensor-specific tasks such as preprocessing, time synchronization, noise

filtering, and measurement modeling.

This part explores the widely adopted sensors in SLAM, organizing the chapters

based on the common categorization of SLAM algorithms by their primary sensor

type. The sensors discussed in Part II include RGB cameras and LiDARs, along

with emerging modalities such as event cameras and radars. IMUs are emphasized

for their critical role in SLAM, both as standalone sensors and in combination

with other modalities. The discussion also explores how robot kinematics can be

integrated as measurements in the SLAM system.

II.1 Structure of SLAM Framework

Most SLAM front-ends rely on two key modules: odometry and loop closure. While

these modules are essential, priors can be occasionally incorporated alongside them.

The odometry module imposes measurement constraints between consecutive nodes

in a graph, typically arranged in sequential time order. By chaining together these

odometry estimations, a trajectory can be inferred, though it will inevitably ac-

cumulate drift over time. The accumulated drift highlights the importance of the

loop-closure module as a key component in the SLAM system, as it mitigates this

drift by recognizing previously visited scenes and establishing connections to his-

torical nodes. Incorporating loop-closure detection and correction is the essence of

SLAM. Beyond these two key modules, a unary factor may also be included as

a prior, depending on the sensor type. These unary factors are often used to in-

corporate additional sensor data or priors, enhancing the overall SLAM system’s

184 Prelude

accuracy and robustness (e.g., GPS and depth). Although not the central element,

these factors serve as a valuable supporting component.

II.1.1 Odometry

The odometry module estimates the relative transformation between two consecu-

tive nodes in a graph. This transformation can vary in complexity depending on the

scenario. The most common case involves two nodes corresponding to consecutive

sensor frames, where a relative 6-DOF binary factor is inferred between them. In

this context, the comparison of sensor measurements is performed by computing

pixel-to-pixel, point-to-point, or feature-to-feature loss. Many visual and LiDAR

SLAM systems compute odometry in this manner.

At times, the odometry computation involves more detailed procedures. When

kinematic or dynamic information is available, such as from radar or leg encoders

and contact sensors, the odometry computation becomes less relative. For instance,

in radar, both range and radial velocity are available. By using the radial velocity to

infer ego-velocity, a 6-DOF factor can be integrated between two frames. Leg odom-

etry can also be enhanced by incorporating data from encoders or contact sensors,

along with robot kinematics, during the odometry computation. The most widely

used odometry method is inertial odometry. Inertial measurements involve more

complex computations between two nodes, often implemented as a pre-integration

factor. This pre-integration can serve as odometry but is frequently combined with

other sensors to form a more comprehensive pre-integration factor.

Its naming varies based on the primary sensor used, such as visual odometry,

LiDAR odometry, or leg odometry. In this part, each chapter provides a detailed

exploration of the odometry module tailored to specific sensor modalities.

II.1.2 Loop-closure

The loop-closure module entails two problems. The first problem is place recognition,

which involves using information-retrieval methods to identify a candidate loop

closure in a topological manner. In this book, we refer to place recognition as

the loop-closure candidate-detection problem. It is the retrieval task that involves

identifying a query’s nearest index from the database using retrieval or matching

algorithms. We will also use the terms query and database, which are commonly used

in the information-retrieval literature, but also commonly used in place recognition.

The query is the current sensor measurement and the database includes a collection

of places in the form of raw sensor measurements or descriptors.

Loop-closure detection is commonly performed using a variety of extrovert sen-

sors, such as RGB cameras, event cameras, LiDARs, and radars. Early work fo-

cused on creating highly descriptive and compact place (or scene) descriptors. For

II.2 Sensors in a Factor Graph 185

instance, visual place recognition applied information retrieval techniques, intro-

ducing visual words to implement a bag-of-words model. Primarily, binary bag-

of-words (DBoW) has been widely adopted in many visual SLAM applications.

Similarly, for range sensors, compact descriptors for range measurements, such as

those used in Scan Context, have been developed. These hand-crafted descriptors

are now transitioning to learning-based approaches, including cross-modal place

recognition, which enables place recognition from different sensor modalities.

When detecting a loop-closure, both discernibility and scalability are crucial.

Place recognition must accurately distinguish between similar-looking but distinct

locations, avoiding perceptual aliasing. To achieve this, it is essential to develop

effective descriptors or train networks that ensure strong discernibility. In addi-

tion, during long-term SLAM operations over large areas, both the map and the

query database will grow. Consequently, loop-closure detection must be performed

efficiently, even as the map expands.

Once a candidate is found, re-localization or relative pose estimation aims to

estimate a fine registration between the candidate match and the current data,

which is needed for the SLAM back-end optimization. Once the proposal loop-

closure candidate is secured, the follow-up registration encompasses estimating a

relative transformation (either full 6-DOF or partial) between the query node and

the candidate node, resulting in a binary factor.

II.1.3 Priors and Unary Factors

Some sensors provide measurements as priors rather than relative measurements

between frames. This is the case for sensors like GPS measurements in terrain navi-

gation, depth sensors in underwater environments, or radar providing instantaneous

velocity. These priors can be incorporated into the SLAM system as unary factors,

constraining a node with details and enhancing the accuracy of the overall system.

Unfortunately, their modeling will not be discussed in detail in the following chap-

ters. For further insights, readers are referred to dedicated resources on GNSS [151]

or UWB applications.

II.2 Sensors in a Factor Graph

From the factor-graph SLAM perspective, each sensor modality produces a factor,

acting as a building block for the entire SLAM system. An example factor graph

in Figure II.1 illustrates a possible integration case. The factor-graph framework,

introduced in Part I, serves as a generic optimization back-end, where each sensor

can contribute to the graph either independently or through integration.

186 Prelude

x 3p1 p2 p3 p4 p5

1

x1x2

l1

LiDAR loop-closure

radar odometry

leg odometry

IMU preintegrationGPS

visual
odometry

(RGB)

RGB
feature

detection

LiDAR
feature

detection
visual odometry

(event)

p6 p7

Figure II.1 Sample factor-graph consists of all sensor modalities introduced in this part.

II.2.1 Selecting the Right Sensor for Your Application

Let’s briefly overview the extrovert perceptual sensors commonly used in SLAM

systems, highlighting their advantages and limitations.

RGB Camera: RGB cameras are among the most widely adopted sensors in

SLAM applications due to their affordability, ability to capture semantic informa-

tion, and their close resemblance to the human visual system. These cameras cap-

ture rich visual context, including semantic information, which serves as a powerful

cue for various visual SLAM tasks.

However, they do have notable limitations. One significant drawback is their re-

liance on adequate lighting conditions; without sufficient illumination, the quality

of captured images degrades, which can hinder performance in low-light environ-

ments. Additionally, RGB cameras are sensitive to glare, reflections, and shadows,

and their performance is significantly limited in extreme environments, such as

those with fog or smoke.

LiDAR: LiDAR directly measures distance without the need for triangulation,

enabling it to accurately capture 2D/3D geometry from range measurements. In-

deed, range sensors, such as 2D LiDAR and sonar, are foundational sensing modal-

ities in the history of SLAM. The point cloud data generated by LiDAR has been

widely adopted for dense 2D/3D mapping in both indoor and outdoor environ-

ments, making it especially valuable for large-scale applications in construction

sites, urban areas, and forests.

However, LiDAR’s main drawback is its high cost, which can be a burden in terms

of both price, memory, power consumption, and computation. The point cloud

data it generates is often extensive, requiring substantial computational power and

memory for processing and storage. These challenges should be carefully considered

when using LiDAR in budget-sensitive, real-time systems (e.g., drones). Further-

more, despite their robustness to the illumination conditions, their performance can

be impaired in adverse weather conditions, such as heavy rain, fog, or snow.

Radar: Radar is less affected by environmental conditions, making it a reliable

sensor for deployment in extreme environments. It can provide velocity information

II.2 Sensors in a Factor Graph 187

through Doppler measurements, adding an additional layer of functionality. While

the localization and mapping accuracy of radar is often lower than that of LiDAR,

it remains one of the few robust sensors capable of completing SLAM in extreme

environments where LiDAR and cameras may be limited. However, radar data

tends to be noisy and extremely sparse, which can complicate its interpretation.

The signal processing required for radar data is also computationally intensive, and

the sensor measurements are not as intuitive as those from optical sensors, making

them more challenging to interpret and integrate into systems.

Event camera: Event cameras are unique sensors that offer extremely high tem-

poral resolution (in the order of microseconds) while consuming very low power. By

transmitting data only for pixels that change, they are highly energy-efficient, cap-

turing fast-moving objects without motion blur. Their asynchronous nature also

leads to efficient data processing, generating smaller data streams compared to

conventional frame-based cameras that operate at the same sampling rate. These

features make event cameras ideal for real-time, high-speed applications. Addition-

ally, their ability to handle both very bright and dark conditions with high dynamic

range (HDR) makes them more effective than frame-based cameras in challenging

lighting environments. Despite their advantages, their main limitations are their

noise, and lack of fine texture details and absolute intensity output.

II.2.2 Sensor Fusion

In SLAM literature, the common practice is to combine multiple sensors in a com-

plementary manner. The most favored sensor in this integration would be inertial

measurements. Incorporating an Inertial Measurement Unit (IMU) with other sen-

sors significantly enhances the performance of many SLAM systems. IMUs provide

valuable information about motion, velocity, and orientation, which improves the

accuracy and robustness of systems like VINS, LIO, and RIO. These systems lever-

age the pre-integration of IMU data to maintain continuous tracking and correct

drift over time. While IMU-only systems have seen some development, such as

efforts in IMU-based odometry, they remain limited in terms of accuracy and reli-

ability. When combined with other sensors like LiDAR or cameras, however, IMUs

strengthen the overall SLAM system, compensating for the weaknesses of individual

sensors and enabling more precise and reliable mapping and localization, especially

in dynamic or challenging environments.

Incorporating the kinematics of the robot platform is also crucial. Many SLAM

systems in robotics are designed to work with specific platforms, such as UGVs,

drones, or legged robots. By formulating the kinematics of these platforms and

integrating them with other sensor modalities, the performance and robustness of

the system can be significantly enhanced.

We also need to consider the heterogeneous aspect during sensor fusion. Cam-

era and LiDAR combination would be one of the popular SLAM system. This is

188 Prelude

because semantic information from camera and direct range measurement from Li-

DAR can effectively enhance each sensor’s limitation. Camera-radar fusion follows

a similar strategy, complementing each other to mutually enhance performance and

address limitations. The velocity measurements from radar can be used to detect

dynamic objects instantaneously, while the semantic information from the RGB

camera adds valuable context. Similarly, the combination of LiDAR and radar is

beneficial, as radar can improve odometry and facilitate dynamic object removal,

while the dense point clouds from LiDAR contribute to higher-quality mapping and

submap matching.

Lastly, there are often heterogeneous characteristics even among sensors of the

same type. RGB cameras, for instance, can vary significantly depending on factors

such as lens type and shutter mechanism. When combining among LiDARs, the

beam pattern, point cloud density, and field of view (FOV) can vary significantly

between different LiDAR models, and this discrepancy must be addressed when

integrating LiDAR with other sensors. This is also true for radar, where the two

main types—spinning radar and SoC radar—differ significantly in terms of data

type, measurement techniques, and their applications.

II.2.3 Calibration and Synchronization of Sensors

Sensor calibration can be categorized into two types: intrinsic and extrinsic. Intrin-

sic calibration focuses on determining the model parameters specific to a sensor,

such as the focal length and distortion coefficients for a camera or the intensity

calibration for LiDAR. In the case of a camera using a pinhole camera model, in-

trinsic calibration solves for parameters like focal length and distortion coefficients.

Intrinsic calibration begins with a sensor model and solves for the parameters that

define that model.

On the other hand, extrinsic calibration involves finding the transformation be-

tween multiple sensors, aligning their coordinate systems, and ensuring accurate

data fusion. This process includes establishing correspondences and using them in

an optimization problem to solve for the relative transformation between two sen-

sors. The core challenge arises when establishing correspondences across different

modalities. For example, to match a pixel from an RGB camera to a 3D point from

a LiDAR, one needs to solve the multi-modal registration problem. Due to differ-

ences in data formats and underlying physics, comparing data from two sensors is

often difficult, much like comparing apples to oranges.

A widely adopted solution is to use a target to carefully capture data from both

sensors in order to solve the registration problem. However, this calibration is often

limited to the target and may suffer from drift over time. To address this, targetless

calibration methods have been developed, which leverage the surroundings as cali-

bration features. Alternatively, calibration can be updated adaptively in real-time

by treating it as an optimization parameter.

II.3 Evaluation 189

When integrating multiple sensors into a SLAM system, time synchronization

must be carefully managed. Each sensor operates at its own sampling rate, meaning

data from different sensors arrives at different intervals. In robotics, the movement

of the platform further exacerbates this issue, as the motion induces discrepan-

cies between sensor data streams. Proper synchronization ensures that all sensor

data is aligned in time, enabling accurate fusion and minimizing errors in mapping

and localization. Of course, strict hardware synchronization is not always feasible,

and interpolation—potentially using faster sampling sensors like the IMU—may be

necessary to bridge the gaps between sensor data streams.

II.3 Evaluation

SLAM evaluation is typically conducted from multiple perspectives, often at the

level of individual modules such as odometry, place recognition, and mapping. As

expected, real-time performance is crucial for odometry, whereas place recognition

and mapping can tolerate slower processing rates. More computationally intensive

tasks, such as map maintenance and updates, are often deferred to post-processing.

The most common SLAM evaluation metric is trajectory accuracy, typically mea-

sured by comparing the estimated path to a ground truth trajectory. However, gen-

erating ground truth requires expensive sensors and often extensive post-processing.

While this trajectory-to-trajectory comparison sounds straightforward, it’s not al-

ways feasible—especially in environments like indoors, where RTK GPS is ineffec-

tive. In such cases, a few surveyed points using QR markers or artificial targets

can serve as an alternative. Furthermore, SLAM performance can be analyzed from

multiple perspectives by focusing on different quantitative metrics [381, 1278, 413]

during trajectory evaluation.

For place recognition, standard classification metrics such as the precision-recall

curve, AUC, and F1 score are commonly used. In the context of robot re-localization,

however, not only the accuracy metrics but also the distribution [576] of candidate

matches plays a critical role in assessing performance.

Lastly, map evaluation is often the most challenging aspect of SLAM, not only

due to the large spatial scale but also because of the difficulty in obtaining accurate

ground truth. Static LiDAR systems, such as terrestrial laser scanners (TLS), are

commonly used to create high-fidelity reference maps for comparison. In addition

to global accuracy, evaluations should also consider fine-grained structural details

and the memory efficiency of the map representation.

II.4 How to Read this Part?

The organization of this part is structured around different sensor modalities. Each

chapter follows a similar structure, focusing on odometry, place recognition, and

190 Prelude

SLAM details for each sensor. It is recommended to start with the Visual SLAM

chapter to grasp the basic definitions of each SLAM module. After that, the chapters

can be read in any order.

Following the discussion on RGB cameras SLAM in Chapter 7, two range sen-

sors are introduced: LiDAR SLAM in Chapter 8 and radar SLAM in Chapter 9.

Moving beyond conventional sensors, we delve into event camera SLAM in Chap-

ter 10. The IMU, covered in Chapter 11, serves as an inertial odometry sensor

but demonstrates greater potential when combined with other modalities through

preintegration techniques. Additionally, this part explores how odometry can be

modeled for legged robot systems in Chapter 12.

7

Visual SLAM
Jakob Engel, Juan D. Tardós, Javier Civera, Margarita Chli,

Stefan Leutenegger, Frank Dellaert, and Daniel Cremers

Reconstructing the world and the sensor motion from cameras is a challenge referred

to as Visual Simultaneous Localization and Mapping, shortened to Visual SLAM or

VSLAM. With cameras being omni-present, cheap and power-efficient, the potential

of visual SLAM for autonomous robots, self-driving cars, or mixed and augmented

reality is endless.

7.1 Historic Background and Terminology

7.1.1 From Photogrammetry to Bundle Adjustment and Visual SLAM

Visual SLAM’s history builds upon general SLAM methods, but it is also rooted in

advances from the photogrammetry and computer vision communities. We highlight

here the historical connection with these two last fields, the connection with SLAM

being already addressed throughout the handbook.

In 1822, Nicéphore Niépce invented modern photography with the oldest surviv-

ing photograph being “A View from a Window at Le Gras” in 1827. The history

of reconstructing the world from cameras started a few decades after the invention

of photography. The French army officer Aimé Laussedat is often considered the

inventor of photogrammetry as he pioneered the use of terrestrial photographs for

topographic mapping around 1851. In 1867 the German engineer Albrecht Meyden-

bauer further developed photogrammetry for architectural surveys. From 1890 on-

ward the German mathematician and mountaineer Sebastian Finsterwalder (presi-

dent of the German Mathematical Society from 1915 onward) pioneered the use of

aerial imagery for photogrammetric reconstruction of glaciers in the Alps and also

advocated techniques of projective geometry [365]. His doctoral student Otto von

Gruber formalized the mathematical framework of bundle adjustment for recon-

struction of structure and motion from a set of corresponding points observed in

multiple images. These concepts were developed around the beginning of the 20th

century, well before the advent of computers. The deployment on computers was

later pioneered by Hellmut H. Schmid, a German rocket scientist who developed

matrix computation techniques for bundle adjustment and teamed up with Ameri-

192 Visual SLAM

can Duane C. Brown in the 1950s to deploy these methods on the largest computers

of their time.

Reconstruction methods and the field of structure from motion research build

on various camera models starting from the pinhole camera model and the use of

projective geometry to capture the relationship between 2D point observations and

their corresponding 3D world coordinates. In the early 1990s Tomasi and Kanade

[1106] developed matrix factorization techniques for the reconstruction of static

scenes under the simplified assumption of an orthographic projection. Whereas

earlier approaches often focused on the reconstruction from two views, in the 2000s

the community shifted to the problem of multiview structure from motion. Tradi-

tionally, the reconstruction pipeline involved feature extraction, correspondence es-

timation, the use of minimal solutions for obtaining an initial camera configuration

and a subsequent bundle adjustment to obtain a globally consistent reconstruction.

Much effort was therefore dedicated to the development of feature extraction and

matching algorithms with feature descriptors such as SIFT [706] or SURF [69],

and more recently a multitude of learning-based descriptors. In order to cope with

incorrect point correspondences researchers developed sampling strategies such as

RANSAC [336] that allowed the method to revisit the correspondence estimation

in alternation with model fitting.

Whereas structure from motion is often focused on the accurate (generally off-

line) reconstruction of large-scale 3D worlds from an unordered collection of images,

visual SLAM typically focuses on the online and realtime reconstruction from a

moving camera. A prerequisite for such online and realtime approaches was there-

fore the development of causal methods such as [217] which focus on the challenge

of optimal structure from motion given only the past images (as opposed to the

entire image collection or video). The first real-time capable methods for structure

from motion / visual SLAM emerged around 2000 [531, 253].

7.1.2 Terminology

The following terms are often used interchangeably to describe similar processes;

however, place different emphasis depending on application and community they

are used in.

Photogrammetry is the science of extracting accurate measurements, spatial

information, and 3D reconstructions from 2D photographs. By analyzing overlap-

ping images taken from different viewpoints, photogrammetry enables the creation

of geometric representations of objects or environments. This technique is widely

used in mapping, surveying, and 3D modeling, forming the foundation for many

visual odometry and SLAM algorithms.

Bundle adjustment (BA) is a mathematical optimization method used to refine

3D reconstructions. It adjusts the positions, orientations, and optionally intrinsic

parameters of cameras, along with the 3D positions of observed points, to minimize

7.2 Visual SLAM Fundamentals 193

the reprojection error—the difference between observed image points and the points

projected from the 3D model. Optimization is typically performed using second-

order methods such as Gauss-Newton or Levenberg-Marquardt and requires careful

initialization and robust outlier rejection to converge effectively. Recent research

has also explored initialization-free bundle adjustment, which aims to simplify the

optimization process.

Structure from Motion (SfM) refers to the process of reconstructing 3D struc-

tures from a collection of 2D images taken from different perspectives. Unlike pho-

togrammetry, which often assumes known camera positions, SfM simultaneously

estimates both the 3D structure of the scene and the motion of the cameras. SfM

is typically applied in non-causal, non-real-time scenarios, where images may come

from diverse sources (e.g., internet photo collections) rather than a continuous video

stream. Typically in the final stage SfM will revert to bundle adjustment for opti-

mization. Landmark projects, such as Building Rome in a Day [21], demonstrate

its scalability and potential for large-scale applications.

Visual Odometry (VO) focuses on estimating the motion of a camera by analyz-

ing sequential visual frames in a video. It identifies visual correspondences between

consecutive images to measure the relative motion of the sensor over time. VO pri-

marily deals with local motion estimation and operates within a sliding window of

recent observations, without building a global map. However, VO is often combined

with a mapping component to form a complete visual SLAM system.

Visual SLAM is a computational technique that enables a system to simul-

taneously localize itself within an unknown environment and build a map of that

environment in real time. It combines elements of photogrammetry, visual odom-

etry, and structure from motion to process image data, track camera motion, and

construct detailed 3D maps. In contrast to VO, it will typically employ an explicit

functionality of recognizing previously visited places, re-localize relative to them,

and optionally adjust pose estimates around such a “loop” – a process referred to

as loop closure. Visual SLAM is a cornerstone technology for robotics, autonomous

vehicles, and augmented reality, where precise navigation and environmental un-

derstanding are essential.

7.2 Visual SLAM Fundamentals

Before we go into detail on visual SLAM let us introduce a few fundamentals.

7.2.1 Camera Model

A parameterized description of the sensor that models image formation from the

observed scene should include a geometric component (also called the projection

function), which describes how 3D points are mapped to 2D pixels, and a photo-

194 Visual SLAM

Figure 7.1 A central requirement for visual SLAM systems is the choice of a suitable lens.
Shown here are BF2M2020S23 (195◦), BF5M13720 (183◦), BM4018S118 (126◦), BM2820
(122◦), and a GoPro replacement lens (150◦). Fish-eye and wide angle lenses offer a wider
field of view, but require suitable projection models. Popular choices are the Brown-
Conrady (BC) model [291], the Kannala-Brandt (KB) model [545] and the Double Sphere
(DS) model [1121]. The 6-parameter DS model provides a comparable reprojection accu-
racy as the 8-parameter KB model while offering around five times faster computation
time for the projection function.

metric component, which describes how physical light intensity (radiance) maps

to pixel values.

7.2.1.1 Geometric Camera Models

Perspective Cameras

The projection function is generically referred to as:

z = π(xc, ξ),

where xc =
[
x y z

]⊤ ∈ R3 is a 3D point in camera coordinates, z =
[
u v

]⊤ ∈
Ω ⊂ R2 are the coordinates of the corresponding 2D point in the image domain

Ω, and ξ ∈ Rn represents the intrinsic parameters of the camera, typically pre-

calibrated in visual SLAM. The dimensionality of ξ depends on the used camera

model.

Conversely, the unprojection operation is denoted as:

xc = π−1(z, ξ),

which reconstructs a ray in 3D from a 2D image point z. Since the depth of the

point remains unknown, the resulting xc is only known up to scale.

In practice, there exists a wide range of projection functions suitable for different

lens geometries and camera types (see some, for example, in [694]). Rectilinear

models (also known as pinhole- or perspective camera model) are the simplest and

can be used for narrow-angle lenses without distortion

ξp =
[
fu fv u0 v0

]⊤
, πp(xc, ξ) =

[
fu

x
z + u0

fv
y
z + v0

]
, π−1

p (z, ξ) ∼

u−u0

fu
v−v0

fv

1

 ,

7.2 Visual SLAM Fundamentals 195

where fu and fv stand for the focal length in horizontal and vertical direction, in

pixel units. u0 and v0 stand for the 2D coordinates of the principal point, and we

assumed rectangular pixels. With typical, square pixels, we expect fu ≈ fv.

To account for some amount of lens distortion, the radial-tangential model is

most commonly used:

ξRT =
[
ξ⊤p k1 k2 p1 p2

]⊤
,

[
x′

y′

]
=

[
x
z
y
z

]
, r =

√
x′2 + y′2,

[
x′′

y′′

]
=

[
x′(1 + k1r

2 + k2r
4) + 2p1x

′y′ + p2(r2 + 2x′2)

y′(1 + k1r
2 + k2r

4) + p1(r2 + 2y′2) + 2p2x
′y′

]
, πp(xc, ξ) =

[
fux

′′ + u0
fvy

′′ + v0

]
,

Note that we cannot extract an analytical expression for the unprojection model

π−1
RT (z, ξ), since there is no analytical solution for x′, y′ as a function of x′′, y′′ (i.e.

undistortion). We may, however, resort to iterative approaches e.g. the Newton-

Raphson method.

Wide-angle and Fisheye Cameras

For wide-angle lenses – see Figure 7.1 – up to fields of view (FOV) of 180◦, pinhole

models with a few radial distortion coefficients typically suffice. The Brown-Conrady

model [291] amounts to the radial-tangential model described above without tan-

gential coefficients, i.e. ξBC =
[
ξ⊤p k1 k2

]
. Note that despite the simplification

relative to the radial-tangential model, no analytical undistortion exists.

For fish-eye lenses with FOVs larger than 180◦, the Kannala-Brandt (KB) model [545]

has been used, for example in [148].

ξKB =
[
ξ⊤p k⊤KB

]⊤
, πKB(xc, ξ) =

[
fur(θ) cosψ + u0
fvr(θ) sinψ + v0

]⊤

Here, the incoming ray is parametrized by the angles θ = arctan

√
x2+y2

z and ψ =

arctan y
x , distortion is parametrized by four coefficients kKB =

[
k1 . . . k4

]⊤
and

the distortion expression is r(θ) = θ +
∑4

1 knθ
2n+1.

For fish-eye and wide angle lenses, a popular alternative is the Double Sphere

(DS) model [1121] as it offers a good compromise of accuracy and speed. In the DS

model a point is consecutively projected onto two unit spheres with centers shifted

by γ. Then, the point is projected onto the image plane using the pinhole model

shifted by α
1−α . This leads to:

πDS(xc, ξ) =

[
fu

u
αd2+(1−α)(γd1+z) + cu

fv
v

αd2+(1−α)(γd1+z) + cv

]⊤
,with ξ =

[
ξ⊤p cu cv γ α

]
.⊤

As shown in [1121], this model offers a closed form unprojection solution. As a

196 Visual SLAM

consequence, the 6-parameter DS model is around five times faster to compute than

the 8-parameter KB model while offering a comparable reprojection error.

7.2.1.2 Photometric Models

The photometric calibration maps irradiance to pixel values:

I = f(E, T),

where I is the pixel intensity, E is the irradiance, and T contains other camera

properties that affect this mapping such as exposure time, analog and digital gain,

gamma correction, de-bayering, and lens vignetting. This photometric calibration

is typically only important up to scale and for methods that aim to obtain dense,

textured scene representations or that rely on photo-consistency across images.

7.2.1.3 Time-Dependent Effects

In situations where the camera is moving while the image is taken–which is always

almost the case for SLAM or Visual Odometry systems–it is important to also

consider the effects of this motion on the image formation process. Most modern

consumer cameras use a rolling shutter, which captures image-rows sequentially

in time. In contrast, global shutter cameras, which are often used for machine

perception applications, capture all image rows simultaneously.

In practice, it is advisable to either use global shutter cameras, or include the

rolling shutter effect into the camera model by varying the camera pose for individ-

ual image rows. Note that this becomes significantly more practical in visual-inertial

systems, where the IMU effectively measures local motion with a cameras exposure

window, and thus simplifies the use and modeling of rolling shutter cameras signif-

icantly.

7.2.1.4 Practical Considerations

When selecting a camera model, the primary goal is to ensure that the parametric

model can effectively and accurately approximate the behavior of the sensor and lens

system. When using Fisheye lenses, using a spherical model is recommended–while

for rectilinear lenses, linear base-models should be used. More generally, choosing

a camera model involves balancing computational efficiency against precision: us-

ing an ill-suited camera model can introduce inaccuracies and systematic biases,

significantly degrading the visual SLAM system’s accuracy and robustness.

7.2.2 Keypoints

The success of SLAM systems in mapping environments and providing accurate

localization hinges on their ability to detect, describe, and match key features in

a scene—commonly referred to as ‘keypoints’ or ‘features’. In vision-based SLAM,

7.2 Visual SLAM Fundamentals 197

Figure 7.2 Timeline of some of the most prominent algorithms shaping the literature on
visual keypoints for vision-based SLAM and image matching.

keypoint detection involves identifying salient image regions that are distinctive and

repeatable, ensuring reliable re-detection from different viewpoints, across multiple

runs, and under varying conditions. An ideal keypoint detector should maintain

these properties regardless of changes in illumination, viewpoint, or occlusions.

Once detected, a keypoint descriptor encodes the local appearance of the corre-

sponding keypoint detection into compact and distinctive representations. Ideally, a

descriptor should uniquely characterize a keypoint’s surroundings while remaining

invariant to transformations such as lighting changes, rotation, or scale variations.

This ensures both high recall—matching the same keypoint across different condi-

tions—and high precision—avoiding incorrect correspondences with similar-looking

but unrelated features.

In practice, real-world challenges such as drastic illumination variations, texture-

less surfaces, and dynamic scenes introduce errors in detection and matching, di-

rectly impacting SLAM performance. Consequently, research has focused on design-

ing keypoints with specific characteristics to enhance robustness. The most desirable

properties include scale and rotation invariance (ensuring consistent detection

despite viewpoint changes), repeatability and distinctiveness (allowing reliable

re-detection and unique identification), and efficiency (enabling real-time opera-

tion under computational constraints). To meet these demands, keypoint detection

and description have evolved from classical handcrafted techniques to deep-learning-

based approaches more recently. The following subsections provide an overview of

the most prominent keypoint methods in the literature, as illustrated in Figure 7.2,

along with emerging trends in the field.

7.2.2.1 Classical Keypoint Detectors & Descriptors

Classical hand-crafted techniques have played a pivotal role in the evolution of fea-

ture detection and description. Among them, the Harris-Stephens keypoint detector

[439], widely known as the ‘Harris corner detector’, is one of the most influential

198 Visual SLAM

methods. It identifies corners by analyzing the eigenvalues of the second-moment

matrix within image patches, classifying a patch as a keypoint when both eigen-

values are large, indicating strong intensity variations in two orthogonal directions.

The Shi-Tomasi corner detector [1010] is built on the same principle but directly

uses the smaller eigenvalue for corner selection. In contrast, Harris defines a ‘corner-

ness’ response function to approximate the process for efficiency. While robust and

computationally efficient, the Harris detector lacks scale invariance, a limitation

that later methods, such as SIFT and SURF, sought to address.

A seminal milestone in keypoint detection was the introduction of the Scale In-

variant Feature Transform (SIFT) [706], which set a new standard for precision

and recall across challenging settings. SIFT is highly invariant to scale and rotation

and partially invariant to illumination changes. It follows a structured three-stage

process: (1) detecting keypoints as extrema in a scale-space Difference of Gaussians

(DoG) pyramid and refining their localization through a 3D quadratic fit, (2) as-

signing orientation based on the dominant local image gradient, and (3) computing

a 128-dimensional descriptor from a histogram of discretized gradient orientations.

However, SIFT’s exceptional robustness comes at a high computational cost, mak-

ing it less suitable for real-time applications.

To improve efficiency, Features from Accelerated Segment Test (FAST) [951] was

developed as a high-speed corner detector. It assesses pixel intensities in a circular

neighborhood around the candidate keypoint location and employs an early re-

jection strategy to minimize computations. FAST further enhances speed using a

decision tree and non-maximum suppression. However, unlike SIFT, it lacks scale

invariance, making it sensitive to significant transformations. Speeded-Up Robust

Features (SURF) [70] later improved efficiency by approximating SIFT using in-

tegral images and box filters instead of Gaussian derivatives, achieving a better

balance between speed and robustness.

The need for fast yet robust descriptors led to the development of binary-based

methods. Binary Robust Independent Elementary Features (BRIEF) [147] intro-

duced a compact descriptor using binary intensity comparisons, enabling fast de-

scriptor matching using the Hamming distance. While BRIEF lacks scale and ro-

tation invariance, it demonstrated that local gradients, fundamental to SIFT’s ro-

bustness, could be effectively captured through simplified binary tests. Inspired

by this success, ORB [958] was proposed, building upon FAST keypoint detec-

tion and BRIEF description, while adding scale and rotation invariance through

an image pyramid and intensity centroid method. At the same time, BRISK [650]

was proposed, employing FAST or Harris corners on a scale-space pyramid, and

incorporating invariance to rotation changes within a binary descriptor by identify-

ing a dominant keypoint direction similar to SIFT. While the added rotation- and

scale-invariance of methods such as ORB and BRISK have a small impact on the

distinctiveness of the output keypoints, they have proven effective in vision-based

SLAM and real-time robotics applications. When computational cost, however, is

7.2 Visual SLAM Fundamentals 199

not a requirement (e.g. in Computer Vision applications), SIFT and SURF might

still be preferable as they still offer greater robustness under challenging lighting or

perspective changes.

With several variants of these methods appearing in the literature, classical

hand-crafted keypoint detection and description methods have been foundational

in Computer Vision and Robotics, carefully balancing robustness, efficiency, and

invariance. However, the demand for keypoints that adapt to increasingly complex,

dynamic environments remains an ongoing challenge. This has driven research to-

ward learning-based approaches, which aim to automatically optimize keypoints for

real-world applications, setting the stage for the next generation of feature detection

techniques.

7.2.2.2 Deep-Learning-based Keypoint Detection & Description

By the late 2010s, deep learning-based approaches for image keypoints began to

gain traction, utilizing large-scale datasets and Convolutional Neural Networks

(CNNs) to learn robust features directly from data. Unlike manually designed key-

points, these methods automatically discover and optimize feature representations,

demonstrating unparalleled adaptability and accuracy in scenarios that were pre-

viously infeasible. For instance, they have shown remarkable success in detecting

stable keypoints even under extreme illumination changes–an area where classical

hand-crafted methods struggled. Consequently, the visual SLAM community has in-

creasingly shifted away from traditional feature engineering, embracing data-driven

representation learning for keypoint detection and description.

The Learned Invariant Feature Transform (LIFT) [1240] was one of the first deep

learning-based approaches to integrate keypoint detection, orientation estimation,

and descriptor computation into an end-to-end trainable pipeline. Using CNNs to

extract features from small image patches, LIFT achieved greater robustness to

scale, illumination, and rotation changes than classical methods. It employs a se-

quential learning strategy, training descriptors first, followed by orientation estima-

tion and then keypoint detection, ensuring stable and effective feature extraction.

Similarly, SuperPoint [275] introduced a self-supervised framework that detects

keypoints and computes descriptors in a single forward pass, making it efficient for

real-time applications. Unlike patch-based networks, SuperPoint operates on entire

images and leverages homographic adaptation, a self-supervised learning technique

to generate pseudo-ground truth keypoints. This approach significantly improves

keypoint repeatability and descriptor quality compared to classical methods, such

as SIFT, ORB, and FAST, especially under illumination changes.

Building on these advancements, HF-Net [975] introduced a hierarchical localiza-

tion approach that combines global image retrieval with precise local feature match-

ing. HF-Net improves computational efficiency while maintaining high robustness

by integrating keypoint detection, local descriptors, and global descriptors into a

single CNN. This architecture reduces runtime by limiting the number of images

200 Visual SLAM

used for matching, making it particularly effective for large-scale SLAM and real-

time applications, even under extreme appearance variations such as night-time

scenes. HF-Net’s learned features are sparser but more discriminative than those of

SuperPoint, rendering it a preferred choice for deep learning-based SLAM systems

such as DX-SLAM [656].

Interestingly, D2-Net [303] introduced a describe-and-detect approach that re-

verses the traditional keypoint detection and descriptor extraction order. Instead

of detecting keypoints first, D2-Net computes dense feature maps using a CNN and

then identifies keypoints as local maxima within these maps. This method captures

high-level semantic information, making it robust to extreme lighting changes and

weakly textured environments. Unlike SuperPoint, which separates detection and

description, D2-Net jointly optimizes both tasks, enhancing descriptor consistency.

However, while this dense approach improves robustness, it is computationally more

demanding than classical sparse methods. Despite this trade-off, D2-Net remains

highly effective for visual localization and Structure from Motion (SfM) tasks, push-

ing the boundaries of deep learning-based feature extraction.

7.2.2.3 Latest algorithms & trends

With the unprecedented invariance and adaptability of learning-based keypoints

over traditional handcrafted counterparts in specific settings, deep-learning-based

techniques for keypoint extraction have been transforming the field. This shift has

not only enhanced keypoint detection and description but has also driven significant

advancements in keypoint matching techniques. Rather than relying on manually

designed heuristics for descriptor matching, as in classical methods, learning-based

approaches now incorporate global spatial awareness to establish correspondences

more robustly. In particular, techniques such as SuperGlue [976] and MASt3R [649]

leverage Graph Neural Networks (GNNs) and Transformers to refine matches by

considering the broader image structure. These methods address fundamental lim-

itations of traditional matchers by adapting to extreme viewpoint changes, illumi-

nation variations, and occlusions, where conventional local descriptor comparisons

typically struggle.

SuperGlue enhances feature matching by integrating self-attention and cross-

attention mechanisms, allowing it to resolve ambiguities caused by repetitive tex-

tures and occlusions. Unlike traditional keypoint matchers that operate on local

descriptors alone, SuperGlue incorporates contextual information, significantly im-

proving accuracy in both indoor and outdoor environments. Its optimal matching

layer further ensures that keypoint correspondences are established robustly while

allowing unmatched keypoints when necessary, making it highly effective for real-

world scenarios. Similarly, MASt3R extends this idea into 3D-aware feature match-

ing, reconstructing a 3D scene representation from two images to improve per-

formance in textureless regions and under extreme viewpoint changes. Built upon

this, MASt3R-SLAM [795] integrates these advancements into a SLAM pipeline,

7.2 Visual SLAM Fundamentals 201

improving camera pose estimation, global map consistency, and loop closure strate-

gies. By transitioning from handcrafted 2D feature matching to learning-based,

context-aware, and 3D-informed approaches, these methods mark a paradigm shift

in visual SLAM, enhancing scene understanding, tracking robustness, and long-term

stability in complex environments.

Overall, the evolution of keypoint extraction for image matching and vision-

based SLAM has been remarkable from traditional hand-crafted methods to deep-

learning-based approaches that promise greater robustness in challenging condi-

tions. While classical methods remain very relevant to date due to their efficiency

and interpretability, they struggle in scenarios with textureless surfaces, extreme

viewpoint changes, and illumination variations. Deep learning has addressed these

limitations, driving research towards more adaptive and context-aware keypoint de-

tection and matching techniques. However, challenges remain in balancing compu-

tational efficiency with real-time performance, particularly on resource-constrained

platforms, and ensuring the availability of diverse, unbiased training datasets. Fu-

ture research will likely focus on optimizing these techniques to maximize both

accuracy and efficiency, making them more viable for large-scale real-world appli-

cations.

7.2.3 Reprojection Error

The visual reprojection error measures the discrepancy between observed image

points zj ∈ R2 and reprojected points π(xC
j , ξ) ∈ R2:

ereproj = zj − π(xC
j , ξ),

where zj is the observed 2D image point, xC
j ∈ R3 is the 3D point in camera coor-

dinates, ξ are the camera intrinsic calibration parameters, and π is the projection

function.

Assuming the observed image points zj are perturbed by Gaussian noise, the

likelihood function can be expressed as:

p(zj |xC
j , ξ) ∼ N

(
π(xC

j , ξ) , Σj

)
,

where Σj is the covariance of the Gaussian noise of the position of the feature in

the image. In the simplest case, the noise is assumed to be isotropic and constant

along the image Σj = σI2.

Maximizing the likelihood of a set of observations is equivalent to minimizing

their negative log-likelihood:

L = −
∑

j

log p(zj |xC
j , ξ) =

1

2

∑

j

∥∥zj − π(xC
j , ξ)

∥∥2
Σj

+ const.

Removing the constant, we get the weighted-squared reprojection error of the set

of points observed in an image:

202 Visual SLAM

Figure 7.3 The feature-based visual SLAM problem: given a set of features matched in
each image (left), estimate the position of their corresponding 3D points and the pose
from where each image was acquired (right). Images generated with ORB-SLAM [793].

Ereproj =
1

2

∑

j

∥∥zj − π(xC
j , ξ)

∥∥2
Σj
. (7.1)

To handle outliers, robust kernels such as the Huber or Tukey kernel are applied.

For example, the robust reprojection error can be expressed as:

Erobust =
1

2

∑

j

ρ
(∥∥zj − π(xC

j , ξ)
∥∥
Σj

)
, (7.2)

where ρ(·) is a robust kernel function that reduces the influence of large residuals. In

the following, for simplicity, we will drop the dependence with the camera intrinsics

ξ.

7.2.4 Keypoint-Based Visual SLAM

The core of feature-based visual SLAM is minimizing the reprojection error. Sup-

pose we have a set of environment points Pj ∈ P that are observed in a set of images

Ci ∈ C taken with a moving camera. To make notation simpler, we will just use the

point and camera identifiers writing j ∈ P and i ∈ C. The goal of visual SLAM is

to estimate the point coordinates xw
j ∈ R3 and the camera poses T i

w ∈ SE(3), both

expressed in a world reference frame Fw . In the monocular case, the observation

of each point in each image is just the observed image coordinates zij ∈ Ωi ⊂ R2

(Figure 7.3).

The minimization of the reprojection error, when applied to all the points and

camera poses, is known as full BA:

7.2 Visual SLAM Fundamentals 203

Figure 7.4 A visual SLAM example with four camera poses and five features: Bayes net-
work (top), and its corresponding Markov random field (middle). EKF SLAM marginalizes
out past camera poses, resulting in a dense graph (lower left). Keyframe SLAM keeps just
a few camera poses and discards observations from intermediate images, keeping SLAM
sparsity (lower right) [1044].

{T i
w

∗
, xw

j
∗ | i ∈ C, j ∈ P} = arg min

T i
w,xw

j

1

2

∑

i,j

ρ
(∥∥zij − π

(
Ri

wx
w
j + tiw

)∥∥
Σij

)
. (7.3)

Typically, researchers tackle the reprojection error optimization via several ad-

vanced methods, each offering unique trade-offs in computational complexity and

robustness:

• Batch Optimization: The overall reprojection error is iteratively minimized

over all observations w.r.t. all poses and landmarks, i.e. solving Equation (7.3).

Popular algorithms for minimization are the Gauss-Newton (GN) and Levenberg-

204 Visual SLAM

Marquardt (LM). This method is the gold standard in SfM, but is too expensive

to run for each image in real-time SLAM.

• Filtering-Based Approaches: Use sequential and causal methods like the Ex-

tended Kalman Filter (EKF) or Information Filter for real-time state estimation.

They simplify the problem by keeping only the last camera pose, but unfortu-

nately this destroys sparsity (Figure 7.4), limiting them to a few hundred features.

Also, filtering methods do not re-linearize past observations, loosing accuracy.

• Keyframe-Based Approaches: They simplify the problem by keeping just a

few images, called keyframes [591]. Intermediate images and their observations

are discarded for the map estimation. For the same computational effort, they

can build longer and more accurate maps than filtering methods [1044].

• Factor Graphs: All the above approaches can be formalized by means of factor

graphs. To this end, one represents SLAM problems as graphs where nodes corre-

spond to variables (e.g., poses, landmarks) and factors represent the reprojection

errors and priors on calibration and/or camera poses, which is discussed in detail

in part I of this book.

7.2.5 Photometric Error and Direct Methods

The photometric error provides an alternative to the reprojection error by offering to

directly minimize the differences in pixel intensities between observed and projected

image regions. This approach is rooted in the principle of photometric consistency,

which assumes that corresponding pixels in consecutive frames represent the same

scene point under consistent lighting conditions.

7.2.6 Visual Place Recognition and Global Localization

Visual Place Recognition consists of, given a query image, finding one from the same

place in a database of registered images. This is typically solved by computing a

per-image descriptor d = f(I) ∈ Rd that summarizes the content of the image, and

retrieving the closest one in this descriptor space via k-NN search. Galvez-Lopez and

Tardos [370] introduced bag-of-words approaches that basically aggregate ORB or

other descriptors by their quantization into visual clusters or “words”. While they

excel at small temporal and spatial ranges, they are limited by the low invariance

of hand-crafted features to variations of visual textures. For these cases, deep ar-

chitectures have been proposed and trained for feature extraction and aggregation

with high invariance to visual appearance changes [42, 516].

7.2.7 Initialization

The minimization of the reprojection error of Equation 7.3 is typically addressed by

non-linear iterative optimization, which requires sufficiently accurate initial guesses

7.3 The Processing Pipeline of a Visual SLAM System 205

to converge. The initialization of the visual SLAM states in the first frames of a

video sequence is hence relevant for a correct tracking, in particular for monocular

setups, where the full state is not observable from a single frame.

7.2.8 Common Steps

1 Feature Matching: The system matches current observations to landmarks or

keypoints stored in the map. Efficient descriptor matching techniques, such as

ORB or SuperPoint, are typically used.

2 Pose Estimation: Using the matched features, the system estimates the cam-

era’s pose relative to the map, often leveraging robust optimization techniques

to account for outliers.

3 Validation: The estimated pose is validated by checking consistency with the map

and potentially re-optimizing if mismatches occur.

7.2.9 Map Representations

Map representations are a critical aspect of visual SLAM systems, as they define

how the environment is modeled and stored for navigation, mapping, and local-

ization purposes. A well-designed map representation strikes a balance between

accuracy, memory efficiency, and computational cost.

7.3 The Processing Pipeline of a Visual SLAM System

Building a complete Visual SLAM system involves combining various components

into a cohesive framework that can handle the demands of real-time operation, scal-

ability, and robustness. Key considerations include deciding when and how each

component operates, structuring the compute- and data-flow efficiently, and en-

suring adaptability to diverse environments. As in LiDAR SLAM, the problem of

visual SLAM can be tackled in several stages. In contrast to LiDAR-based sys-

tems, however, the 3D geometry is not directly measured since one rather observes

projections of the scene irradiance onto the screen. That makes the overall estima-

tion problem more challenging. Modern complete Visual SLAM systems typically

include three core sub-functionalities that complement each other: an odometry

front-end, a mapping back-end and a loop closure and re-localization component.

7.3.1 Visual Odometry Front-End

The core element of a Visual SLAM system is visual odometry which aims at esti-

mating relative motion between consecutive camera frames. This stage provides the

206 Visual SLAM

initial estimate for the camera’s pose. As discussed above, there are two alterna-

tive approaches to capture the visual odometry: 1. Feature-based approaches split

the challenge into three stages of detecting and extracting feature points, comput-

ing pairwise correspondence across images and subsequently determine the relative

camera motion by minimizing the re-projection error with respect to camera mo-

tion and 3D point coordinates. The last stage is quite analogous to classical bundle

adjustment. 2. Direct approaches tackle the problem in one step where a photo-

metric loss function is directly optimized with respect to camera motion and 3D

structure. They are therefore quite related to approaches of optical flow and what

is sometimes called photometric bundle adjustment.

At least in their naive, first formulations, feature-based methods have demon-

strated a larger basin of convergence thanks to explicit data associations. To allevi-

ate this, direct methods thus often employ a corse-to-fine approach, i.e. start with

aligning down-sampled images, or even attempt to align dense (learned) features

instead of brightness or color.

7.3.2 Mapping Back-End

The back-end optimizes the trajectory and map using global optimization tech-

niques like bundle adjustment or factor graph solvers. This step refines the estimates

provided by the front-end and integrates observations into a consistent map. As a

consequence, one obtains more long-term consistency, and long-range distortions

are reduced.

7.3.3 Visual Place Recognition and Relocalization

Visual odometry is prone to drift because errors in the camera tracking will aggre-

gate over time. In the absence of additional sensors like IMUs, wheel odometry or

GPS, one can eliminate drift and enforce global consistency by aligning the current

image to previously observed images. To this end, one needs to compute correspon-

dence across a potentially large set of images. This can be done either by an efficient

matching of classical feature descriptors like SIFT, SURF or BRIEF–or by means

of suitable trained neural networks, an approach that has become increasingly pop-

ular in the last years. The resulting component detects when the camera revisits a

previously mapped area (loop closure detection), correcting accumulated drift and

re-establishing localization when tracking fails.

7.3.4 Compute and Data Flow

Efficient data flow is essential for a well-performing SLAM system:

7.3 The Processing Pipeline of a Visual SLAM System 207

Pipeline Parallelism: Different components, such as tracking, mapping, and opti-

mization, often run in parallel to maximize efficiency.

Data Sharing: Intermediate outputs, like keypoints or poses, are shared between

components to minimize redundant computation.

Adaptive Scheduling: Compute-heavy tasks, like global optimization, are scheduled

based on system requirements, prioritizing real-time responsiveness.

7.3.5 Keypoint-based Image Alignment

Although full BA (equation 7.3) is the gold standard in SfM, it is too expensive to

run at frame rate, which is typically between 10 and 50 Hz. To operate in real-time,

most keypoint-based visual SLAM pipelines use two key ideas:

Parallel Tracking and Mapping: splitting the SLAM process into two threads that

run in parallel [591]:

• A tracking thread that finds feature matchings for the current image i ∈ C and

computes its camera pose, without updating the estimated map points, using

pose-only BA:

T i
w

∗
= arg min

T i
w

∑

j∈P

ρ
(∥∥zij − π

(
Ri

wx
w
j + tiw

)∥∥
Σij

)
. (7.4)

• A mapping thread that solves BA only for a subset of images K ⊂ C called

keyframes, whose poses are the only ones that will be included in the map. In

this way, BA only needs to run at keyframe rate, typically between 0.5 and 5 Hz.

Keyframes can be inserted at a constant frequency, but a more sensible option is

to upgrade to keyframes those frames that contain significantly new information.

Locality: when the camera is operating in a large environment, its observations have

a negligible effect on the parts of the map that are far away, except in loop closure

events. The usual approach is to relegate loop correction to a third thread that runs

quite infrequently, and to run local BA in a window of keyframes in the mapping

thread. The local window can be defined using a temporal criterion as the last k

frames or keyframes, which is the usual choice in visual odometry or visual-inertial

SLAM systems. In visual SLAM systems, a better option is to base the local window

on a covisibility criterion, for example, including in the local window keyframes that

have more than θ observed points in common with the current keyframe [1043, 793]

208 Visual SLAM

Figure 7.5 Representation of locality in ORB-SLAM [793]. The covisibility graph (left)
connects keyframes that have seen at least θ points in common (in this example θ = 15)
and is used for local BA. The essential graph (right) is a sparser version, that in this
example connects keyframes with at least θ = 100 points in common, and is used for
pose-graph optimization during loop correction. ©2015 IEEE.

Figure 7.6 Implementation of local BA in ORB-SLAM [793]. The local map is defined
by the set of keyframes K1 that contains the current keyframe k and its neighbors in
the covisibility graph, and the set P1 of points seen by them (in red). K2 is the rest of
keyframes in the map that see some point from P1.

(see example in figure 7.5). In that way, local BA can update just a set of covisible

7.3 The Processing Pipeline of a Visual SLAM System 209

Figure 7.7 Structure of ORB-SLAM2 system [791] showing the map, the place recognition
database and its complete processing pipeline composed of four threads: tracking, local
mapping, loop closing and full BA. ©2017 IEEE.

keyframes and the points observed by them (figure 7.6):

{T k
w

∗
,xw

j
∗ | k ∈ K1, j ∈ P1} = arg min

T k
w,xw

j

1

2

∑

i∈K1∪K2,
j∈P1

ρ
(∥∥zij − π

(
Ri

wx
w
j + tiw

)∥∥
Σij

)
.

(7.5)

An example of a complete visual SLAM pipeline can be seen in figure 7.7 with

four threads: tracking that runs at frame rate, local mapping that runs at keyframe

rate, loop closing that tries to detect loops for every keyframe and corrects them

when detected, and full BA that can be run optionally to improve the map after a

loop closure.

7.3.6 Direct Image Alignment

Direct methods such as LSD SLAM [315] or DSO [316] typically pursue a simi-

lar pipeline of first estimating a frame-to-frame tracking and mapping and then

assuring some form of global consistency. Rather than first extracting, matching

and tracking points and subsequently minimizing a geometric reprojection error,

however, they directly use the brightness information from the sensor and aim for

computing the maximum a posteriori estimate of 3D structure and camera motion

given the raw sensory data. This amounts to solving the correspondence estimation

210 Visual SLAM

Figure 7.8 Schematic overview of Large Scale Direct (LSD) SLAM [315] showing the
three components that perform direct camera tracking, direct mapping and pose graph
optimization for global consistency, all running in alternation. In contrast, Direct Sparse
Odometry [316] performs the optimization of structure and motion in a single Gauss-
Newton optimization in order to achieve even higher precision. Direct methods like DSO
were shown to provide higher precision than keypoint-based methods because they do not
perform any intermediate abstraction and can determine camera motion from even very
subtle brightness variations [316].

and SLAM problem jointly by minimizing a photometric loss of the form:

Ephoto =
∑

i∈F

∑

z∈Pi

∑

j∈obs(z)

ρ
(
Ii(z)− Ij(ω(z, dz,T

i
j)
)
. (7.6)

with respect to all camera parameters T i
j ∈ SO(3) and all depth values dz ∈ R.

This loss assures that the colors Ii and Ij of corresponding points in all frame pairs

i and j are consistent. More specifically, we sum over the set of all keyframes F
and for every point z in keyframe Pi, we assure color consistency for all the frames

obs(z) where this point is visible. The warping w takes the point z with its depth

value dz, transforms it from frame i to frame j with the rigid body motion T i
j and

perspectively projects it back into image Ij .

As shown in Figure 7.8, LSD SLAM optimizes for depth maps and camera motion

(tracking) in alternation and performs a pose graph optimization to assure global

consistency of the estimated camera motion with the computed pairwise image

alignments.

In contrast, DSO [316] jointly optimizes for structure and motion in the form of a

photometric bundle adjustment. The robust loss ρ is implemented by weighted sum

of squared differences over a small patch that includes an automatic exposure time

adaptation (in case the exposure time is unknown). The dependency of respective

residuals is captured in form of factor graphs. And real-time performance on a CPU

is achieved by limiting the optimization to a sliding window of a subset of keyframes

while marginalizing out the effect of older frames. This leads to a signifcant boost in

7.3 The Processing Pipeline of a Visual SLAM System 211

Figure 7.9 In direct visual SLAM methods, one can perform pose graph optimization in
order to compute a trajectory that is globally consistent with all previously estimated
pairwise image alignments [561].

precision since it relies on a statistically optimal estimate of structure and motion

given all the sensory brightness data.

In realtime-capable SLAM methods, global consistency can be achieved in several

steps: Firstly, one can jointly optimize over the last k keyframes as done in DSO

to assure consistency over a sliding temporal window (sliding window photometric

bundle adjustment). Secondly, one can additionally run a Pose Graph Optimization

(PGO) [561, 373] – see Figure 7.9 – in order to recompute a camera trajectory

that is maximally consistent with all estimated pairwise image alignments. And

thirdly, one can perform an adaptive version of pose graph optimization called

Pose Graph Bundle Adjustment (PGBA) [1139] which additionally incorporates

the full photometric uncertainty of bundle adjustment with the same computational

efficiency (because only the camera poses are being updated).

7.3.7 Solving BA

Although BA could be solved using general variable elimination techniques as dis-

cussed in Chapter 2, there are specific sparsity solutions able to profit from its

structure. Figure 7.10 shows a toy example with 4 cameras and 9 points observed

from them. The observation Jacobian is very sparse, as each observation zij depends

only on the camera i and the point j. As a result, each observation introduces in

the Hessian a diagonal block for the camera, a diagonal block for the point, and an

212 Visual SLAM

off-diagonal camera-point block. As the number of points is typically several orders

of magnitude larger than the number of cameras, a good solution is to eliminate

first the points, and then solve for the cameras.

This can be done using the Schur complement. If we have a linear system where D

is invertible, we can transform it by multiplying both sides on the left by a matrix:

(
A B

C D

) (
x1

x2

)
=

(
b1

b2

)
,

(
I −BD−1

0 I

)(
A B

C D

) (
x1

x2

)
=

(
I −BD−1

0 I

)(
b1

b2

)
,

(
A−BD−1C 0

C D

) (
x1

x2

)
=

(
b1 −BD−1b2

b2

)
,

to get a system where we can solve first x1 and then x2:

(
A−BD−1C

)
x1 = b1 −BD−1b2,

Dx2 = b2 −Cx1.

The BA problem needs to solve in each iteration an equation of the form:

(
Hcc Hcp

H⊤
cp Hpp

) (
dc

dp

)
=

(
bc

bp

)
.

This can be solved in tree steps: computing the Schur complement of the points

to obtain the reduced camera system, solving it for the cameras, and finally solving

for the points:

Hred
cc = Hcc −HcpH

−1
pp H

⊤
cp,

Hred
cc dc = bc −HcpH

−1
pp bp, (7.7)

Hpp dp = bp −H⊤
cpdc.

As Hpp is block diagonal, the Schur complement and the final point solution can

be done very efficiently point by point. As shown in Figure 7.10 the reduced camera

system is less sparse, as it contains blocks that relate pairs of cameras that have

seen some point in common. In the example, there is a block between cameras 1

and 2, but not between cameras 1 and 3. In local BA the reduced camera system

will be almost full and can use dense matrix solvers. In contrast, full BA has a

much larger number of keyframes but there is less covisibility between them, so it

can profit from a sparse solver for the reduced camera system.

7.3 The Processing Pipeline of a Visual SLAM System 213

Figure 7.10 Toy example with 4 cameras and 9 points showing in the first row the factor
graph and the Jacobian of point observations. The second row shows complete Hessian,
and the Hessian of the reduced camera system.

7.3.8 Examples of Full Visual SLAM Systems

LSD-SLAM (Large-Scale Direct SLAM) [315] is a direct SLAM system that focuses

on dense tracking and semi-dense mapping. It relies on photometric error mini-

mization rather than keypoint-based methods, making it particularly effective in

low-texture environments. The system operates in real-time, providing a semi-dense

reconstruction of the scene and is well-suited for monocular cameras in indoor and

small-scale outdoor environments.

ORB-SLAM [793, 791] is one of the most widely adopted SLAM systems due

to its robustness and flexibility. It integrates keypoint-based tracking using ORB

(Oriented FAST and Rotated BRIEF) descriptors, effective loop closure detection,

and sparse map representation. ORB-SLAM supports monocular, stereo, and RGB-

D cameras, making it highly versatile across different setups. It excels in scenarios

requiring high accuracy and robust relocalization capabilities. In ORB-SLAM3 [148]

it was extended to fisheye cameras, multimap, and visual-inertial SLAM. While

originally conceived as a visual-inertial odometry system, OKVIS [652], the newest

version, OKVIS2 [651], a visual-inertial SLAM system, may also be run in vision

214 Visual SLAM

only (multi-camera) mode. Similar to the various ORB-SLAM versions, it uses

keypoints and descriptors (BRISK).

Direct Sparse Odometry (DSO) [316] is a direct method for estimating 3D point

cloud and camera trajectory. In contrast to LSD SLAM camera motion and land-

mark points are estimated jointly in a single Gauss-Newton optimization. In order

to achieve real-time performance, only the last k key frames are being updated

resulting in a sliding-window photometric bundle adjustment. The number k of

considered keyframes provides a trade-off between speed and accuracy. Moreover,

DSO makes use of a full photometric calibration with camera response function

and vignette. The traditional brightness-constancy assumption is thus replaced by

an irradiance-constancy assumption, i.e. the assumption that respective points in

the 3D world emit the same irradiance over time. Extensions of this approach to

stereo systems [1158] and omni-directional cameras [746] have been proposed. Loop

closure detection has also been added to reduce drift in longer sequences [373].

While among real-time capable approaches direct methods like DSO were shown

to provide more accuracy and robustness than keypoint-based methods [316], for

optimal performance they typically require a good photometric calibration and a

global shutter camera. The rolling shutter effect leads to geometric distortions.

While these can be modeled in direct SLAM methods [985, 986], the resulting ap-

proaches are often no longer real-time capable. As a result they are better handled

in keypoint-based approaches which by design minimize geometric distortions. Nev-

ertheless, direct methods often do better on low-resolution videos where due to blur-

ring and down-sampling it may be harder to identify reliable feature points [1222].

Furthermore, feature points are valuable for efficient re-localization and loop clo-

suring. As a consequence, practical visual SLAM systems will often revert to hybrid

approaches that combine the best of both worlds. An example of a hybrid approach

is [393] where feature-based re-localization information is tightly integrated in a

direct visual SLAM approach to further boost its robustness and precision.

7.4 Realtime Dense Reconstruction

While traditionally bundle adjustment and SLAM tackle the problem of recon-

structing camera motion and a sparse set of landmark points for numerous appli-

cations ranging from augmented reality to autonomous robots, one would prefer

having a dense reconstruction of the observed world. To this end, a number of

algorithms for realtime dense reconstruction from a monocular camera have been

advocated over the years [1051, 806, 1177, 882]. Traditionally they revert to varia-

tional methods to estimate a continuous 3D structure by minimizing a loss function

[1051]:

min
h:Ω→IR

1

2

∑

i∈I(x)

∫

Ω

ρi(x, h)dx + λ

∫
|∇h| d2x, (7.8)

7.5 SLAM with Depth-sensing Cameras 215

Figure 7.11 Dense reconstructions of the 3D world (above) can be computed in realtime
from a handheld monocular camera (below) using variational methods that are efficiently
parallelized on a GPU [1051]. Related approaches were proposed in [806, 1177, 882].

with respect to a dense map h that assigns a depth value to every pixel x in the

image plane Ω ⊂ IR2. The residual

ρi(x, h) =
∣∣∣Ii
(
πT i

wX(x, h))
)
− I0(x)

∣∣∣, (7.9)

enforces consistency of the brightness at pixel x in the reference image I0 to the

corresponding pixels in a set of adjacent images Ii. The corresponding pixel is ob-

tained by taking the 3D point X(x, h), performing the transformation T i
w ∈ SE(3)

to camera i, followed by a perspective projection π into the image Ii. Here I(x) de-

notes the index set of the images for which the projected point lies inside the image

plane. The total variation regularizer (weighted by λ) enforces spatial smoothness

of the computed depth map and induces a soap-film-like fill-in for unobserved areas

as shown in Figure 7.11.

7.5 SLAM with Depth-sensing Cameras

With the introduction of Microsoft Kinect, depth-sensing cameras became a com-

modity. These so-called RGB-D cameras are typically either structured-light or

time-of-flight-based and provide a stream of depth images, often in conjunction

with a color image stream. As such, they are conceptually between standard cam-

eras and LiDAR sensors. Yet, in contrast to LiDAR sensors they provide an instant

2D array of depth values. Equipped with suitable algorithms, RGB-D cameras are

216 Visual SLAM

Figure 7.12 Dense reconstructions of a large-scale corridor scene with multiple offices
computed from a moving RGB-D camera [1036]. Using octrees [1036] or voxel hashing
[814] and direct camera tracking [562], such reconstructions were demonstrated to run in
real-time on a GPU [1036] and even on a tablet CPU [1037]

very powerful for 3D sensing, albeit being limited to indoor applications (because

the infrared-based sensing clashes with sunlight) and a certain range (typically up

to around 5 meters).

Kinect Fusion [807] built upon previous work for range image fusion [242] to

advocate a method for reconstructing camera motion and 3D structure from a

moving RGB-D camera. The basic idea for fusing the various depth images into a

coherent 3D reconstruction is to encode each depth image as a (projective) signed

distance function di(x) which for every voxel x ∈ V encodes the (signed) distance

to the nearest surface point (along the viewing ray). Subsequently one can compute

an aggregated distance function D(x) for all voxels as a weighted average of the

individual distance functions:

D(x) =

∑
i ωi(x)di(x)∑

i ωi(x)
. (7.10)

Under the assumption of Gaussian noise in the depth direction, this weighted aver-

age is nothing but the maximum-likelihood estimate of the distance function. For

more robustness, one typically averages truncated signed distance functions so that

each sensed surface point merely has a local impact on the reconstruction. The

weights ωi(x) encode the certainty of the respective surface measurements (that is

sensor dependent and typically decays with distance from the object). In order to

fill holes in the reconstruction, one can revert to post-processing techniques [807], or

modify the above weighting scheme to ensure watertight-ness of the reconstructions

[1049].

While earlier RGB-D SLAM approaches track the camera by means of aligning

7.6 Combining Vision with Other Modalities 217

respective depth point clouds with the ICP algorithm [85], subsequent works advo-

cated a direct minimization of residuals that measure color and depth consistency

of two consecutive RGB-D frames (I1, d1) and (I2, d2) [562]:

rI(ξ) = I2(τg(x))− I1(x), rd = d2(τg(x))−
[
gπ−1(x, d1(x))

]
z
, (7.11)

where π denotes the perspective projection, g ∈ SE(3) denotes the desired rigid

body motion, τg(x) = πgπ−1(x, d1(x)) denotes the induced warping between corre-

sponding pixels, and [·]z returns the z-component of a point. One can then fit the

distribution of all residuals r = (rI , rd) with a suitable distribution and determine a

maximum a posteriori estimate of the camera transformation g = exp(ξ) by means

of a coarse-to-fine Gauss-Newton optimization in ξ ∈ se(3) [1035, 561]. Compared

to the classical ICP approach, this direct tracking approach reduces the root mean

square tracking error by nearly an order of magnitude on established benchmarks

while being significantly faster – see [562] for details.

For mapping at larger scale, the uniform voxel representation is too memory-

intense. Therefore one typically reverts to adaptive representations using voxel

hashing [814] or octrees [1036] – see Figure 7.12.

Later approaches have furthermore demonstrated scalability to larger scenes by

employing a moving fusion window as in kintinuous [1180], or by including loop-

closure as ElasticFusion [1181] that deforms the entire dense map representation

through a deformation graph.

7.6 Combining Vision with Other Modalities

For numerous reasons, it is advisable to combine vision with other modalities. This

can provide additional robustness and precision, but it can also provide absolute

scale information. Specifically, inertial sensors provide metric scale and highly re-

liable and robust local, relative, motion measurements. GPS/WiFi, however, may

be leveraged for global (re-)localization and geo-positioning. These complementary

inputs address limitations inherent to vision-only systems, making them indispens-

able in practical applications.

7.6.1 Inertial Measurement Units (IMU)

IMUs provide high-frequency measurements of angular velocity and linear accel-

eration, enabling precise estimation of local motion. A simple way to fuse sensory

information is a loosely coupled approach where the sensory information from each

sensor is independently aggregated into a pose estimate and subsequently, respec-

tive estimates are fused with a Kalman filter. While this often works fairly well in

practice, for example for autonomous navigation of quadrotors [314] or nano-copters

[299], it is less precise than a tighly-coupled integration of sensory information.

218 Visual SLAM

Figure 7.13 The integration of multiple sensors can be elegantly performed in tightly
coupled manner using factor graphs. This is an example factor graph for tightly coupled
fusion of vision and IMU [1120]. It significantly increases precision and robustness of
camera motion and 3D structure – see Figure 7.14.

Figure 7.14 Tight fusion of the IMU measurements with direct image alignment results
in more accurate position tracking (left) compared to the purely visual odometry system
that only relies on image alignment (right). The fusion was achieved with the factor graph
shown in Figure 7.13. The reconstructed pointclouds come from pure odometry, no loop
closures were enforced [1120].

First tightly-coupled approaches leverage an EKF scheme, whereby the IMU

kinematics are integrated in the prediction step, and visual keypoint measure-

ments serve as upadates–as in the seminal work of the MSCKF [783]. Alterna-

tively, sliding-window and batch optimizers may be formulated adopting the factor

graph approach discussed in detail in part 1 of this book. Figure 7.13 shows a fac-

tor graph proposed for stereo-inertial odometry [1120] that combines stereo LSD

SLAM with IMU information. Figure 7.14 shows how the tightly coupled IMU in-

formation reduces the drift leading to more crisp and precise reconstructions. This

tight coupling by factor graphs is also employed by state-of-the-art keypoint-based

approaches, such as ORB-SLAM3 [148], OKVIS2 [651], and many more.

In practice, some of the most accurate visual-inertial odometry systems start

with inertial integration as basis, and use vision primarily to correct for the fast-

7.6 Combining Vision with Other Modalities 219

Figure 7.15 By combining multiple sensors including stereo cameras, IMU and RTK-GPS
information (left), fused in a tighly coupled manner using factor graphs, one can obtain
highly accurate and robust trajectories and pointclouds, both indoor and outdoor as shown
in the reconstruction of a car driving on multiple levels of a parking garage (right) [1178].

growing drift owing to (doubly) integrated noise and biases over time. In addition,

IMUs allow to observe metric scale of motion, as well as the sensor’s orientation

with respect to gravity–thus reducing the gauge freedom of the system to only 4

unknowns (global x,y,z position, as well as yaw)–compared to 7 unknowns (global

x,y,z, roll, pitch, yaw, as well as scale) for vision-only systems. In many ways, IMUs

are complementary to vision as a modality, and thus are ideal to combine in visual-

inertial SLAM or Odometry systems.

A multitude of visual-inertial odometry/SLAM methods have been proposed over

the years, often as extensions of existing visual SLAM systems. Popular approaches

include a visual-inertial version of ORB SLAM [792], Direct Sparse Visual-Inertial

Odometry [1140], VINS-Mono [903], BASALT [1122] and DM-VIO [1139]. The lat-

ter approach is a mono-inertial formulation that makes use of the concept of delayed

marginalization to better capture the observability of motion in the respective sen-

sors.

7.6.2 GPS and WiFi for Global Localization

While IMUs improve local motion estimation, GPS and WiFi are essential for global

localization, especially in large-scale environments. In outdoor environments, GPS

provides absolute position data, enabling the system to anchor the SLAM map

to global coordinates. This is critical for outdoor applications like autonomous

vehicles [1178, 200]–see Figure 7.15. In indoor scenarios, WiFi signals enable coarse

220 Visual SLAM

localization where GPS signals are unavailable, complementing visual map-based

localization.

7.7 Bundle Adjustment Revisited

At the historical origin and at the heart of visual SLAM is the classical problem

of bundle adjustment, namely, the joint estimation of all camera positions and all

landmark positions. It has been studied for over a century and the classical ap-

proach detailed in Section 7.3.7 has been established and shown to work well in

a multitude of seminal papers [1111, 21, 983]. Yet, this pipeline has two impor-

tant shortcomings: Firstly, respective solutions require a suitable initialization of

landmarks and camera poses. And secondly, for large-scale problems the compu-

tational and memory requirements can grow prohibitively large. In recent years,

there have been a series of papers that address these shortcomings and challenge

the traditional computational pipeline [477, 478, 266, 267, 1168, 1169, 1170].

The key computational bottleneck is the solution to the reduced camera system

(7.7). Instead of solving this by means of an iterative conjugate gradient algorithm,

Power Bundle Adjustment [1169] approximates the inverse of the Schur matrix

Hred
cc = Hcc −HcpH

−1
pp H

⊤
cp, (7.12)

by means of a matrix power series [1169]:

(Hred
cc)−1 ≈

m∑

i=0

(H−1
cc HcpH

−1
pp H

⊤
cp)i H−1

cc . (7.13)

This power series provably converges to the true inverse for increasing cut off pa-

rameter m [1169]. The main advantage is that tedious matrix inversion is replaced

by simple matrix multiplications, which can be done much faster and more memory-

efficiently.

The dependency on initialization is alleviated in [477, 478] by reverting to the

concept of variable projection–see Figure 7.16. To this end, the bundle adjustment

problem is split into two stages. In the first stage, the complicated perspective

projection is replaced by a generic projective matrix such that the resulting opti-

mization can be solved analytically for the landmarks as a function of the camera

parameters. This removes the chicken-and-egg dependency between landmarks and

camera poses, leading to a larger basin of attraction when optimizing the camera

poses. In the second stage of projective refinement, one uses the computed solu-

tion as an initialization for the original (perspective) reconstruction. Although this

strategy is computationally too demanding for more than 100 cameras, its combina-

tion with the power series approach as proposed in [1170] offers a scalable solution

for large-scale bundle adjustment problems without initialization.

7.8 Recent Developments 221

Figure 7.16 In a series of papers [477, 478, 1169, 1170], researchers advocate the use of
variable projection methods and matrix power series in order to solve large scale bundle
adjustment problems without initialization in a runtime- and memory efficient way. As
shown above, camera poses and landmarks can thus be computed starting from a random
initialization.

7.8 Recent Developments

Visual SLAM is an extremely active and dynamic field of research. While we tried to

provide a comprehensive overview of classical visual SLAM methods, we invariably

only covered a fraction of relevant work in this chapter, and we hope the reader may

look into some of the many cited works for a more in-depth coverage. Moreover, one

should emphasize that there have been many exciting developments in the recent

past. Among other developments, there are generalizations of visual SLAM to dy-

namic environments with moving and potentially deformable objects. In addition,

learning-based approaches to visual SLAM are becoming increasingly popular: In a

multitude of publications, more and more components of the classical visual SLAM

pipeline (feature extraction, correspondence estimation, image alignment, camera

tracking, bundle adjustment, dense reconstruction, etc.) are being enhanced or re-

placed by learning-based formulations. All these ideas will be discussed in more

detail in Part 3 of this book.

8

LiDAR SLAM
Jens Behley, Maurice Fallon, Shibo Zhao, Giseop Kim

Ji Zhang, Fu Zhang, and Ayoung Kim

Along with cameras, LiDAR sensors are one of the major sensing modalities used

in robotics and computer vision. LiDAR is a technology which uses a laser to

actively transmit laser light pulses and then measures the time delay in those pulses

reflecting off of surfaces and returning to a detector. In doing so it directly measures

the distance to those surfaces. A LiDAR sensor can be used to perceive the structure

of its surrounding environment and also to estimate the motion or ego-location of

the sensor.

The development of LiDAR technology began in the 1960s and 1970s with sta-

tionary systems primarily used for applications such as atmospheric research, topo-

graphic mapping, and military applications. These early LiDAR systems were bulky

and expensive, making them unsuitable for mobile applications. In the 1980s, ad-

vancements in laser technology and computing power allowed for more compact and

affordable LiDAR systems. These systems were still primarily stationary and used

in applications like terrain mapping and environmental monitoring [257, 690]. In

the 1990s, the integration of LiDAR sensors with Global Positioning System (GPS)

and IMUs began to enable the first mobile LiDAR mapping systems. These sys-

tems were often mounted on vehicles or aircraft to create detailed 3D maps of large

areas [507]. In the late 1990s, researchers began exploring the use of LiDAR for real-

time SLAM in robotics. In the next section we will quickly review the underlying

technology within different types of LiDAR sensors.

8.1 LiDAR Sensing Preliminary and Categorization

By rotating the laser emitter and detector within a LiDAR sensor in one or two

axes, it is possible to build up a detailed point cloud of the environment around

the sensor. The most basic principle is TOF, which employs laser pulses to in-

fer distances using the measured time it takes for emitted light pulses to return

to the detector. TOF LiDAR sensors can capture high-resolution measurements

but are sensitive to external light, which reduces the signal-to-noise ratio (SNR)

[606] and therefore the accuracy and frequency of measurements. Besides TOF, the

techniques of Amplitude Modulated Continuous Wave (AMCW) and Frequency

8.1 LiDAR Sensing Preliminary and Categorization 223

(a) 2D LiDAR

````̀ `\\\\\\\\\\\`````

-~ . .  ~-· -" 

二.\\_\."".. ."_ .. _ .... _"""". 

(b) 3D Rotating LiDAR (c) Spiral Scanning

Figure 8.1 Common LiDAR sensor types and their beam patterns. (a) A standard 2D
LiDAR sensor with a rotating transmitter mirror (yellow). The encoder disk (blue) is
used to measure the rotation angle of the mirror. (b) An example of a mechanical multi-
beam LiDAR emitting multiple laser beams from the different emitters (yellow), which
are then detected using the detectors (blue). The entire sensor head rotates to generate
a 360◦ horizontal field of view. (c) A macroscopic steered Risley prism LiDAR with an
spiral scanning pattern which only measures in the direction of the lens window (cyan).
Due to the spiral pattern it can produce denser point clouds over time.

Modulated Continuous Wave (FMCW), originally developed for radar sensors have

been adopted for LiDARs.

The classes of LiDAR sensors are categorized by their sensing mechanisms [941]

and can be classified into mechanical LiDARs, scanning solid-state LiDARs, flash

LiDARs and sensors using macroscopic scanning Risley prisms. Among these, we

will examine two commonly utilized types: 2D/3D mechanical LiDARs and macro-

scopic scanning LiDARs.

Mechanical LiDARs are the most common category of LiDAR. They use a rotat-

ing assembly to direct the laser beam but face limitations due to mechanical wear

and lower rates of data acquisition. The simplest 2D mechanical LiDAR sensors use

a rotating mirror to direct a single laser beam and to measure distances, as shown

in Figure 8.1a. By using an encoder disk, the angular orientation of the LiDAR

beam can be measured and paired with the range measurement to produce a 2D

profile measurement. By its nature, this LiDAR can only scan in an individual 2D

plane.

The demand for a single sensor that can scan in full 3D was motivated by the

DARPA Grand Challenges (an early self-driving car competition) in the 2000’s and

lead to the development of the pioneering Velodyne HDL-64E sensor. It was used

by most of the teams [1119, 778, 544] in the challenge. Within a 3D mechanical

LiDAR, multiple laser emitters are mounted on a single rotating mechanism to

capture individual range measurements pointing in different elevation angles as the

entire mechanism rotates through 360 degrees in the azimutal axis as illustrated in

Figure 8.1(b). The resulting point cloud can capture a highly detailed 3D depiction

of objects and the sensor’s surroundings as shown in Figure 8.2, as discussed in



224 LiDAR SLAM

Figure 8.2 Example of a single multi-beam LiDAR scan and a corresponding image. The
scan is from a 64-beam Hesai QT64 scanner with 104◦ vertical field-of-view. Note the
individual scanning lines and also how dense the point cloud is close to the device (the
colored axis in the 3D view) and much sparser the cloud is further away.

various studies [1175, 565, 941]. Subsequently, the technology has evolved — with

the size and price of LiDAR sensors dropping significantly.

A wider variety of prototype sensors have emerged more recently drawing on

a variety of physical properties including solid-state LiDAR , Risley prisms and

polygonal mirrors. In contrast with traditional scanning laser, many of these sen-

sors use Micro-electromechanical (MEMS) [475] mirror technology or optical phased

arrays (OPA) [454] to avoid, or at least minimise, mechanical rotation. This is im-

portant because it can enhance the LiDAR’s lifespan and reliability in environ-

mental mapping, since fewer mechanical parts need to be actively actuated which

reduce the mechanical wear.

A notable advancement is the use of Risley prisms [674] which enables rapid,

controlled beam steering with much smaller amount of physical movement. This in-

novation results in a more compact sensor, albeit with more limited FOV currently.

All the aforementioned sensors produce sets of individual range measurements

with intensity (often also called remission) value for each measurement, i.e., how

much of the LiDAR beam is reflected. The range measurements with associated

angles of the individual beams can be then converted into a 2D or 3D point cloud.

Yet, more recent advances have introduced additional measurement capabilities be-

yond the default range measurement. For instance, FMCW LiDAR continuously

projects light with varying frequency and can measure the relative velocity of the

object the beam hits using detected frequency shifts. This is similar to how FMCW

is used in radar. This approach is useful in dynamic environments or challenging

scenarios [1198], although it tends to be more complex and costly compared to other

variants. Another innovative sensing mechanism is flash LiDAR, which can provide

ambient channels resembling photometric measurements, similar to those obtained

by cameras. These technologies, with their different characteristics of power con-

sumption, weight and cost, provide a variety of options when carrying out LiDAR

odometry for different applications.



8.2 LiDAR Odometry 225

8.2 LiDAR Odometry

The first building block of LiDAR SLAM is LiDAR odometry. The goal of LiDAR

odometry is to estimate the incremental ego-motion of a robot or vehicle in real-

time given a LiDAR scan and past observations, i.e., a single scan or multiple

scans aggregated into a local map. Here, the term scan refers to a single sweep

or cycle of data collected by the LiDAR sensor. More specifically, a scan typically

represents one complete rotation or one full sweep of the sensor providing a con-

textual snapshot of the surrounding environment at a specific time. Thus, scans

are often time-stamped, allowing them to be ordered and processed as sequential

observations.

At the heart of LiDAR odometry lies the technique of scan registration, also

referred to as scan matching. Scan registration involves finely aligning a pair of

scans to estimate the precise relative transformation between the scans. A scan is

effectively a set of points or a point cloud. The well-known ICP algorithm [86, 964] is

a fundamental technique for point cloud registration and it can be used to determine

this relative transformation. We will discuss ICP further in the next sections.

The original development of LiDAR SLAM can be traced back to the seminal

work of Lu and Milios [709], who pioneered the concept of globally consistent 2D

range scan registration by introducing the idea of a network of poses—a concept

closely resembling the modern pose-graph approach. This work also laid the ground-

work for LiDAR odometry by defining the fundamentals of 2D scan registration.

Key contributions to the probabilistic framing of scan-to-scan matching were made

by works including [832, 604]. While points and lines are common choices in 2D

scan matching, Olson [831] introduced an impactful approach using correlation

techniques for real-time registration.

Early extensions to 3D LiDAR built on these 2D scanning techniques by actively

moving the sensor in a nodding [440] or rotating manner [106], or by passively

using the motion of a human carrier [108] or vehicle [106] to accumulate denser

3D point clouds. These 3D point clouds enabled 3D scan matching for LiDAR

SLAM but introduced significant computational challenges due to the increased

data size. Addressing these challenges, LOAM [1264] demonstrated real-time scan

matching capabilities forming the basis for follow-up methods in LiDAR odometry

and SLAM.

8.2.1 Foundations of Scan Registration

Scan registration is a fundamental component of LiDAR odometry and mapping

systems. It involves the alignment of two scans to achieve an accurate alignment

and mapping. The goal is to find the transformation, i.e., rotation R ∈ ℜ3×3 and

translation t ∈ ℜ3, that can best bring one of the scans (potentially a recent scan

from a sensor) into alignment with the other (e.g., a scan or a local map). In doing



226 LiDAR SLAM

so, this process also yields the relative position from which the scans were taken.

A large body of techniques and algorithms have been developed to perform scan

registration with high accuracy, robustness and low computational cost.

Iterative Closest Point and Its Variants As introduced in Chapter 5, a point

cloud is defined to be a set of points in a three-dimensional coordinate system,

represented mathematically as P = {pi ∈ ℜ3 | i = 1, 2, . . . , N}, where each

pi = (xi, yi, zi) denotes the 3D coordinates of a point. For scan registration, the

ICP algorithm [86] minimizes the total registration error between two point clouds

P and Q. Let us denote P as a source and Q as a target point cloud.

ICP iteratively determines transformations Rk, tk for an optimization iteration k

that minimize the total registration error, which is measured by different distance

metrics d and is given by

Rk, tk = arg min
R,t

∑

(p,q)∈C

d(pi,Rqi + t), (8.1)

where the set of correspondences C between the source point cloud P and target

point cloud Q is given by

C = {(p, q) | p ∈ P, q ∈ Q}. (8.2)

In the ICP algorithm, determining the transformation between the source and target

is achieved iteratively by recomputing for each iteration k a new set of correspon-

dences C based on the last transformation at iteration k−1 given by rotation Rk−1

and translation tk−1.

To minimize the total registration error in (8.1), two components must be speci-

fied:

1 While geometric relation is used defining the distance measure d(·)? The aim

is to align two point clouds as tightly as possible, and this tightness cannot be

determined without defining a distance metric.

2 How is the correspondence set C, used for minimization, determined? This in-

volves identifying the corresponding target point q ∈ Q for each source point

p ∈ P.

Common approaches used these two components will be discussed in the following

sections.

8.2.1.1 Distance Measure in Registration Residual

The first component involves deciding which geometric elements to use for defin-

ing the residual. Typically, points, lines, and planes are the most commonly used

geometric elements, as summarized in Figure 8.3.

Point-to-point ICP is the most basic approach and it minimizes the Euclidean

distance between corresponding points in the two point clouds. Pioneering works



8.2 LiDAR Odometry 227

p

q

p

p

(a) point-to-point (b) point-to-line (c) point-to-plane

l

π

Figure 8.3 Typical distance metrics used in ICP. (a) Point-to-point distance is as straight-
forward as the Euclidean distance between two points. (b) and (c) The point-to-higher-level
feature (e.g., line or plane) is calculated as the shortest distance to the reconstructed line
or plane using the target points.

in ICP by Zhang [1276] and Besl and McKay [86] formulated shape (e.g., curves

and surfaces) matching as a point matching problem by representing shapes as

sets of points. This point-to-point cost is straightforward and simple, but can be

sensitive to noise and outliers. Distances to lines are also used as an error measure.

The point-to-line distance measures points in one point cloud and lines (formed

by connecting points) in the other point cloud. It can provide better results in

structured environments with linear features. By exploiting higher level geometric

features we can go further. We can measure the distance between points in one

point cloud and planes (local surfaces) in the other point cloud. This approach is

more robust to noise and can achieve higher accuracy in environments with planar

surfaces.

Extending from these basic geometries, other ICP variants introduce different

distance metrics. Techniques which employ multi-distance metrics [845], continuous-

time formulation [264], and adaptive thresholds [1137] are more some of the more

recent ICP advances. Other methods [990, 599] opted to evaluate differences in a

probability distribution of a local neighborhood than using Euclidean distances.

Another well-known distribution-based matching is the NDT [89]. NDT divides

an input point cloud into a set of voxels and fits a normal distribution to the points

in each voxel (see Chapter 5.3.2.2 for more details). Instead of incurring the cost

of determining nearest neighbor associations, it takes advantage of voxelization to

carry out a distribution-to-distribution matching process. This process can take

advantage of a smoother and more robust registration cost surface, especially in

complex environments.

8.2.1.2 Determining Correspondences

The second core component of common ICP algorithms is data association or cor-

respondence search between the source P and the target Q.

In the most basic form, determining correspondences between P and Q can be

achieved geometrically by finding the nearest neighbor of a point p ∈ P in the



228 LiDAR SLAM

target Q, where we use the iteratively updated transformation (Rk−1, tk−1), which

is given by:

C = {(p, q) | p ∈ P, q = arg min
q′∈Q

||p− (Rk−1q′ + tk−1)||2} (8.3)

However, this is typically an expensive operation when computed over a large point

cloud with thousands of points.

To make real-time operation of LiDAR odometry possible, there are two com-

mon strategies used to reduce the time for correspondence search: (1) reducing

the set of potential candidates for a correspondence or (2) employing a different

search strategy than distance-based neighbor search to more quickly find potential

candidates.

Several ICP variants used in popular LiDAR odometry systems [1264, 845, 1005]

employ the first strategy to reduce the set of potential correspondences by building

maps with reduced candidate sets, P′ ⊂ Q and Q′ ⊂ Q by determining points that

fulfill certain geometric criteria. The criteria used include determining points lying

on edges or surfaces [1264, 845], removing less descriptive points that correspond to

the ground plane [1004], or downsampling of the target scan [1137, 264]. While these

strategies certainly speed up the correspondence search, they have the potential

drawback of removing true correspondences from the target Q.

In contrast, the second strategy employs search structures with efficient approx-

imations which enable faster correspondence searches even though they may not

always yield the exact nearest neighbor. In this direction, a common strategy is

to use projective neighbor search in range images [73] or leveraging voxel grids for

approximate neighbor search [1264, 264, 1137]. Furthermore, while we covered here

the pure geometric correspondence search in Euclidean space, it is also possible

to use alternative distance metrics, as well as to apply projections into a feature

space [845] to identify correspondences.

In the following sections, we will discuss other components of a LiDAR odometry

system that are integrated around the core ICP component to build out a complete

scan registration system which can align a sequence of scan observations so as to

estimate the relative motion of a robot.

8.2.2 Common Components for LiDAR Odometry

This section outlines the key modules involved in a LiDAR odometry system: point

cloud motion compensation, identifying correspondences and pose estimation via

scan registration. Point cloud motion compensation addresses the distortion caused

by the motion of the LiDAR during scan acquisition. Correspondence search iden-

tifies matching points between consecutive scans that are useful for matching and

scan registration. Finally, the pose estimation module estimates the sensor’s motion

since the previous registration. Registration can be carried out either scan-to-scan



8.2 LiDAR Odometry 229

Current Scan
Undistorted

Scan

Previous Scans

Correspondences
Motion 

Compensation
Correspondence

Search

1 2

Relative 
Pose Estimation

Pose

Odometry

3

Figure 8.4 Components of a LiDAR odometry pipeline: Given a current scan, (1) motion
compensation accounts for the motion of the sensor during the scan process resulting
in a undistorted scan. Then, (2) correspondences between the undistorted scan and the
previous scans, either a single scan or aggregated scans in a local map, are determined.
Finally, (3) the relative pose estimate is determined via a scan registration to estimate
the relative pose of the current scan. These steps are iterative with the correspondence
set refined based on the intermediate relative pose estimates. After convergence, the final
pose estimate is the output of the LiDAR odometry system.

between consecutive scans or scan-to-map with respect to a local map. Together,

these modules ensure accurate and reliable LiDAR odometry. Figure 8.4 shows the

interplay between the different components in a common LiDAR odometry pipeline.

8.2.2.1 Point Cloud Motion Distortion Compensation

Motion distortion in LiDAR odometry occurs because a LiDAR sensor captures a

scan over a period of continuous motion1. Due to this movement during the scan

period, the sensor will emit laser pulses and receive ranging returns from slightly

different times and positions. This means that a single scan does not represent a

static snapshot of the surroundings at a single position but instead a set of points

each captured from a slightly different scanning position. This continuous move-

ment during the scanning process will lead to inaccuracies and in turn a distorted

point cloud if left uncorrected 2. For example, Figure 8.5 clearly illustrates a dis-

torted point cloud sample and highlights the need for proper motion compensation.

As can been seen, undistorting the point cloud to account for the motion of the

LiDAR sensors is an important pre-processing step in LiDAR odometry which can

improve accuracy and robustness. Compensation methods have been developed to

correct this effect including a constant-velocity model, continuous-time trajectory

optimization, and using IMU measurements.

Constant-velocity Model The constant velocity model assumes that the robot

maintains the same translational and rotational velocities estimated during the

previous time step. As this model does not require any additional sensors, it can

1 In modern LiDAR SLAM, LiDAR sensors are often mounted on moving vehicles, robots or wearable
devices. Assuming a scan rate of 10Hz, the scan period will then be 0.1 seconds.

2 A similar type of distortion effect during camera image capture and is known as the rolling shutter
effect.



230 LiDAR SLAM

(a) LiDAR-camera overlay - without motion undistortion

(b) LiDAR-camera overlay - with motion undistortion

Figure 8.5 LiDAR point cloud overlaid on a camera image. A slight misalignment at the
start of the sweep (‘b’) worsens significantly by the end of the LiDAR sweep (‘a’). At the
bottom, more consistent overlays are observed for both the start (‘d’) and end (‘c’) after
motion compensation. From [1076].

be widely used in simpler LiDAR odometry systems [264, 1137], however, the con-

stant velocity assumption is inherently less accurate when the motion contains high

frequency motions.

Continuous-time Trajectory Optimization Another widely used approach for

motion compensation is continuous-time trajectory optimization techniques using

splines [290, 723] and the GP [57]. Continuous-time trajectories allow pose estimates

to be made at any time instant without relying on linear interpolation. They can

be used to remove the distortion of each individual point, however, conventional

continuous-time trajectory optimization is time-consuming and often implemented

offline [723].

IMU-based Motion Compensation IMU measurements directly measure high

frequency motion with gyroscopes and accelerometers. They can be integrated over

the scan period as an effective approach for motion compensation [1264, 1005]. IMU-

based motion compensation pre-integrates the LiDAR pose using the most recent



8.2 LiDAR Odometry 231

IMU data and then uses that predicted trajectory to rectify for point distortion.

Thanks to the high frequency of IMU measurements (e.g., 200 Hz), IMU-based

motion compensation is highly effective for jerky robot motions and is now the

defacto standard for most robot platforms. Nonetheless, this method needs to be

used carefully because IMU measurement noise, bias estimation errors and poor

clock synchronization can cause this approach to underperform the other simpler

methods.

Point-wise Registration Being firstly proposed in Point-LIO [449], this point-

wise approach is fundamentally different from existing scan-based LiDAR odometry

frameworks. In this framework, the state is updated by processing each LiDAR point

when it is received, rather than accumulating a complete scan. As a result of this

design, the proposed method does not suffer from intra-scan motion distortion.

8.2.2.2 Feature-based LiDAR Odometry

Once motion distortion is corrected, point correspondences can be established. Sim-

ilar to visual SLAM (see Chapter 7), leveraging features for scan association is well

studied. A feature-based approach allows efficient representation of the scan by

processing only a small number of features extracted from the point cloud. Corre-

spondence matching and residual computation can also be performed at the feature

level, substantially reducing the overall computational cost.

Low-level Features Lines and planes are the most commonly used features in

practice. In this line of study, the well-known LOAM algorithm [1264] was a signif-

icant breakthrough in LiDAR SLAM which uses a low-level detector to efficiently

identify mid-level features that can contribute to scan registration. Points with high

or low curvature are identified to detect edges and planes. The curvature of each

point is calculated by analyzing the differences between the point and its neighbors.

High curvature points are marked as edge features, while low curvature points are

identified as planar features. Not all points are used as features; the algorithm se-

lects a subset of the most significant edge and plane points to reduce computational

complexity while maintaining accuracy.

Principal component analysis can also be employed to identify the principal di-

rections of a local neighborhood of a point for effective feature detection [74, 760].

By calculating the eigenvalues and the corresponding eigenvectors of the covariance

matrix of a point and its neighbors, the main axes of variation can be determined.

This analysis allows us to discern the geometric properties of the points. Points

with one dominant eigenvalue can then be classified as edge points, indicating sharp

transitions or boundaries. In contrast, points with two similar eigenvalues can be

identified as being from planar regions, representing flat surfaces within the point

cloud. This enables differentiation between edge and planar features, enhancing the

accuracy of LiDAR odometry by considering the geometric properties.



232 LiDAR SLAM

High-level Features In LiDAR odometry, high-level features such as semantic,

surfel, and intensity features can also play an important role in enhancing the

accuracy and robustness of the system. These features provide richer information

about the environment compared to low-level features, facilitating better scene

understanding and more accurate mapping.

• Semantic Features Semantic features involve the use of machine learning and

deep learning techniques to classify and label the LiDAR point cloud into object

categories such as vehicles, pedestrians, buildings and vegetation — typically to

distinguish between dynamic and static objects. It can improve the reliability of

odometry by focusing on stable landmarks [194].

• Surfels Features Surfels are small disk-like representations of the surface ge-

ometry of a point cloud (see Chapter 5.3.2.2). An ellipsoid disk can be fit to a

set of points with the ellipsoid’s principal semi-axes lengths determined by the

eigenvalues of the covariance matrix of nearby points. This type of surface rep-

resentation can then be used to compute point-to-plane distances during scan

registration [852, 73, 910].

• Intensity Features Intensity features [285, 422] refer to the reflectivity or in-

tensity values of the LiDAR returns. These values provide additional information

about the material properties and surface characteristics of objects in the en-

vironment. They improve the robustness of feature matching by providing an

additional dimension of information, which can be crucial in challenging scenar-

ios such as structure-less environments.

8.2.2.3 Direct Point-wise LiDAR Odometry

A problem with this feature-based approach, is that it tends to discard subtle con-

tributions from isolated points which do not clearly correspond to planes or edges.

This is particularly a problem when mapping unstructured environment with bushes

or branches in natural environments. It also requires tuning of hand-engineered fea-

ture detectors when moving from one sensor to another. Additionally, the number

of points to be processed scales linearly with the LiDAR scan. The efficiency of this

approach can become eroded when working with modern 64 or 128 beam sensors.

Alternatively, one can use the points directly — without extracting mid-level

features. Similar to the direct methods in visual SLAM, we can directly align points

in an ICP-like manner. However, due to the high computational cost during point-

wise correspondence matching, this direct methods were not favored in the early

development of LiDAR SLAM.

Paving the way for direct methods, Zhou et al. [1290] made it practical to use

direct methods by speeding up the nearest neighbor search with a GPU-accelerated

KD-tree implementation. Later the direct method Fast-LIO2 by Xu et al. [1207]

demonstrated highly accurate frame-rate odometry without suffering from a cor-

respondence search bottleneck when the map grows large using an extension, the



8.2 LiDAR Odometry 233

so-called incremental KD-tree (iKD-tree). The iKD-tree can adapt to the distribu-

tion of points by occasionally rebalancing itself to allow for efficient add, remove

and query operations, which avoids rebuilding the tree for each added scan.

8.2.2.4 Local Mapping and Pose Estimation

Once reliable correspondences have been obtained, the next step is to achieve con-

sistent registration of the consecutive scans. As mentioned before, incremental pose

estimation in LiDAR odometry is achieved, in most cases, via a scan registration

with a variant of ICP (see Section 8.2.1).

Initially methods focused on scan-to-scan odometry and sought to achieve full

frequency (10 Hz) output while treating each consecutive scan registration opera-

tion as being independent. However, as individual LiDAR scans can be relatively

sparse, many points will have unsuitable correspondences if the reference scan is

simply the previous scan. This will result in registration errors accumulating and

an inconsistent overall map.

A more modern approach is to build a detailed and accurate local map around

the sensor which is known as scan-to-map odometry . This paradigm has been suc-

cessfully used in 2D LiDAR SLAM [466], 3D LiDAR odometry [1207, 264, 1137],

and 3D LiDAR SLAM systems [845, 73, 852] and has been seen to reduce overall

drift rates.

The motion prediction from either scan-to-scan odometry or IMU pre-integration

can be used to pre-align the incoming scan before a fine registration to the persis-

tent local map is carried out. The local map which becomes much dense than an

individual scan results in much more suitable inlier associations. After registration,

the incoming scan will be added to this local map.

Earlier LiDAR odometry approaches [1264] needed to resort to interleaving scan-

to-scan odometry at a high frequency with scan-to-local-map odometry at lower fre-

quency due to compute restrictions. More modern LiDAR odometry approaches [264,

1137] now use a single-stage scan-to-map alignment with direct point-wise corre-

spondences enabled by a voxelized local map representation.

Finally, a quite different approach to LiDAR odometry is to use deep learning. Ef-

forts to learn ego-motion directly from LiDAR measurements has resulted in some

promising works. Early studies employed supervised learning using ground-truth

labels [662], and this line of work has been extended to unsupervised learning meth-

ods [218]. While the performance of deep LiDAR methods are generally promising,

concerns have been raised regarding their generalization capabilities.

8.2.3 Summary

To summarize, common 3D LiDAR odometry algorithms can produce highly accu-

rate and robust motion estimates by iteratively aligning incoming scans to a running

local map — often with the support of IMU measurements or motion models to



234 LiDAR SLAM

(a) Place A (b) Place B

Figure 8.6 Despite the large visual differences between Place A and Place B in the
RGB images (aerial view and robot’s front-looking view), their corresponding LiDAR
scans exhibit structurally similar patterns. This causes structural perceptual aliasing,
where distinct places appear similar to LiDAR-based place recognition algorithms due
to shared road topology and surrounding structures. This example is captured from the
SNU Afternoon sequence of the STheReO dataset [1257].

correct for motion distortion of the scan. Resulting systems can achieve drift rates

in the order of 1 m per 1000 m traveled — but the performance is highly depen-

dent on the environment around the robot and the level of dynamics present in the

scene and the dynamics of the sensor itself. Accounting for this remaining amount

of small drift is a key aspect of LiDAR SLAM with place recognition being a key

component of such a system.

8.3 LiDAR Place Recognition

Place recognition systems seek to identify places that have been previously visited

by a robot/sensor. It is an essential capability for several applications, including

multi-session SLAM as well as global localization in a prior map. Unlike visual

data, LiDAR data allows a robot to obtain consistent metric 3D information about

the surrounding environment. This capability ensures that LiDAR is less affected

by lighting condition changes than conventional cameras. However, despite this

advantage over visual localization, the nature of LiDAR sensing presents unique

challenges for LiDAR place recognition. For example:

Sparse Data In contrast to visual measurements, where pixels are dense (megapixel

cameras) and organized (i.e., structured into a regular 2D grid), the spacing and

local density of points captured by conventional LiDAR sensors varies depending on

the type of sensor (e.g., the number of beams) and the sensing range (e.g., points

farther away are sparser). The resolution of point clouds is typically much lower than

camera images. Because of these limitations, LiDAR place recognition typically does



8.3 LiDAR Place Recognition 235

not rely on local keypoint descriptors, where each point has its own feature descrip-

tor. To address the lack of structure, approaches identify semantically meaningful

point cloud segments [293, 1269] or compute global descriptions [576, 1208] (i.e.,

a single representative descriptor for a scan). Recently, with the advancement of

deep learning, learning to determine robust local keypoint descriptors has also been

actively studied [162]. Seminal papers and paradigms in the area of LiDAR-based

place recognition will be revisited in more detail in Section 8.3.2.

Structural aliasing The second difficulty that LiDAR-based place recognition

systems face is structural repetition in man-made environments such as long cor-

ridors or indistinguishable structures on highways. Consider the corridors on each

floor of a regular modern office building. Using a camera, visual place recognition

might be able to identify unique or descriptive visual texture (e.g. pictures, posters

or decorations) on otherwise identical corridor walls. However, it is very difficult to

distinguish the specific floor using only a single scan obtained in the corridor. A

similar challenge arises in outdoor environments, where perceptual aliasing can oc-

cur between visually distinct places that share similar structural layouts in LiDAR

scans, as shown in Figure 8.6. Global LiDAR descriptors such as ScanContext [576]

typically fail in such situations. Other approaches using object-level clusters, such as

SegMap [293] and InstaLoc [1269], have been developed using higher level semantic

features and can be more successful in such situations.

In summary, research needs to keep in mind these specific challenges when de-

veloping LiDAR place recognition methods.

8.3.1 Problem Definition

In this section, we will focus on the task of place recognition – the loop closure

candidate detection problem. Given a query (i.e., a scan represented as a point

cloud), the objective is to retrieve corresponding entries from a database that are

similar to the query. The database (i.e., the previously visited places) is a set

composed of disjoint place descriptors spatio-temporally acquired in an explored

region.

A key consideration in LiDAR place recognition is the robustness of the retrieval

method to variations in the sensor type, acquisition time, and robot pose. For

example, the LiDAR type used in a query may differ from that used to create the

database if different LiDAR devices were employed. Furthermore, a temporal gap

between mapping (i.e., building the database of visited places) and revisiting a place

at a later point in time is inevitable. This temporal gap might lead to structural

changes in the environment as well as differences due to dynamics caused by moving

objects or people. However, the most significant variation arises due to changes

in the robot’s pose. Translation and/or rotation shifts between the database and

the query result in different appearance of the captured sensor data of the same



236 LiDAR SLAM

environment. Consequently, LiDAR place recognition methods must be robust to

pose variations and environmental changes at the same time.

If a method cannot determine pose variance but still can correctly identify a

candidate, it is said to have invariance. If it can also estimate pose variance, it

is described as having awareness of the revisit pose variations. Researchers have

particularly focused on this awareness property for two main reasons. First, it serves

as a good initial guess for fine registration, which is crucial when establishing the

SE(2) or SE(3) constraints required for estimating precise loop closures (see Section

8.4.1). Secondly, working towards the more complex goal of awareness can naturally

enhance the invariance capability (e.g., estimating heading changes [571] or inferring

the degree of overlap [195]).

8.3.2 Methods for LiDAR Place Recognition

In addition to achieving invariance and awareness, we should note that point cloud

representations with different levels of granularity have been proposed to address the

unstructured nature of the raw LiDAR measurements and to ensure real-time place

retrieval performance for large-scale robot autonomy. Approaches for descriptor-

based LiDAR place recognition can generally be categorized as using either local or

global descriptors for retrieval and matching in the database. That said, there are

variants that as well as using descriptor distance for place recognition also directly

learn a place similarity function. In the following, we will discuss these different

paradigms in more detail.

8.3.2.1 Local Descriptors

In the early days of LiDAR place recognition research, and corresponding to the

evolution of visual place recognition methods (e.g., SIFT [706], ORB [958], DBoW2

[370]), computing local keypoint descriptors was a natural approach both for 2D

[1100] and 3D LiDAR sensors [107]. However, 3D local descriptors specifically devel-

oped for dense RGB-D point cloud registration or object recognition [965, 966, 1107]

typically struggle to be adapted to the sparsity and unstructured nature of LiDAR

sensing — particularly in outdoor scenarios. To mitigate this sensitivity, methods

have been proposed that use the statistical distribution of local keypoints (e.g., his-

tograms) [470]. However, these descriptor remain limited to a local neighborhood,

which results in poor descriptiveness due to the lack of metric structural context

from across an overall scan.

8.3.2.2 Global Descriptors

In contrast to the local approaches, global descriptors leverage the higher level

patterns in the entire scan rather than concentrating on low-level local keypoints.

These methods aim to address the lack of structure by building a simpler and

coarser representation. In turn, this often results in matching methods which are



8.3 LiDAR Place Recognition 237

more computationally efficient. Two coarse representations which have been widely

used to generate global descriptors are as follows:

Bird’s-eye-view (BEV) BEV representations transform a 3D point cloud into

a structured, coarse-grained, top-down image using either a polar representation

or a sparse grid representation. Scan Context++ [571, 576] and RING++ [711,

1208] are examples of approaches using this representation3. The former proposed

a yaw alignment matching algorithm to achieve orientation invariance, and the

latter theoretically proved its invariance and awareness by leveraging the Radon

transform.

Range images As an alternatively to using a 3D point cloud, a range image (see

Section 5.1) provides a structured, well-aligned representation of a scan. The recent

advancements of dense multi-beam LiDAR technology (see Section 8.1), has made

representing LiDAR data as a dense range image a much more suitable approach.

The advantage here is that approaches can directly borrow well-established tools

from the computer vision field such as convolutional neural networks (CNN) [616]

or Vision Transformers [288] to extract a detailed feature representation. Overlap-

Net [195, 728] showed that yaw invariance can be achieved by applying an overlap

loss to the range image, while more recently FRAME [1034] demonstrated LiDAR

place recognition in mines using range images.

8.3.2.3 High-level or Combined Descriptors

To derive a descriptor for a scan (either local or global), there have been also

approaches proposed that use a hybrid strategy or even learn directly a similarity

function for place recognition.

Segmentation-based approaches: As discussed previously, representing a scan

with a single descriptor can be vulnerable to structural aliasing. Because of this

attempts which describe a place using a set of meaningful objects or segments have

been proposed to increase uniqueness and descriptiveness and to avoid perceptual

aliasing. These methods include SegMap [293] and InstaLoc [1269].

Descriptors which bridge between local and global: The previously intro-

duced global descriptors are typically effective only when the point cloud projec-

tions are consistently aligned in a specific direction (i.e., top-view or spherical-view).

This requirement may restrict the application of the method to vehicles traveling

with predictable directions along roads. To address this issue, BTC [1253, 1254]

was proposed that utilizes both local and global descriptors. This approach aims

3 As an example RING++ [1208] uses a representation of 120 by 120 pixels equally spaced over a
[−80, 80] meter grid.



238 LiDAR SLAM

to maintain the local geometry and the overall structure of a scan, effectively com-

bining the strengths of each type of descriptor.

Direct 3D Data Processing More recently, data-driven approaches have been

proposed that can achieve retrieval using the raw unstructured points directly with-

out handcrafted rules. In particular, deep learning-based methods [1123, 162] have

been proposed to extract robust point-wise features that are resilient to the diverse

sensor sparsity and local surface distributions. In particular, Cattaneo et al. [162]

showed that a pipeline designed with a triplet loss for place discrimination and dif-

ferentiable relative pose estimation can achieved improved registration and overall

benefits LiDAR SLAM. This can also be interpreted as a evidence that focusing on

awareness can enhance both invariance and discriminative capabilities.

8.3.3 Summary

In summary, LiDAR place recognition has the same role as visual place recognition

and shares common attributes and its performance is defined by the same metrics.

The sensor modalities and related techniques are often complementary as many of

the locations where LiDAR place recognition fails, visual place recognition succeeds;

and vice versa. In a mobile robot navigation system, both sensor modalities are often

used to ensure robust and reliable results.

In the next section, we will describe how LiDAR place recognition can be used

with pose-graph optimization to correct the unavoidable drift which occurs with

LiDAR odometry so as to form a consistent, accurate and scalable LiDAR SLAM

system.

8.4 LiDAR SLAM

The purpose of the LiDAR odometry systems described in Section 8.2 is to estimate

a locally consistent motion of the sensor as it moves through the environment.

However, this motion estimate will inevitably accumulate drift as the device travels

a long distance.

To counteract this drift, a LiDAR SLAM system can maintain a globally consis-

tent estimate for the entire history of the mapping operation by recognizing when

the sensor returns to previously visited parts of the environment. These recognition

events are known as loop closures and they can be used by the SLAM system to

correct not just its current pose estimate but also to revise the full trajectory of

previous pose estimates — as well as the corresponding map representation.

A key property that we seek for a LiDAR SLAM system is that it maintains a

globally consistent map. This requires the system to achieve consistency between

our current observations and past observations a single map representation. This

task is particularly challenging in large-scale and potentially dynamic environments.



8.4 LiDAR SLAM 239

Map
Pose 

Graph
Scan

Loop Closure Detection

Pose Graph 
OptimizationOdometry

Map Update

corrections
updates

constraints
2

1 3

4

Figure 8.7 Conceptual structure of a typical LiDAR SLAM system composed of multiple
components: (1) Odometry estimates the robot/sensor pose, (2) Loop Closure Detection
determines if a place has been revisited, (3) Pose-graph optimization uses the loop closure
constraints to correct the pose trajectory using factor graph optimization, and (4) Map
Update uses the most recent pose trajectory to revise the map representation.

In Section 8.2, we discussed the development of approaches for LiDAR odometry

which can achieve drift rates as low as one meter per kilometer traveled and then in

Section 8.3 we reviewed different methods which carry out LiDAR place recognition

to determine loop closures. LiDAR SLAM encompasses the techniques necessary

to bring these components together to maintain a consistent trajectory and map

representation — and to do so in real-time while running on-board a robot, vehicle

or sensing system.

Most contemporary LiDAR SLAM systems [73, 852, 290, 273, 1248] are composed

of the components shown in the system diagram in Figure 8.7. In the following

Section 8.4.1, we will discuss this structure in more detail. We will then focus

on the key steps of backend optimization and map update in Section 8.4.2 and

describe some common techniques for integrating loop closures to correct the robot

trajectory during backend optimization.

Advanced topics for LiDAR SLAM include multi-session and multi-robot map-

ping. These topics focus on how to fuse multiple mapping sessions into a common

global reference frame — which can be either concurrent (running live on multiple

robots and solved in real-time) or long-term (aligning multiple maps over time so as

to infer environmental change). Multi-session and multi-robot SLAM will be cov-

ered in Section 8.4.3, where we will also provide an overview of common solutions

and challenges.

Finally, as LiDAR SLAM has matured, it has brought into focus other advanced

topics. Safety critical systems such as autonomous vehicles rely on SLAM so we

have to consider the robustness and the scalability of LiDAR SLAM system. These

topics will be discussed in the final part of this chapter in Section 8.5.



240 LiDAR SLAM

8.4.1 Structure of a LiDAR SLAM System

When implementing a LiDAR SLAM system [73, 852, 290, 273, 1248] it is common

to decompose it into several modules, one module maintains a relative pose estimate

using an odometry estimator, and other modules identify and use loop closures to re-

estimate the pose trajectory and to then update the associated map representation

to account for this revised pose trajectory. A LiDAR SLAM system usually consists

of an odometry estimation module that runs at the sensor frame rate of the LiDAR

sensors (e.g., 10 Hz) with the other modules operating at a lower rate (e.g., 1 Hz.).

More concretely, consider Figure 8.7. Here, (1) an odometry component estimates

a pose in a frame-to-map fashion using the currently active local map. For the

odometry module, the most common approach is to register the incoming laser

scan to a rolling/active local map (as discussed in Section 8.2). This odometry

module will typically only have access to data from the direct vicinity of the sensor

— often called an active local map.

Next, (2) a LiDAR-based place recognition method identifies potential loop clo-

sure candidates as discussed in Section 8.3. Place recognition only identifies that

two places (or more specifically observations taken at those two places) are similar.

To determine a precise relative transformation estimate between those two places

requires fine registration of the corresponding LiDAR scans (typically using ICP).

To initialize the registration, a sufficiently good initial guess of the relative trans-

formation is needed. Geometric priors (taken from the existing pose-graph) can be

used for small pose-graphs. Where no geometric prior can be used, modern global

registration methods which do not rely on an initial guess but can robustly estimate

a relative transformation have been developed [1219, 671]. These methods work well

in situations with low overlap between the pair of scans.

Heuristics, such as the travel distance or time difference between two loop closure

candidates or the degree of confidence in a RANSAC-based alignment for geometric

verification, can be used to determine the validity of a loop closure candidate and

to avoid adding false loop closures to the pose-graph.

Module (3) is the backend pose-graph optimization (PGO) step. It uses the full

set of SLAM constraints to solve for an optimized pose-graph and to update the

pose trajectory. We will discuss PGO in more detail in the following section.

Finally, in (4) a map update mechanism integrates the sensor measurements

into a combined map representation according to this corrected trajectory. There

are several potential approaches for this. The most common approach is to use

the points directly [264] while approaches such as surfels [290, 852, 73] and implicit

representations [1248, 273] attempt to improve the quality of the underlying map or

seek to achieve a stronger probabilistic foundation. We refer the reader to Chapter

5 for technical details and discussion about the different dense map representations.

In the next section, we will discuss backend pose-graph optimization in more

detail and how the full map representation is typically updated.



8.4 LiDAR SLAM 241

. . .Odometry

Prior

Loop Closure

Loop Closure

Attitude

Figure 8.8 A SLAM problem represented as a pose-graph. Each node represents the pose
of the sensor whereas the edges represent the constraints coming from odometry (orange)
and loop closures (magenta). A Prior Factor fixes the graph origin. Optional Attitude
Factors can be used to constrain the pitch and roll when inertial sensing is available. From
[894].

8.4.2 Pose-graph Optimization and Map Update

The key part of a LiDAR SLAM system is updating the pose trajectory and map

representation after a loop closure has been proposed and verified. As the local pose

estimate will contain drift, the error in the local pose estimate needs to be accounted

for in an updated pose trajectory. Additionally the existing map representation,

integrating the past measurements, will also need to be updated.

Pose-graph optimization is sometimes known as the SLAM backend . It is the

module which corrects the estimated trajectory to respect both the odometry con-

straints and loop closure constraints identfied when revisiting already observed

places. As introduced and discussed in Part I, see Chapter 1, a factor graph can

be used to represent these constraints (as shown in Figure 8.8). Because the graph

is made up of only relative pose constraints, it is commonly referred to as a pose-

graph. An example of a point cloud map before and after loop closure detection

and pose-graph optimization is shown in Figure 8.9.

The constraint set can be optimized using general-purpose solvers such as g2o [622]

and GTSAM [261]. To achieve real-time performance, with a pose-graph of increas-

ing size, it is necessary to iteratively resolve a continually growing optimization

problem. However, the constraint set is typically sparse — with few interconnected

edges. Sparse matrix factorization methods which reorder and relinearize the under-

lying system of equations allow graphs of over 1000 nodes to be updated in a fraction

of a second. For further reading please see iSAM2 [540] and HOG-Man [409].

Note that while 1000 nodes corresponds to a large pose-graph, one must consider

scalability. It is common to add odometry constraints only relatively sparsely — not

at sensor rate (e.g., 10 Hz) but instead every few meters traveled. Another approach

is to subdivide the mapped environment into submaps of fixed physical size (say

30 m traveled) each with a corresponding pose-graph node. It is then assumed that

within these submaps the odometry will be locally accurate making re-adjustment



242 LiDAR SLAM

Figure 8.9 By incorporating loop closure constraints, a SLAM system can create a globally
consistent map of revisited locations. The left shows the odometry-only trajectory of a
revisited place with visible misalignment between the original visit (blue) and the current
visit (purple) to this junction. The right shows the result after pose-graph optimization
when loop closures have been integrated resulting in a consistent map of the road junction.

of the trajectory inside the submap unnecessary. This approach allows pose-graph

SLAM to scale to city-sized maps.

In the backend, pose-graph optimization has to account for pose estimation er-

rors by the odometry as well as errors in the loop closure constraints. To properly

model the uncertainty in the pose estimate of the odometry poses, we can also esti-

mate data-driven covariances to distribute the error in the pose-graph optimization

sensibly [630, 165] — for example using high covariance of edge constraints where

the drift rate is likely to be higher. Finally, to account for incorrect loop closure

constraints and bad configurations of the pose-graph, there is a body of research

into methods for robust pose-graph optimization [19, 159, 1064, 1065, 1217] which

can down-weight, disable or ignore pose-graph constraints which would otherwise

cause the map to degrade or diverge.

After pose-graph optimization, the full robot trajectory will now be globally

consistent, but the effect of this update also needs to be reflected in the map itself.

For this purpose, a common approach is simply to re-build the map using the

past observations. This would require a system to store the previous observations

indefinitely — which can quickly become unsuitable in large-scale environments. An

alternative approach is to deform the map representation [852] or to directly link

map elements (i.e., such as surfels or submaps) to poses, to allow map deformation

in a more scalable manner.

8.4.3 Multi-robot and Multi-session LiDAR SLAM

With the development of mature single-robot single-session LiDAR SLAM systems,

there is interest in extending these systems to support multi-robot and multi-session



8.4 LiDAR SLAM 243

Figure 8.10 Comparison between (a) naive direct alignment of two global point clouds
and (b) multi-mission pose-graph relaxation. (a) Point-to-point distances between the two
global point clouds shows “double walling” causing phantom change to be hallucinated.
(b) Multi-mission relaxation reduces point-to-point distances with structures being more
clearly reconstructed. From [956] (©2024 IEEE).

applications. This would be useful because it would allow incomplete maps to be

extended into newly scanned territory or for multiple field robots to coordinate

their activities using a common map representation. Another use is to co-register

maps taken in the same area over time to infer longitudinal environmental change,

e.g., for security or monitoring applications.

One initial point which is necessary to make is that while modern LiDAR SLAM

systems are increasingly accurate — with one meter drift per kilometer being

typical in open space — there will always remain some small error within a SLAM

map. Simply taking the final point cloud map from two individual SLAM missions

and co-registering them will result in locations where point cloud alignment is

inconsistent as shown in Figure 8.10.

Initial work in this space focused on how to carry out joint backend optimization

of multiple mapping sessions. One approach is to simply transfer the individual

constraints from the set of SLAM instances into a single global map representation.

An alternative approach is to build each map individually — each with their own

coordinate frame, nodes and edges. To link them to one to another, Kim et al.

[570] introduced an auxiliary variable called an anchor node which accounts for the

different map coordinates of the individual SLAM missions. This node allows easy

global alignment of each individual map and has been used for both multi-session

visual SLAM and LiDAR SLAM [756, 573].

As described in [292], aside from the backend optimization, one must deter-

mine how loop closure constraints can be established between entirely disconnected



244 LiDAR SLAM

Figure 8.11 A multi-session SLAM map of a construction site. Five different mapping
sessions are merged together by establishing inter-session loop closure constraints (in red)
and adjusting a joint optimization of the five mapping session trajectories (in green).

SLAM missions. Unlike in the single session SLAM case, there is initially no geo-

metric prior to form the first inter-mission constraint — with multi-session SLAM

relying entirely on place recognition to relate maps to one another.

8.4.3.1 Multi-robot SLAM

Real-time multi-robot SLAM goes one step further — solving the multi-session

mapping problem, but doing so with data collected in real-time by robots operat-

ing in the field. Estimating a combined map from multiple platforms in real-time

allows a robot team to coordinate mission planning, optimally select frontiers of

exploration, and to avoid wasted effort returning to a location mapped by another

robotic team member. Achieving this capability can allow a team of robots to op-

erate in concert — efficiently exploring territory, identifying which routes are free

of obstacles and perhaps identifying people or objects of interest. This capability is

relevant for search and rescue as well as military applications.

One can distinguish between systems which are centralized or decentralized. Cen-

tralized systems may transmit sensor measurements to a base station and then com-

pute a combined map at that location. This may be so that the field robot’s compute

and sensing is kept as simple as possible, for example the mobile robots used by

Amazon and Ocado for warehouse operations. On the other hand, decentralized (or

distributed) systems would instead build a SLAM map on each individual robot

with merging of the set of robot maps being achieved at a base station.

To describe the evolution of the state of the art we refer to two major international

multi-robot exploration challenges. The first one is the Multi Autonomous Ground-

robotic International Challenge (MAGIC), which was held in Brisbane, Australia in

2010. This challenge involved teams of wheeled robots executing a reconnaissance



8.4 LiDAR SLAM 245

Figure 8.12 Multi-robot SLAM progressed from 2D to full 3D between the 2010 MAGIC
challenge to the 2021 DARPA SubT Challenge. The pictures show the winning University
of Michigan and Cerberus Teams from the two challenges. Image courtesy of Edwin Olson
and Cerberus team.

mission in a 500 m × 500 m challenge area to correctly locate and classify simulated

threats. The winning team, Team Michigan, fielded 14 3D-printed robots equipped

with 2D LiDAR scanners [834] as well as cameras (to identify loop closures). Each

robot carried out 2D LiDAR odometry and transmitted its pose-graph constraints

to a base station which assembled a global 2D multi-robot map.

Research progress over the last decade was evidenced by the DARPA Subter-

ranean Challenge [608] which was held in Louisville, Kentucky in 2021. It posed a

similar challenge to competing teams at MAGIC — to explore unknown environ-

ments — but with the robots operating in more complex 3D underground envi-

ronments with stairs, kerbs and ramps. Here 3D multi-beam LiDAR was heavily

used but also augmented with visual odometry, wheel/legged and, in some cases,

thermal odometry to overcome degenerate circumstances where LiDAR odometry

can fail such as in narrow environments in the underground tunnels.

The SubT teams published an overview article which provides a comparison be-

tween the fielded systems [307]. Each team used a semi-decentralized approach with

individual robots building pose-graph-based SLAM maps on board with a multi-

robot SLAM map created at a single central base station. Key challenges included

compression and communication as the robot teams needed to maintain a dynamic

wireless mesh network to transmit data back to this base station. For example,

the WildCat SLAM system from CSIRO [609] was notable for using a compressed

surfel representation to represent local submaps. These surfel maps took up much

less space than the raw point clouds — greatly reducing the bandwidth needed to

transmit the map and pose-graph constraints to the base station computer. During

the finals, a complete map took only 21.5 MB per robot.

As mentioned above, the most complex problem is fully distributed SLAM system

— where each robot platform is tasked with building and maintaining a representa-

tion of the overall combined map subject to communication and scaling constraints.



246 LiDAR SLAM

Some existing approaches [500, 1099] have explored how to do this and focused on

the mechanisms to share the set of constraints and local submaps progressively with

each robot. Issues of consistency are key in this topic.

8.5 Outlook and Futures Challenges

LiDAR SLAM has seen significant advancements over the last decades — especially

since the introduction of LOAM [1264]. Improved odometry with high accuracy

[1207, 1005, 1137, 264] and efficient pose-graph SLAM systems [73, 273, 852, 910]

have also been developed. However, despite this progress, there are still unsolved

problems and challenges to tackle.

Robust and Resilient Perception A recent robustness evaluation by Zhao et al. [1283]

identified that LiDAR SLAM systems struggle to perform effectively in cluttered

and unstructured environments. Structure-less corridors, underground mines and

extreme weather conditions such as snow, fog, and dust are other challenging sit-

uations pointed out in a review by the DARPA Subterranean Challenge competi-

tors [307].

Furthermore, the performance of current LiDAR SLAM systems is typically

demonstrated experimentally and lack formal robustness evaluation. Best perfor-

mance is achieved through feature engineering and manual parameter tuning, which

perhaps ought to be dynamically adjusted according to the operational scenario as

in KISS-ICP [1137]. Future improvements in this regard should consider actively

adapting algorithm behavior to account for changes in the environment through

introspection.

With regard to place recognition, there are a broad spectrum of research direc-

tions. Key survey papers such as [1013, 1244] offer a comprehensive foundation on

the topic. Ongoing research includes methods for robust retrieval which general-

ize across the various categories of LiDAR sensors [536]. Other research looks to

achieve heterogeneous place recognition between LiDAR and other modalities such

as radar [1243] and OpenStreetMap [219]. Researchers have also successfully lever-

aged the LiDAR’s intensity information [1006, 1151], alongside traditional XYZ

data to improve performance. Long-term place recognition across multiple map-

ping sessions [574] is another promising research topic; as is change detection and

lifelong map management [573, 1246].

Multi-sensor Fusion Fusing multiple sensors with complementary characteristics

is a key route to more robust and resilient robotic systems. Degraded perception

of a particular sensor can be ameliorated by fusing a different and complementary

sensor, e.g., Radar works well in rain or smoke; or using visual feature tracking

in a tunnel where LiDAR fails [1188, 1282]. However, when integrating additional

sensors with LiDAR, we inevitably acquire a plethora of sensor data, leading to



8.5 Outlook and Futures Challenges 247

redundancy. There are open questions about how to achieve a balance between

redundancy and lightweight computation. Furthermore, one must consider how to

efficiently select the most reliable information when fusing estimates of multiple

sensors. Solutions range from early fusion approaches (using a single tightly cou-

pled estimator) and late fusion approaches (where separate individual-sensor pose

estimators are combined).

Finally, another practical consideration is that multi-sensor systems may lack

accurate calibration and individual sensors may not be precisely synchronized. This

places a burden on the underlying estimation system making full, tight sensor fusion

difficult to practically use repeatedly. There is still space for research into these

intriguing research questions.

Uncertainty and Bayesian Estimation Closely related to the question of how

sensors can be reliably fused is the question of uncertainty estimation in LiDAR

SLAM. Properly calibrated measures of sensor uncertainty are required to prob-

abilistically fuse multiple pose estimates. However, most successful LiDAR-based

approaches rely on ICP, which cannot provide a calibrated and robust estimate of

the pose uncertainty.

While some early approaches [630, 165] for approximating covariance exist, the

estimated uncertainty used in LiDAR SLAM system is often unreliable. As a re-

sult, algorithms often use fixed odometry covariances during backend pose-graph

optimization. A more introspective handling of uncertainties in the odometry pro-

cess has the potential to address degraded pose estimates at an earlier stage. There

are still many open questions regarding uncertainty estimation, where robust so-

lutions would support the development of more resilient SLAM systems as well as

multi-modal SLAM.

Deployment in Closed Loop Autonomy Systems A final consideration is how

LiDAR SLAM performs in a desired final application. These applications are as var-

ied as light-weight aerial vehicles flying through forests, handheld devices scanning

construction sites and self-driving cars operating in poor weather. The traditional

electronics parameters of Size, Weight and Power (SWaP) are augmented with ad-

ditional parameters of accuracy, robustness, computation and latency.

The ability for a self-driving car to respond to a potential upcoming collision

with as little delay soon as possible is affected by the computational latency of the

LiDAR system. Thus in practical application the most accurate and computation-

ally complex system may not always be the preferred solution.



9

Radar SLAM
Martin Magnusson, Christoffer Heckman, Henrik Andreasson, Ayoung Kim,

Timothy Barfoot, Michael Kaess, and Paul Newman

In this chapter, we explore the use of radar (RAdio Detection and Ranging) in

SLAM. Compared to cameras and lidar, radar is somewhat undersubscribed. How-

ever, due to its ability to work in poor visibility, at long range, and to natively

produce velocity information, its popularity is on the rise. We begin by discussing

the types of radar sensor typically used in robotics, their unique sensing principles,

and some of the challenges that come along with radar. We then discuss radar fil-

tering, radar odometry, place recognition, and finally SLAM; Figure 9.1 shows how

these pieces fit together. We conclude with an outlook on the use of radar moving

forwards.

radar filtering
(e.g., CFAR feature 

extraction)
estimated

pose, 
map

raw radar
measurements

(spinning or phased 
array)

radar place recognition
(topological loop- 
closure detection)

front end back end
pseudo-
measure-

ments radar odometry

or

radar SLAM

(based on factor graph 
optimization) map 

constraints

Figure 9.1 The flow of information in radar-based SLAM follows the same pattern as other
SLAM systems with the details of each process being slightly altered to suit the specifics
of radar.

9.1 Introduction to Radar

9.1.1 Sensor Types

We detail in the following section two of the most common radar types that are

encountered in robotics: spinning radar and system-on-a-chip (SoC) radar (see Fig-

ure 9.2). Each has its strengths and drawbacks. They differ mainly in how they are



9.1 Introduction to Radar 249

Figure 9.2 The two main categories of radars used in robotics are spinning (top left) and
phased-array SoC (top right). Some examples of each are shown along with the main data
product produced by each type of sensor. Often these raw data products are subsequently
turned into a sparse point cloud using radar filtering (bottom). The bottom right part
shows three point clouds from a tunnel with smoke. Red: LiDAR point cloud with much
limited range due to the smoke. Blue: point cloud from 2D spinning radar (tunnel walls in
all directions are clearly visible also at a distance). Green: 3D point cloud from SoC radar
(walls and ground surface in front of the vehicle are visible). The bottom left part shows
thermal and visual/RGB image data from the same scene, and the polar radargram from
which the blue point cloud is extracted.

‘actuated’ with spinning radar mechanically rotating a single antenna and SoC us-

ing multiple antennas whose signals are combined to deduce the angles and ranges

of objects reflecting the transmitted signals.



250 Radar SLAM

9.1.1.1 Spinning Radar

Utilizing a rotating radar sensor, spinning radar – sometimes referred to as scanning

radar or imaging radar – crafts precise polar representations of its surroundings,

exemplified in Figure 9.2. The main data product produced is a polar radargram.

Imaging radars are distinguished by their ability to detect objects at distances

exceeding 100 meters. In some modes, the velocity of those objects can also be

determined by exploiting the Doppler effect.

In contrast to LiDAR systems, spinning radars are limited to providing data on

a two-dimensional plane, lacking the capacity to measure the elevation of detected

objects. This limitation persists even though reflections might originate from vari-

ous elevations within the antenna’s vertical beamwidth. Additionally, because their

operational mechanism involves transmitting and receiving a single pulse for each

antenna angle, these radars sometimes do not offer velocity data, which requires

multiple pulses for calculation. More recent work uses the signal from multiple

neighbouring azimuths to recover velocity.

Constructing a mechanically spinning 3D radar with multiple vertical beams,

similar to currently widespread 3D LiDAR sensors, is not practically feasible due

to the much larger size of the antennas and focusing mechanisms compared to laser

diodes.

9.1.1.2 SoC Radar

System-on-a-chip (SoC) radars integrate processing units within a minimal set of

chips, which are either directly mounted on patch antennas (arrays of transmitters /

receivers) or incorporated into the printed circuit board itself. SoC radars are char-

acterized by their lightweight design and reduced power requirements compared to

spinning radars, thanks to their integrated architecture and lack of moving parts.

The performance in terms of accuracy and resolution for SoC radars hinges on the

design of the antenna array and the proprietary processing techniques manufactur-

ers employ to integrate measurements from multiple antennas. The primary output

produced is a radar datacube.

SoC returns are typically mapped in spherical coordinates by azimuth, elevation,

and range. Given that radial velocity adds another dimension, these radars are

often referred to as 3+1D or 4D. Conversely, systems with limited or absent vertical

resolution, due to a scarcity of vertically aligned antennas, are denoted as 2D array

radar systems, producing 2+1D data products.

9.1.2 Radar Sensing Principles

In this section, we will discuss basic operations, antennas and datatypes, and chal-

lenges as they relate to robotics applications. We outline each in the following



9.1 Introduction to Radar 251

sections and designate how radar differentiates itself from other rangefinding sen-

sors.

MmWave (millimeter-wave) radar is designated by radar systems whose elec-

tromagnetic wavelengths are between 1–10 mm with frequency ranging from 30–

300 GHz. Within this range, most radar sensors operate in the 76–81 GHz segment

of the spectrum due to automotive applications such as ADAS systems having

spectrum carve-outs in this range.

9.1.2.1 Radar Cross Section

The process of mmWave radar involves emitting electromagnetic pulses that travel

until they meet objects, bouncing back towards the radar. The Radar Cross Section

(RCS), influenced by an object’s material composition, size, and shape, plays a

crucial role in determining how strongly each object reflects these electromagnetic

pulses. Essentially, the RCS represents the size of a hypothetical sphere that would

reflect the same amount of energy as the target object. Thus, larger and more solid

structures such as vehicles and thick concrete walls exhibit a higher RCS compared

to smaller objects or pedestrians, which present a lower RCS.

The term radar intensity refers to the strength of the radar’s echo from an ob-

ject, which is a function of the radar’s transmitted power and the object’s RCS.

In essence, this intensity is chiefly determined by the radar’s emitted power and

the RCS of the encountered target. Literature highlights that this measure of in-

tensity has been crucial for extracting semantic details about objects or aiding in

navigation, as stronger echoes tend to be associated with distinctive and easily

recognizable features in the environment [1235]. The strength of the radar signal

is influenced by several additional factors, including the type of antenna used, the

characteristics of the electromagnetic pulse emitted, and the antenna’s ability to

detect returns from objects.

9.1.2.2 FMCW Ranging

A radar comprises at least one transmitting antenna (TX) and one receiving an-

tenna (RX).1 In the context of FMCW radar, the TX antenna’s role is to emit

an RF pulse that steadily increases in frequency, known as a chirp. This is of-

ten called sawtooth modulation; we will also discuss triangular modulation, another

chirp-based technique, later on. These chirps bounce off objects in the environment,

and the RX antenna captures the echoes (see Figure 9.3). Upon receiving a chirp,

the signal is amplified and then mixed with, or subtracted from, the original TX

chirp to generate an Intermediate Frequency (IF), which is also a signal. The mix-

ing process results in an IF that is a sine wave of constant frequency f0, due to the

identical slope of both the transmitted and received signals. The performance of the

radar system, including its range and velocity detection capabilities, is affected by

1 Although the TX and RX antennas can occasionally be the same unit, most SoC sensors opt to
separate them, allowing for the incorporation of multiple TX and RX antennas.



252 Radar SLAM

Tx Rx Tx Rx

sawtooth modulation triangular modulation

<latexit sha1_base64="pmSQyxiS/U6scoNDP5eCzETSXQU=">AAACAHicbVDLSsNAFL2pr1pfVZdugkVwVZLic1dw47IF+4C2lMn0th06mYSZG6GEbty61X9wJ279E3/BrzBJi6j1wMDhnHu4d44XSmHIcT6s3Mrq2vpGfrOwtb2zu1fcP2iaINIcGzyQgW57zKAUChskSGI71Mh8T2LLm9ykfusetRGBuqNpiD2fjZQYCs4okerUL5acspPBXibugpSqechQ6xc/u4OARz4q4pIZ03GdkHox0yS4xFmhGxkMGZ+wEXYSqpiPphdnh87sk0QZ2MNAJ0+Rnak/EzHzjZn6XjLpMxqbv14q/ud1Ihpe9WKhwohQ8fmiYSRtCuz01/ZAaOQkpwlhXIvkVpuPmWackm4K3SwYq4CyVvpjZAPUs0JWznWK8+8qlkmzUnYvym79rFStzFuCPBzBMZyCC5dQhVuoQQM4IDzCEzxbD9aL9Wq9zUdz1iJzCL9gvX8BeeOXuQ==</latexit>

t
<latexit sha1_base64="pmSQyxiS/U6scoNDP5eCzETSXQU=">AAACAHicbVDLSsNAFL2pr1pfVZdugkVwVZLic1dw47IF+4C2lMn0th06mYSZG6GEbty61X9wJ279E3/BrzBJi6j1wMDhnHu4d44XSmHIcT6s3Mrq2vpGfrOwtb2zu1fcP2iaINIcGzyQgW57zKAUChskSGI71Mh8T2LLm9ykfusetRGBuqNpiD2fjZQYCs4okerUL5acspPBXibugpSqechQ6xc/u4OARz4q4pIZ03GdkHox0yS4xFmhGxkMGZ+wEXYSqpiPphdnh87sk0QZ2MNAJ0+Rnak/EzHzjZn6XjLpMxqbv14q/ud1Ihpe9WKhwohQ8fmiYSRtCuz01/ZAaOQkpwlhXIvkVpuPmWackm4K3SwYq4CyVvpjZAPUs0JWznWK8+8qlkmzUnYvym79rFStzFuCPBzBMZyCC5dQhVuoQQM4IDzCEzxbD9aL9Wq9zUdz1iJzCL9gvX8BeeOXuQ==</latexit>

t

<latexit sha1_base64="N+xLizd0wv4CYY1TGJBsbhHpse4=">AAACAHicbVDLSsNAFL2prxpfVZdugkVwVZLic1dw47IF+4A2lMnkph06mYSZiVBCN27d6j+4E7f+ib/gV5ikRdR6YOBwzj3cO8eLOVPatj+M0srq2vpGedPc2t7Z3avsH3RUlEiKbRrxSPY8opAzgW3NNMdeLJGEHseuN7nJ/e49SsUicaenMbohGQkWMEp0JrWCYaVq1+wC1jJxFqTaKEOB5rDyOfAjmoQoNOVEqb5jx9pNidSMcpyZg0RhTOiEjLCfUUFCVG5aHDqzTjLFt4JIZk9oq1B/JlISKjUNvWwyJHqs/nq5+J/XT3Rw5aZMxIlGQeeLgoRbOrLyX1s+k0g1n2aEUMmyWy06JpJQnXVjDopgKiJdtDIcI/FRzsyinOsc599VLJNOveZc1JzWWbVRn7cEZTiCYzgFBy6hAbfQhDZQQHiEJ3g2HowX49V4m4+WjEXmEH7BeP8CY1uXqw==</latexit>

f
<latexit sha1_base64="N+xLizd0wv4CYY1TGJBsbhHpse4=">AAACAHicbVDLSsNAFL2prxpfVZdugkVwVZLic1dw47IF+4A2lMnkph06mYSZiVBCN27d6j+4E7f+ib/gV5ikRdR6YOBwzj3cO8eLOVPatj+M0srq2vpGedPc2t7Z3avsH3RUlEiKbRrxSPY8opAzgW3NNMdeLJGEHseuN7nJ/e49SsUicaenMbohGQkWMEp0JrWCYaVq1+wC1jJxFqTaKEOB5rDyOfAjmoQoNOVEqb5jx9pNidSMcpyZg0RhTOiEjLCfUUFCVG5aHDqzTjLFt4JIZk9oq1B/JlISKjUNvWwyJHqs/nq5+J/XT3Rw5aZMxIlGQeeLgoRbOrLyX1s+k0g1n2aEUMmyWy06JpJQnXVjDopgKiJdtDIcI/FRzsyinOsc599VLJNOveZc1JzWWbVRn7cEZTiCYzgFBy6hAbfQhDZQQHiEJ3g2HowX49V4m4+WjEXmEH7BeP8CY1uXqw==</latexit>

f

<latexit sha1_base64="8Yw7z874Ws2KT37TgWYHslvtZbk=">AAACAHicbVDLSsNAFL3xWeOr6tJNsAiuSlJ87gpuXLbQF7ShTCY37dDJJMxMhBK6cetW/8GduPVP/AW/wiQtotYDA4dz7uHeOV7MmdK2/WGsrK6tb2yWtsztnd29/fLBYUdFiaTYphGPZM8jCjkT2NZMc+zFEknocex6k9vc796jVCwSLT2N0Q3JSLCAUaIzqdkalit21S5gLRNnQSr1EhRoDMufAz+iSYhCU06U6jt2rN2USM0ox5k5SBTGhE7ICPsZFSRE5abFoTPrNFN8K4hk9oS2CvVnIiWhUtPQyyZDosfqr5eL/3n9RAfXbspEnGgUdL4oSLilIyv/teUziVTzaUYIlSy71aJjIgnVWTfmoAimItJFK8MxEh/lzCzKuclx8V3FMunUqs5l1WmeV+q1eUtQgmM4gTNw4ArqcAcNaAMFhEd4gmfjwXgxXo23+eiKscgcwS8Y719GY5eZ</latexit>

T
<latexit sha1_base64="8Yw7z874Ws2KT37TgWYHslvtZbk=">AAACAHicbVDLSsNAFL3xWeOr6tJNsAiuSlJ87gpuXLbQF7ShTCY37dDJJMxMhBK6cetW/8GduPVP/AW/wiQtotYDA4dz7uHeOV7MmdK2/WGsrK6tb2yWtsztnd29/fLBYUdFiaTYphGPZM8jCjkT2NZMc+zFEknocex6k9vc796jVCwSLT2N0Q3JSLCAUaIzqdkalit21S5gLRNnQSr1EhRoDMufAz+iSYhCU06U6jt2rN2USM0ox5k5SBTGhE7ICPsZFSRE5abFoTPrNFN8K4hk9oS2CvVnIiWhUtPQyyZDosfqr5eL/3n9RAfXbspEnGgUdL4oSLilIyv/teUziVTzaUYIlSy71aJjIgnVWTfmoAimItJFK8MxEh/lzCzKuclx8V3FMunUqs5l1WmeV+q1eUtQgmM4gTNw4ArqcAcNaAMFhEd4gmfjwXgxXo23+eiKscgcwS8Y719GY5eZ</latexit>

T

<latexit sha1_base64="yG8Dn2QAI3HCRaXDgHY8LQ7vitk=">AAACAnicbVDLSsNAFL2prxpfVZdugkVwVZLic1dw47KifUAbwmR60w6dTMLMRCihO7du9R/ciVt/xF/wK0zSImo9MHA45x7unePHnClt2x9GaWl5ZXWtvG5ubG5t71R299oqSiTFFo14JLs+UciZwJZmmmM3lkhCn2PHH1/lfucepWKRuNOTGN2QDAULGCU6k24DL/QqVbtmF7AWiTMn1UYZCjS9ymd/ENEkRKEpJ0r1HDvWbkqkZpTj1OwnCmNCx2SIvYwKEqJy0+LUqXWUKQMriGT2hLYK9WciJaFSk9DPJkOiR+qvl4v/eb1EBxduykScaBR0tihIuKUjK/+3NWASqeaTjBAqWXarRUdEEqqzdsx+EUxFpItevBGSAcqpWZRzmeP0u4pF0q7XnLOac3NSbdRnLUEZDuAQjsGBc2jANTShBRSG8AhP8Gw8GC/Gq/E2Gy0Z88w+/ILx/gX235iL</latexit>

fm

<latexit sha1_base64="yG8Dn2QAI3HCRaXDgHY8LQ7vitk=">AAACAnicbVDLSsNAFL2prxpfVZdugkVwVZLic1dw47KifUAbwmR60w6dTMLMRCihO7du9R/ciVt/xF/wK0zSImo9MHA45x7unePHnClt2x9GaWl5ZXWtvG5ubG5t71R299oqSiTFFo14JLs+UciZwJZmmmM3lkhCn2PHH1/lfucepWKRuNOTGN2QDAULGCU6k24DL/QqVbtmF7AWiTMn1UYZCjS9ymd/ENEkRKEpJ0r1HDvWbkqkZpTj1OwnCmNCx2SIvYwKEqJy0+LUqXWUKQMriGT2hLYK9WciJaFSk9DPJkOiR+qvl4v/eb1EBxduykScaBR0tihIuKUjK/+3NWASqeaTjBAqWXarRUdEEqqzdsx+EUxFpItevBGSAcqpWZRzmeP0u4pF0q7XnLOac3NSbdRnLUEZDuAQjsGBc2jANTShBRSG8AhP8Gw8GC/Gq/E2Gy0Z88w+/ILx/gX235iL</latexit>

fm

<latexit sha1_base64="ibxE1ZI6MSakSBQzbq1oo8qevys=">AAACAnicbVDLSsNAFL2prxpfVZdugkVwVZLic1dw40aoaG2hDWEyvWmHTiZhZiKU0J1bt/oP7sStP+Iv+BUmaRG1Hhg4nHMP987xY86Utu0Po7SwuLS8Ul4119Y3Nrcq2zt3KkokxRaNeCQ7PlHImcCWZppjJ5ZIQp9j2x9d5H77HqVikbjV4xjdkAwECxglOpNuAu/Kq1Ttml3AmifOjFQbZSjQ9CqfvX5EkxCFppwo1XXsWLspkZpRjhOzlyiMCR2RAXYzKkiIyk2LUyfWQab0rSCS2RPaKtSfiZSESo1DP5sMiR6qv14u/ud1Ex2cuSkTcaJR0OmiIOGWjqz831afSaSajzNCqGTZrRYdEkmoztoxe0UwFZEuevGGSPooJ2ZRznmO4+8q5sldveac1Jzro2qjPm0JyrAH+3AIDpxCAy6hCS2gMIBHeIJn48F4MV6Nt+loyZhlduEXjPcvw1+Yaw==</latexit>

fM

<latexit sha1_base64="ibxE1ZI6MSakSBQzbq1oo8qevys=">AAACAnicbVDLSsNAFL2prxpfVZdugkVwVZLic1dw40aoaG2hDWEyvWmHTiZhZiKU0J1bt/oP7sStP+Iv+BUmaRG1Hhg4nHMP987xY86Utu0Po7SwuLS8Ul4119Y3Nrcq2zt3KkokxRaNeCQ7PlHImcCWZppjJ5ZIQp9j2x9d5H77HqVikbjV4xjdkAwECxglOpNuAu/Kq1Ttml3AmifOjFQbZSjQ9CqfvX5EkxCFppwo1XXsWLspkZpRjhOzlyiMCR2RAXYzKkiIyk2LUyfWQab0rSCS2RPaKtSfiZSESo1DP5sMiR6qv14u/ud1Ex2cuSkTcaJR0OmiIOGWjqz831afSaSajzNCqGTZrRYdEkmoztoxe0UwFZEuevGGSPooJ2ZRznmO4+8q5sldveac1Jzro2qjPm0JyrAH+3AIDpxCAy6hCS2gMIBHeIJn48F4MV6Nt+loyZhlduEXjPcvw1+Yaw==</latexit>

fM

<latexit sha1_base64="veZKBADCNx92zimo0ySkj/1o14s=">AAACCHicbVDLSgMxFL3js9ZX1aWbYBEEocwUn7uCG5cVbK20Zcikd2xokhmSjFCG/oBbt/oP7sStf+Ev+BVOp0XUeiBwOOce7s0JYsGNdd0PZ25+YXFpubBSXF1b39gsbW03TZRohg0WiUi3AmpQcIUNy63AVqyRykDgTTC4GPs396gNj9S1HcbYlfRO8ZAzajPpNvQlOSSh7/qlsltxc5BZ4k1JuVaAHHW/9NnpRSyRqCwT1Ji258a2m1JtORM4KnYSgzFlA3qH7YwqKtF00/zgEdnPlB4JI509ZUmu/kykVBozlEE2Kantm7/eWPzPayc2POumXMWJRcUmi8JEEBuR8e9Jj2tkVgwzQpnm2a2E9ammzGYdFTt5MFWRzdvx+0h7qEfFvJzzMY6/q5glzWrFO6l4V0flWnXSEhRgF/bgADw4hRpcQh0awEDCIzzBs/PgvDivzttkdM6ZZnbgF5z3LxW8mic=</latexit>

fm + f0

<latexit sha1_base64="veZKBADCNx92zimo0ySkj/1o14s=">AAACCHicbVDLSgMxFL3js9ZX1aWbYBEEocwUn7uCG5cVbK20Zcikd2xokhmSjFCG/oBbt/oP7sStf+Ev+BVOp0XUeiBwOOce7s0JYsGNdd0PZ25+YXFpubBSXF1b39gsbW03TZRohg0WiUi3AmpQcIUNy63AVqyRykDgTTC4GPs396gNj9S1HcbYlfRO8ZAzajPpNvQlOSSh7/qlsltxc5BZ4k1JuVaAHHW/9NnpRSyRqCwT1Ji258a2m1JtORM4KnYSgzFlA3qH7YwqKtF00/zgEdnPlB4JI509ZUmu/kykVBozlEE2Kantm7/eWPzPayc2POumXMWJRcUmi8JEEBuR8e9Jj2tkVgwzQpnm2a2E9ammzGYdFTt5MFWRzdvx+0h7qEfFvJzzMY6/q5glzWrFO6l4V0flWnXSEhRgF/bgADw4hRpcQh0awEDCIzzBs/PgvDivzttkdM6ZZnbgF5z3LxW8mic=</latexit>

fm + f0

up 
chirp

down
chirp

<latexit sha1_base64="arX5VZGIrW2k/N+FKQwkrrRC/9w=">AAACAnicbVDLSsNAFL2pr1pfVZdugkVwVZLic1dw47KifUBbymR62w6dTMLMjVBCd27d6j+4E7f+iL/gV5ikRdR6YOBwzj3cO8cLpTDkOB9Wbml5ZXUtv17Y2Nza3inu7jVMEGmOdR7IQLc8ZlAKhXUSJLEVamS+J7Hpja9Sv3mP2ohA3dEkxK7PhkoMBGeUSLfUc3rFklN2MtiLxJ2TUjUPGWq94menH/DIR0VcMmParhNSN2aaBJc4LXQigyHjYzbEdkIV89F04+zUqX2UKH17EOjkKbIz9WciZr4xE99LJn1GI/PXS8X/vHZEg4tuLFQYESo+WzSIpE2Bnf7b7guNnOQkIYxrkdxq8xHTjFPSTqGTBWMVUNZLb4Ssj3payMq5THH6XcUiaVTK7lnZvTkpVSuzliAPB3AIx+DCOVThGmpQBw5DeIQneLYerBfr1XqbjeaseWYffsF6/wKrV5hc</latexit>

t0
<latexit sha1_base64="arX5VZGIrW2k/N+FKQwkrrRC/9w=">AAACAnicbVDLSsNAFL2pr1pfVZdugkVwVZLic1dw47KifUBbymR62w6dTMLMjVBCd27d6j+4E7f+iL/gV5ikRdR6YOBwzj3cO8cLpTDkOB9Wbml5ZXUtv17Y2Nza3inu7jVMEGmOdR7IQLc8ZlAKhXUSJLEVamS+J7Hpja9Sv3mP2ohA3dEkxK7PhkoMBGeUSLfUc3rFklN2MtiLxJ2TUjUPGWq94menH/DIR0VcMmParhNSN2aaBJc4LXQigyHjYzbEdkIV89F04+zUqX2UKH17EOjkKbIz9WciZr4xE99LJn1GI/PXS8X/vHZEg4tuLFQYESo+WzSIpE2Bnf7b7guNnOQkIYxrkdxq8xHTjFPSTqGTBWMVUNZLb4Ssj3payMq5THH6XcUiaVTK7lnZvTkpVSuzliAPB3AIx+DCOVThGmpQBw5DeIQneLYerBfr1XqbjeaseWYffsF6/wKrV5hc</latexit>

t0

up 
chirp

up chirp

<latexit sha1_base64="pmSQyxiS/U6scoNDP5eCzETSXQU=">AAACAHicbVDLSsNAFL2pr1pfVZdugkVwVZLic1dw47IF+4C2lMn0th06mYSZG6GEbty61X9wJ279E3/BrzBJi6j1wMDhnHu4d44XSmHIcT6s3Mrq2vpGfrOwtb2zu1fcP2iaINIcGzyQgW57zKAUChskSGI71Mh8T2LLm9ykfusetRGBuqNpiD2fjZQYCs4okerUL5acspPBXibugpSqechQ6xc/u4OARz4q4pIZ03GdkHox0yS4xFmhGxkMGZ+wEXYSqpiPphdnh87sk0QZ2MNAJ0+Rnak/EzHzjZn6XjLpMxqbv14q/ud1Ihpe9WKhwohQ8fmiYSRtCuz01/ZAaOQkpwlhXIvkVpuPmWackm4K3SwYq4CyVvpjZAPUs0JWznWK8+8qlkmzUnYvym79rFStzFuCPBzBMZyCC5dQhVuoQQM4IDzCEzxbD9aL9Wq9zUdz1iJzCL9gvX8BeeOXuQ==</latexit>

t
<latexit sha1_base64="8Yw7z874Ws2KT37TgWYHslvtZbk=">AAACAHicbVDLSsNAFL3xWeOr6tJNsAiuSlJ87gpuXLbQF7ShTCY37dDJJMxMhBK6cetW/8GduPVP/AW/wiQtotYDA4dz7uHeOV7MmdK2/WGsrK6tb2yWtsztnd29/fLBYUdFiaTYphGPZM8jCjkT2NZMc+zFEknocex6k9vc796jVCwSLT2N0Q3JSLCAUaIzqdkalit21S5gLRNnQSr1EhRoDMufAz+iSYhCU06U6jt2rN2USM0ox5k5SBTGhE7ICPsZFSRE5abFoTPrNFN8K4hk9oS2CvVnIiWhUtPQyyZDosfqr5eL/3n9RAfXbspEnGgUdL4oSLilIyv/teUziVTzaUYIlSy71aJjIgnVWTfmoAimItJFK8MxEh/lzCzKuclx8V3FMunUqs5l1WmeV+q1eUtQgmM4gTNw4ArqcAcNaAMFhEd4gmfjwXgxXo23+eiKscgcwS8Y719GY5eZ</latexit>

T
<latexit sha1_base64="azA4R3JDFjfQfQflxMcn4t2F8qM=">AAACAHicbVDLSsNAFL2prxpfVZdugkVwVZLic1dw47IF+4A2lMnkph06mYSZiVBCN27d6j+4E7f+ib/gV5ikRdR6YOBwzj3cO8eLOVPatj+M0srq2vpGedPc2t7Z3avsH3RUlEiKbRrxSPY8opAzgW3NNMdeLJGEHseuN7nJ/e49SsUicaenMbohGQkWMEp0JrXsYaVq1+wC1jJxFqTaKEOB5rDyOfAjmoQoNOVEqb5jx9pNidSMcpyZg0RhTOiEjLCfUUFCVG5aHDqzTjLFt4JIZk9oq1B/JlISKjUNvWwyJHqs/nq5+J/XT3Rw5aZMxIlGQeeLgoRbOrLyX1s+k0g1n2aEUMmyWy06JpJQnXVjDopgKiJdtDIcI/FRzsyinOsc599VLJNOveZc1JzWWbVRn7cEZTiCYzgFBy6hAbfQhDZQQHiEJ3g2HowX49V4m4+WjEXmEH7BeP8CDHOXdQ==</latexit>

0

<latexit sha1_base64="azA4R3JDFjfQfQflxMcn4t2F8qM=">AAACAHicbVDLSsNAFL2prxpfVZdugkVwVZLic1dw47IF+4A2lMnkph06mYSZiVBCN27d6j+4E7f+ib/gV5ikRdR6YOBwzj3cO8eLOVPatj+M0srq2vpGedPc2t7Z3avsH3RUlEiKbRrxSPY8opAzgW3NNMdeLJGEHseuN7nJ/e49SsUicaenMbohGQkWMEp0JrXsYaVq1+wC1jJxFqTaKEOB5rDyOfAjmoQoNOVEqb5jx9pNidSMcpyZg0RhTOiEjLCfUUFCVG5aHDqzTjLFt4JIZk9oq1B/JlISKjUNvWwyJHqs/nq5+J/XT3Rw5aZMxIlGQeeLgoRbOrLyX1s+k0g1n2aEUMmyWy06JpJQnXVjDopgKiJdtDIcI/FRzsyinOsc599VLJNOveZc1JzWWbVRn7cEZTiCYzgFBy6hAbfQhDZQQHiEJ3g2HowX49V4m4+WjEXmEH7BeP8CDHOXdQ==</latexit>

0
<latexit sha1_base64="azA4R3JDFjfQfQflxMcn4t2F8qM=">AAACAHicbVDLSsNAFL2prxpfVZdugkVwVZLic1dw47IF+4A2lMnkph06mYSZiVBCN27d6j+4E7f+ib/gV5ikRdR6YOBwzj3cO8eLOVPatj+M0srq2vpGedPc2t7Z3avsH3RUlEiKbRrxSPY8opAzgW3NNMdeLJGEHseuN7nJ/e49SsUicaenMbohGQkWMEp0JrXsYaVq1+wC1jJxFqTaKEOB5rDyOfAjmoQoNOVEqb5jx9pNidSMcpyZg0RhTOiEjLCfUUFCVG5aHDqzTjLFt4JIZk9oq1B/JlISKjUNvWwyJHqs/nq5+J/XT3Rw5aZMxIlGQeeLgoRbOrLyX1s+k0g1n2aEUMmyWy06JpJQnXVjDopgKiJdtDIcI/FRzsyinOsc599VLJNOveZc1JzWWbVRn7cEZTiCYzgFBy6hAbfQhDZQQHiEJ3g2HowX49V4m4+WjEXmEH7BeP8CDHOXdQ==</latexit>

0

d
Tx

Rx

t

f

𝒕𝟎

𝒇𝒎

𝑻

Tx Rx

𝒇𝒎 + 𝒇𝟎

𝒇𝑴

Tx

Rx

Rx 𝒅 + ∆𝒅

𝒅

𝒍

Range

Angle

Velocity

𝝓𝟎

𝝓𝟏

t

𝒕𝟎

𝒕𝟏

𝑻

𝟎

𝜽

transmission and reflection

<latexit sha1_base64="PkYIMT8QJaWsDboU5V3u1VmneNM=">AAACAHicbVDLSsNAFL2prxpfVZdugkVwVZLic1dw47IF+4A2lMnkph06mYSZiVBCN27d6j+4E7f+ib/gV5ikRdR6YOBwzj3cO8eLOVPatj+M0srq2vpGedPc2t7Z3avsH3RUlEiKbRrxSPY8opAzgW3NNMdeLJGEHseuN7nJ/e49SsUicaenMbohGQkWMEp0JrX8YaVq1+wC1jJxFqTaKEOB5rDyOfAjmoQoNOVEqb5jx9pNidSMcpyZg0RhTOiEjLCfUUFCVG5aHDqzTjLFt4JIZk9oq1B/JlISKjUNvWwyJHqs/nq5+J/XT3Rw5aZMxIlGQeeLgoRbOrLyX1s+k0g1n2aEUMmyWy06JpJQnXVjDopgKiJdtDIcI/FRzsyinOsc599VLJNOveZc1JzWWbVRn7cEZTiCYzgFBy6hAbfQhDZQQHiEJ3g2HowX49V4m4+WjEXmEH7BeP8CYCOXqQ==</latexit>

d

Tx

Rx ampli-
tudetargetradar

Figure 9.3 A frequency modulated continuous-wave (FMCW) radar works by emitting
chirps (waves of increasing or decreasing frequency) that are reflected off targets and then
received. Range (and velocity) are determined by analyzing the frequency (and phase)
shifts of the reflected signal compared to the transmitted one. Two common frequency
modulation strategies are sawtooth and triangular; the advantage of the latter being that
the Doppler frequency shift can be disentangled from the range shift.

various chirp parameters such as the bandwidth (the difference between the initial

and final frequencies), the chirp slope, and the duration between chirps.

The main idea of this frequency modulation is to encode temporal information

onto a continuous wave, enabling the execution of range calculations. This technique

stands in contrast to amplitude modulation, where the precision of the returned sig-

nal depends exclusively on the frequency’s bandwidth. This characteristic renders

frequency modulation more resilient to issues such as signal-to-noise ratios and the

RCS of targets, which might otherwise affect the clarity of individual returns. In

the context of FMCW radar, where waves are interspersed with unique intervals

between pulses in a train, the signals maintain coherence. This coherence allows

for each chirp to be accurately associated with its originating transmit-receive pair

and its position within the sequence, facilitating the correlation of signals in terms

of both amplitude and phase. This represents a significant evolution from the older

time-of-flight pulsed radar systems, which relied on incoherent amplitude measure-

ments and required the expertise of skilled operators to sift through clutter and

isolate significant signals.

In FMCW, the calculation of distance relies on the temporal gap between when

a signal is sent and when its echo is received. Utilizing the speed of light, c, and

the initial arrival time, t0, the distance, d, to an object is computed as

d =
c

2
t0. (9.1)

The top-left portion of Figure 9.3 shows the region where an IF signal is generated



9.1 Introduction to Radar 253

using green dashed lines. The difference between the transmitted and received signal

is an IF signal. The IF signal is a sine wave sin(2πf0 t + ϕ0) whose frequency is

proportional to a constant f0 that spans from t0 to T that only depends on the

distance to the target, and is offset in phase by ϕ0.

The frequency, f0, is defined as a function of the distance to the target, the

duration of the transmitted chirp, T , and the bandwidth of the transmitted signal,

B = fM − fm. The bandwidth and transmit time are related to the slope of the

chirp, S = B/T , as

f0 =
2Bd

Tc
=

2Sd

c
⇒ d =

cf0
2S

, (9.2)

where we now have the distance, d, as a function of the (measured) intermediate

frequency, f0.

In this section, although the equations are presented within the frequency do-

main, the real-world capture of signals predominantly occurs through digital sam-

pling. This sampling is done at a high rate, typically every 100 nanoseconds or less,

using a high-frequency Analog-to-Digital Converter (ADC). Following this, the sam-

pled data undergoes a sequence of Fast Fourier Transform (FFT) operations. These

operations generate graphs depicting frequency and amplitude, from which signal

peaks can be discerned. The identification of range frequencies is achieved by ap-

plying FFT to the data from a single chirp and its corresponding return signal. To

calculate velocity frequencies, a series of FFTs are executed on multiple chirp and

return sequences.

9.1.2.3 Determining Distance and Velocity with Sawtooth Modulation

Sawtooth frequency modulation (see Figure 9.3) is typically used with SoC radars

and some spinning radars. The phase of the IF signal, ϕ0, can be expressed as a

function of the wavelength λ of the signal and the distance d:

ϕ0 = 2πfmt0 =
4πd

λ
. (9.3)

While both the base frequency f0 and phase ϕ0 are functions of distance d, the

phase is only valid for sufficiently small distance values and is subject to angle-

wrapping. Thus this is typically not used for range estimation but to measure small

changes ∆d where the phase responds linearly in velocity estimation.

For radial velocity estimation (see Figure 9.4), at least two sequential up chirps

are employed as shown in the top left of Figure 9.3. As the distance in time between

each chirp in the sequence is small, on the order of 40 microseconds, the range

measurement from both samples and thus the relative IF fi and fi+1 are nearly

identical. However, the IF signals will possess distinct phases. This phase disparity

∆ϕ corresponds to a motion of the object. The estimated velocity v is determined



254 Radar SLAM

yi
dop

yi+1
dop

yi+2
dop

yi+3
dop

Fs

yj
gyro

Fv
<latexit sha1_base64="z0phMMXKSf5qWD6W8sGgGGclA0I=">AAACAHicbVDLSsNAFL2prxpfVZdugkVwVRLxUXcFNy5bsLXQhjKZ3LRDJ5MwMymU0I1bt/oP7sStf+Iv+BUmaRG1Hhg4nHMP987xYs6Utu0Po7Syura+Ud40t7Z3dvcq+wcdFSWSYptGPJJdjyjkTGBbM82xG0skocfx3hvf5P79BKVikbjT0xjdkAwFCxglOpNak0GlatfsAtYycRak2ihDgeag8tn3I5qEKDTlRKmeY8faTYnUjHKcmf1EYUzomAyxl1FBQlRuWhw6s04yxbeCSGZPaKtQfyZSEio1Db1sMiR6pP56ufif10t0UHdTJuJEo6DzRUHCLR1Z+a8tn0mkmk8zQqhk2a0WHRFJqM66MftFMBWRLloZjJD4KGdmUc51jovvKpZJ56zmXNac1nm1UZ+3BGU4gmM4BQeuoAG30IQ2UEB4hCd4Nh6MF+PVeJuPloxF5hB+wXj/An7pl8E=</latexit>

v
radial velocity measurementradar

Figure 9.4 Radar is able to use the Doppler effect to measure the radial velocity between
a unit and the scene it is imaging.

from the phase difference,

∆ϕ =
4π∆d

λ
=

4πvT

λ
, (9.4)

simplified to

v =
λ∆ϕ

4πT
. (9.5)

As velocity is a function of phase, we note the maximum detectable velocity is

unambiguous for |∆ϕ| < π. Thus vmax = λ/(4T ) is a function of the wavelength of

the signal and the time between chirps.

9.1.2.4 Determining Distance and Velocity with Triangular Modulation

Triangular frequency modulation (see Figure 9.3) can also be used; for example, it

is sometimes used with spinning radars. In reality, when an intermediate frequency

is derived from an up chirp, it comprises two components: (i) frequency shift due

to the time of flight of the signal (discussed already), f0,t, and (ii) the apparent

frequency shift due to the Doppler effect if there is a relative velocity between the

radar and the target, f0,d:

f0,up = f0,t + f0,d. (9.6)

However, if we follow an up chirp with a down chirp that reflects off the same target,

the sign of the temporal frequency shift will flip while that of the Doppler shift will

not:

f0,down = −f0,t + f0,d. (9.7)

From these two equations we can solve for f0,t and f0,d:

f0,t =
f0,up − f0,down

2
, f0,d =

f0,up + f0,down

2
. (9.8)



9.1 Introduction to Radar 255

Tx Rx Rxℓ

θ

θ
ℓ sin(θ) = ∆d

Figure 9.5 Angle of arrival estimation with phased-array radar. The measured difference
in phase of the signal emitted by the TX transmitter antenna as received by two RX
receiver antennas at a distance ℓ corresponds to the angle θ to the target.

Finally, from these two components, we can calculate the range and velocity ac-

cording to

d =
cf0,t
2S

, v =
cf0,d
2ST

. (9.9)

Notably, the range calculation presented earlier in (9.2) is not corrected for the

Doppler effect whereas this one is. The downside of using triangular modulation is

an increase in latency since we now require slightly older data in the calculation of

range and velocity. However, we do not need to work with the phase of the signal.

9.1.2.5 Determining Angle for SoC radar

For spinning radar, determining the angle to a target is trivial since the beam

is focused in a single azimuth direction at each time. Angle estimation for SoC

radar is slightly more complex but can be achieved with a similar phase difference

calculation as above.

Given multiple receiver units separated by an interval ℓ, the distance disparity ∆d

emerges in reflections. The angle of arrival θ can be derived from the modification

of (9.3) with the geometric relation ∆d = ℓ sin θ. The received signal must travel an

extra distance ℓ sin θ to reach the second receiver antenna, as illustrated in Figure

9.5. This corresponds to a phase difference of ∆ϕ = (2π/λ)ℓ sin(θ) between the

signals received at the two RX antennas. Given the measured phase difference ∆ϕ,

the angle of arrival θ can be computed as

θ = arcsin
λ∆ϕ

2πℓ
. (9.10)

While one TX and two RX antennas are sufficient in principle for determining the

angle to a target, having more than two RX antennas enables higher resolution and

thus the ability to distinguish multiple nearby targets. The phase of the returned

signal will be offset by an additional ∆ϕ at each RX. Sampling the signal across

the RX antennas and performing an FFT on this signal sequence can be used to

reliably estimate ∆ϕ.



256 Radar SLAM

Figure 9.6 A polar radargram in (a) transformed to Euclidean coordinates in (b), where
we can observe several types of radar noise that are unique compared to other sensors from
a zoomed view in (c). Speckle noise returns are the most common, with ambiguous clutter
circled in green. Multipath reflections develop where returns bounce off nearby walls or
the ground before hitting the antenna, generating reflections of true targets. A series of
repeated returns is circled in red. The original image is sampled from the Mulran dataset
[575].

The above example illustrates a “SIMO” phased-array radar system (single in-

put, multiple output). Most radar sensors used for SLAM applications are MIMO

(multiple input, multiple output) with several TX and RX antennas. Rather than

doubling the number of RX antennas, it is possible to achieve the same resolu-

tion by adding one more TX antenna, as long as the RX antennas can distinguish

the signals from the multiple TX antennas. Different techniques can be used to

ensure that the TX signals are uncorrelated (orthogonal); e.g., frequency division

(where each transmitter uses a different frequency band), code division (where each

transmitter sends a signal modulated by a unique code sequence), or time-division

multiple access (TDMA) where each transmitter uses a different time slot. The

same principle can also be applied to 2D TX-RX arrays that can measure both

azimuth and elevation angles, thus producing 3+1D data.

9.1.3 Challenges to Radar Applications

Radar technology, like any sensor system, presents a range of challenges that necessi-

tate careful consideration during development. These challenges include a variety of

noise types that are particularly prominent in radar, such as multi-path reflections,

biased and sparse range readings due to the wide beam width, receiver saturation,

and speckle noise. Illustrations of some of these noise phenomena are provided in

Figure 9.6, which depicts a polar radargram transformed to Euclidean coordinates.

We discuss some relevant radar filter techniques in Section 9.1.4.

9.1.3.1 Speckle Noise

Noise in radar measurements come from several sources, including thermal noise,

electronic flaws, and varying RCS of targets. When a radar emits an electromagnetic



9.1 Introduction to Radar 257

pulse, it captures the energy reflected back by all objects within the antenna’s field

of view. The interaction of this pulse with objects scatters the radar waves, leading

to constructive and destructive interference. Such interactions can either produce

false signals or cancel out legitimate returns received by the antenna, irrespective of

the signal’s origin. These factors contribute to signal variations across the frequency

domain, where the most prominent peaks represent a mix of genuine targets and

false alarms. In the absence of a mechanism to distinguish between genuine and

false returns, the sensor ends up generating a pattern of scattered points, commonly

referred to as speckle noise. For accurate identification of landmarks, crucial for pose

estimation and feature matching, it becomes essential to estimate the uncertainty

around these reflections, possibly over several scans.

9.1.3.2 Multipath

Beyond speckle noise, multipath returns constitute another form of measurement er-

rors, originating from varied detection paths associated with a single object. Imagine

a scenario with a landmark situated in front of the sensor. While some transmitted

rays may directly reach this landmark, others might only arrive at the antenna

after reflecting off the ground or bouncing off a wall. To the radar, it appears as

though the landmark is located beneath the road or beyond the wall, leading to the

perception of what are termed ‘ghost objects’ or static outliers. The elimination

of these outliers is crucial for ensuring the reliability of point cloud mapping or

localization.

9.1.3.3 Motion-Induced Distortion

Scanning sensors, including both lidar and radar, inherently exhibit motion dis-

tortion. This is particularly true for spinning radar, which constructs each polar

image through a single rotation. Consequently, if the sensor is moving, the position

of a single object captured at the start and end of one rotation will differ. This

discrepancy becomes significant with sensors operating at low frequencies or when

the vehicle moves swiftly. For instance, the Navtech CIR 304, a commonly used

imaging radar, operates at a frequency of 4 Hz, posing challenges for accurately

aligning raw frames. There are also faster spinning radars like the newer Navtech

RAS3 which spins at 10 Hz, similar to many lidars, and the Indurad iSDR that can

spin at up to 50 Hz. Still, when the sensor is mounted on a fast-moving platform

(like a car), the motion-induced distortion can be significant.

9.1.4 Radar Filtering

The occurrence and distribution of false targets (Section 9.1.3) can change over

time and are characterized by unpredictable parameters, rendering static filtering

approaches such as simple thresholding insufficient, as they may allow false alarms

to pass through. In response, researchers have devised methods to dynamically



258 Radar SLAM

estimate the distribution of false alarms, taking these challenges into account. These

filtering methods typically consider the measurements along one azimuth direction,

trying to estimate which range bin(s) contain true targets and which are false

alarms.

The constant false alarm rate (CFAR) filter [817] is a popularly implemented

method designed to sustain a specified probability of false alarms amidst dynami-

cally changing and uneven interference. The process begins by segmenting a signal

– such as the frequency domain representations obtained post-FFT of radar ADC

samples – into discrete segments known as cells. These cells are then assessed using

a sliding-window approach. At the core of this window lies the set of cells under

test (CUT). The intensity of the CUT is evaluated against that of the adjacent

cells, referred to as training cells, which precede and follow the CUT. In some im-

plementations, guard cells may be placed between the training cells and the CUT

to prevent the local influence of the CUT from affecting the training cells’ mag-

nitude. A decision to accept or reject a CUT set is made based on whether its

intensity surpasses a calculated threshold, which is derived from the comparative

intensity of the surrounding training cells, guard cells excluded. Several variants of

CFAR exist, the canonical version being cell-averaging CFAR (CA-CFAR), where

the threshold is computed in relation to the mean power of the training cells, scaled

by a threshold multiplier that is selected from the desired probability of false alarm.

A common alternative is ordered-statistic CFAR (OS-CFAR) where a more robust

statistic such as the median of the training cells is used instead of the mean.

Figure 9.7 illustrates how the CA-CFAR threshold adapts to a radar signal and

which range bins are selected as targets vs noise, compared to two other filtering

methods.

A variant of CFAR designed and tested specifically for radar odometry is BFAR

(bounded false alarm rate) [32] which simply modifies the output Z computed from

a CFAR detector with an affine transformation T = aZ + b, where b is a learnable

parameter that scales the output to blend between the CFAR output and a fixed-

level threshold.

While CFAR and its variants are used in many radar applications, several pipelines

for radar odometry and SLAM employ simpler filtering strategies. Whereas CFAR

was developed for target detection (where it may be important not to miss a weak

detection), when filtering radar for use in odometry the concern is rather to retain

only those points that can reliably be detected over time and from different view-

points. One popular technique involves selecting the k strongest returns above a

static threshold along each azimuth, with k ranging from 1 and upwards. A statis-

tical threshold may also be employed, selecting all points with an intensity higher

than one standard deviation over the mean value.

Some recent approaches instead use machine learning techniques to increase the

accuracy and resolution of radar output, typically using LiDAR data as ground

truth for training. Cheng et al. [203] use a generative adversarial network (GAN)



9.2 Radar Odometry 259

60 80 100 120

50

100

150

range [m]

sc
al

ed
po

w
er

measurements CFAR threshold
zmin threshold k = 12 detection

CFAR detection

Figure 9.7 Examples of radar filtering, comparing a CFAR filter with a constant power
threshold and a k-strongest strategy. The power/range plot along one azimuth direction
is plotted in grey. Returns from true targets appear as spikes in the plot but there are
also several ambiguous peaks. CFAR produces an adaptive threshold, plotted with a black
line. Detections reported by the CFAR filter are plotted in blue, and in this case includes
several “false alarms”. The k strongest filter (with k = 12 in this case) is more conservative
and only returns points around the main targets. Figure from Adolfsson et al. [13] (©2021
IEEE).

to generate point clouds based on range-Doppler velocity matrices. Xu et al. [1206]

train a regressor and classifier, where the regressor outputs improved, higher-resolution

depth readings, and the classifier provides an estimate of whether the data is out

of range. These methods strive to learn models that can retain only those returns

in the radargram that correspond to a surface that would be detected by a LiDAR.

9.2 Radar Odometry

The goal of radar odometry is to, given a set of ordered radar readings over time,

estimate the egomotion of the sensor. A radar odometry approach typically involves

handling an intermediate representation, such as a set of the last N radar readings

or a continuously pruned local map. The focus lies on obtaining an accurate pose

estimate at a local scale. Without considering explicit loop closures, the error will

eventually accumulate without bounds even for good odometry methods. Methods

using spinning radar may accumulate on the order of 1–2 % translational drift per

100 m.

A particular feature of many radar sensors is the per-point ‘Doppler’ velocity es-

timates, which can be used to estimate odometry in a correspondence-free manner,

as described in Section 9.2.1. In addition to Doppler-based methods, the relative



260 Radar SLAM

Figure 9.8 Example of open-loop radar odometry on the Oxford Radar Robotcar
dataset [133], using the CFEAR method [15] with data from a Navtech 2D spinning
radar. The ground-truth trajectory plotted in blue and the odometry estimate in orange.
Point targets extracted from the radargram in grey.

transformation between two nearby radar scans is often estimated via spatial cor-

respondences so as to determine which parts of one scan can be found in the other

scan. Given a set of such correspondences, a distance metric can be computed and

optimized. Depending on the type of scanner, how to obtain these correspondences

is different; a spinning radar often produces a raw signal that either can be used

directly as described in Section 9.2.2, to extract higher-level features containing

information from the raw signal (see Section 9.2.3) or to extract range points that

can be used in registration, much like in LiDAR odometry (see Section 9.2.4).

An indicative example of what open-loop radar odometry using a 2D scanning

radar may look like is shown in Figure 9.8.

9.2.1 Doppler Odometry

The radial velocity obtained from Doppler measurements can be used to directly

estimate the sensor’s linear velocity. In Doer and Trommer [280], Doppler infor-

mation is utilized via a combination of three-point RANSAC and a least squares

problem to estimate linear velocities.

However, the rotational velocity component is not directly observable from the

per-point velocity measurements in the data from a single radar – unless assump-

tions can be made about the kinematic model for the radar system, for example,



9.2 Radar Odometry 261

xK (· · ·) x2 imu12 x1 imu01 x0

Doppler
targets

Doppler
targets

Doppler
targets

Doppler
targets

Figure 9.9 Factor graph representation of the radar-inertial velocity estimation system.
States from K previous timesteps are jointly estimated using Doppler targets and sets of
IMU measurements as constraints. Figure adapted from Kramer et al. [613].

knowing where the radar is mounted with respect to the center of rotation and

assuming no skidding [559, 362]. Therefore it is common to use IMU data (or more

specifically, a gyroscope) for radar odometry systems that relies solely on Doppler

information from a single radar. In Huang et al. [497], a consumer grade IMU com-

bined with cascaded SoC radars achieves low drift in diverse 3D indoor spaces.

Kubelka et al. [617] compared several variants of registration-based approaches for

3+1D radar with registration-free Doppler + IMU odometry [280] and found the

registration-free method to produce the lowest error, not least in feature-sparse

environments, with a drift as low as 0.3% over a 4.5 km trajectory reported.

Kellner et al. [559] show how linear and rotational velocity can be estimated from

2+1D radar data when the radar is mounted on a vehicle with Ackermann steering

and the mounting point of the radar sensor with respect to the center of rotation of

the vehicle is known. Galeote-Luque et al. [362] extend this to the 3+1D case and

estimate five degrees of freedom (linear motion in three dimension plus yaw and

pitch rotation, but not roll).

Since the Doppler-based modality of odometry is rather specific to the radar

methodology, we provide an example based on Kramer et al. [613].

Example: Doppler Odometry Factor Formulation

A straightforward approach to integrating a Doppler factor from radar is in esti-

mating the body-frame velocity of the sensor platform over a sliding window of

K previous radar measurements. These velocities are interconnected through inte-

grated accelerometer measurements from the IMU, which can form a comprehensive

system for accurate velocity estimation. The system’s structure can be represented

using a factor graph, where states from N previous time steps are jointly estimated

using Doppler targets and sets of IMU measurements as constraints.

Accelerometer measurements are typically affected by both bias ba and gravity

gW . Since velocity estimates derived from radar data are free from bias, accelerom-

eter biases can be compensated for by including them in the state vector. How-

ever, compensating for the effects of gravity requires estimating the IMU’s attitude,

specifically its pitch and roll, which are represented by the orientation quaternion

qWS . To accurately estimate the IMU’s attitude, gyro measurements are used, ne-



262 Radar SLAM

cessitating the estimation of gyro biases bg. Consequently, the full state vector is

expressed as x = [vT
S ,q

T
WS ,b

T
g ,b

T
a ]T .

The radar-inertial ego-velocity estimation is formulated as an optimization prob-

lem, where the cost function integrates the constraints and measurements to provide

an accurate estimate of the sensor platform’s velocity

J(x) =
K∑

k=1

∑

d∈Dk

edwd

︸ ︷︷ ︸
Doppler term

+
K−1∑

k=1

eks
T
W k

s e
k
s

︸ ︷︷ ︸
inertial term

(9.11)

where K is the number of past radar measurements for which states are estimated,

Dk is the set of targets returned from the radar measurement at time k, ed is the

Doppler velocity error, and es is the IMU error. The error terms are weighted by the

information matrix Ws in the case of the IMU errors; and the normalized intensity

of the corresponding radar target

wj
d =

ij∑
d∈D id

(9.12)

in the case of the Doppler velocity measurements where wj
d is the weight for target

j in scan D and ij is the intensity of target j. In the following sections we detail

the formulation of our Doppler and IMU measurement constraints.

In this example we consider radar measurements consisting of a set of targets

D. Each d ∈ D consists of [rS , vR, θS , ϕS ]T representing the range, Doppler (radial)

velocity, azimuth, and elevation for target d. The Doppler velocity measurement vR
is equal to the magnitude of the projection of the relative velocity vector between

the target and sensor vS onto the ray between sensor origin and the target rS . This

is simply the dot product of the target’s velocity in the sensor frame and the unit

vector directed from the sensor to the target

ṽR − ev = vS

(
r̃S
∥r̃S∥

)T

. (9.13)

In this approach, it is assumed that the targets in the scene are stationary and

only the sensor platform is moving. In this case each radar target can provide

a constraint on our estimate of the sensor rig’s velocity in the body-frame. The

velocity error for each radar target is then:

ek(xk,di,k) = vi,kR − vk
S

(
ri,kS
∥ri,kS ∥

)T

(9.14)

where xk is the state at time k and di,k is the ith target in the set of radar mea-

surements at time k. As previously noted, radar measurements are affected by non-



9.2 Radar Odometry 263

Gaussian noise and radar scans often contain false target data. These challenges

may be addressed by using the Cauchy robust norm with the Doppler residual.

9.2.2 Direct Odometry

Methods that operate on raw radargrams as the ones depicted in Figure 9.6 and

Figure 9.2, as opposed to points filtered from the radargrams, are denoted as direct.

Direct approaches make use of classical signal processing techniques such as phase

correlation and the Fourier-Mellin transform [182, 854]. Given two sequential polar

radargrams, their relative rotation can be found by a translational shift in the

polar coordinate frame – where a vertical shift corresponds to a change in azimuth

angle. Using phase correlation, the relative orientation is selected from the pixel

shift that maximizes the agreement of the two polar images. Subsequently, the

translation can be refined by a similarly computing the correlation between the

images in a Cartesian frame (Figure 9.6). These direct correlation-based methods

assume that power returns from a specific location remain stationary over time,

enabling meaningful correlation. However, this assumption often fails, especially

with dynamic objects or in radar data, where noise artifacts are common.

Correlation is also used in the “Masking by Moving” method of Barnes et al. [60].

Two-dimensional correlation between the current scan and rotated copies of the pre-

vious scan is computed on a regular grid of pose candidates. However, Barnes et al.

address the problem of nonstationary power returns by training a convolutional

neural network (CNN) to avoid including false features that are due to noise. The

CNN is trained to predict a mask that keeps only those parts of the radargram that

are stationary and thus more useful for correlative scan matching.

In contrast to these direct odometry methods that use all or mostly all of the

radargram, the methods in the remainder of this chapter are indirect in that they

first select specific features or key points and operate on those sparser points to

estimate the odometry.

9.2.3 Feature-based Odometry

Given that radargrams from 2D spinning FMCW radars are essentially birds-eye-

view images, it is natural that several works utilize image-based feature extraction

and matching techniques from the computer vision community to find correspon-

dences and estimate odometry; such as SIFT [146, 657], SURF [481], and ORB [554]

features. (Callmer et al. [146] match large-scale features of islands in an archipelago

and Li et al. [657] extract features from a satellite radar.) Compared to camera

images, the noise level is higher in radar data and highly dependent on the en-

vironment. Hence, extracting descriptors that can be used for feature matching is

more difficult [482]. Feature descriptors may also be more place-variant in radar



264 Radar SLAM

compared to other sensors, making it difficult to do data association if the sensor

pose is different. (See also Section 9.3.) FSCD and BASD [915, 988] are examples of

key-point extractors and feature descriptors specifically designed for radargrams.

The techniques above involve extracting a set of salient key points (which can

reliably be detected in subsequent frames) and computing a feature descriptor de-

scribing the surrounding region of the feature point. Given the extracted feature set,

the correspondences are computed using feature descriptor matching, often com-

bined with a robust estimator, such as RANSAC. Given the correspondences, the

spatial distance between features is minimized, often by finding the least squares

solution using Singular Value Decomposition (SVD). In general, a feature-based

approach is more stable towards large initial errors compared to the registration

based approaches discussed in the next section, since feature descriptors can be as-

sociated robustly compared to registration methods that primarily hinge on point

proximity for data association.

Going beyond hand-crafted feature descriptors as in the examples above, key-

point extraction and feature descriptors can also be generated via deep neural

networks, thus allowing features to be automatically generated [59]. One drawback

is that training data including radargrams along with ground truth poses from a

somewhat similar environment are required.

9.2.4 Registration-based Odometry

There are well-developed methods for odometry estimation based on point clouds

from LiDAR ranging sensors and similar techniques can be used for point clouds

extracted from radargrams or radar datacubes. In this section we describe how such

radar point clouds can be computed and used for odometry estimation.

For spinning radars that provide raw signal data as shown in Figure 9.6 we first

need to select which points to use by filtering those signal returns that do not

correspond to a relevant peak. (These filtering techniques can be seen as similar

to the key-point extraction in Section 9.2.3 but without extracting descriptors.)

As discussed in Section 9.1.4, many approaches extract a set of range readings

per azimuth; e.g., using CFAR (Figure 9.7, Section 9.1.4), using noise statistics to

remove redundant or noisy readings [164], BFAR [32], or simply the k strongest

returns per azimuth. An exception is Kellner et al. [558], using DBSCAN clustering

so as to also consider neighboring azimuth angles instead of restricting the search

for targets along one azimuth dimension at a time. Models trained with machine

learning so as to estimate a point cloud similar to that from a LiDAR from a

radargram are also commonly used in recent methods [203, 1206]. A key challenge

is to extract an adequate amount of readings; too few readings discards relavant

information and too many include noise [164]. For example, CFAR has been found

difficult to tune in this respect [133].

Once a point cloud has been extracted using one of the techniques above, it



9.2 Radar Odometry 265

can either be used as-is or additional information can be estimated by examining

the local surrounding region, such as normals, planes and point distributions. The

registration approaches used for radar data are often similar to what is done using

LiDAR based scan registration approaches (see Section 8.2); however, the noise level

and sparsity in radar data makes pair-wise registration much more challenging.

A common strategy in registration-based odometry methods using radar data is

to register new scans to multiple previous scans – either aggregated into a submap

or as a set of individual point clouds. Registering to multiple scans is a way to com-

pensate for several of the challenges in radar data as discussed above. By including

more key frames, the odometry estimate is less sensitive to sparse and noisy radar

point clouds. More correspondences adds more constraints which can reduce drift

in feature-poor environments. Another goal is temporal redundancy, in the sense

that sudden occlusions or spurious correspondences from moving objects impact

the odometry estimate less when multiple key frames are used.

Some examples of registration-based radar odometry methods include continuous-

time ICP [133], power-shifted NDT [623], and CFEAR [15] (not to be confused with

the CFAR method for filtering which is discussed in Section 9.1.4) – all of which

make use of submaps or multiple key frames. In CFEAR, point clouds are ex-

tracted from radargrams by selecting the k strongest returns along each azimuth.

Each new cloud is registered jointly against the s most recent key frames using

either a point-to-point, point-to-line, or point-to-distribution error metric – akin

to NDT scan registration (see Part I). For each point, the normal vector is esti-

mated from the covariance matrix of neighboring points within some radius. Point

correspondences are weighted based on the agreement of their normal vectors, the

planarity (condition number of the covariance matrix), and the number of points in

the neighborhood. Kung et al. [623] use a fixed threshold to extract a point cloud

from the radargram and aggregate multiple point clouds into a radar submap us-

ing an NDT representation where the contribution of each point is weighted by its

returned signal strength. Burnett et al. [133] extract point clouds from radargrams

using BFAR [32] and aggregate into a local submap, after which a continuous-time

ICP formulation is used to optimize a trajectory estimate where points are associ-

ated with a Gaussian process motion prior.

The methods above are all based on 2D radar data. Recent pipelines for registration-

based 3+1D radar odometry tend to adopt similar strategies – although point cloud

extraction is performed on the sensor so the design choices for selecting which signal

peaks to consider as valid targets come down to sensor-specific thresholds rather

than explicit feature extraction. Since per-point Doppler speed information is avail-

able in 3+1D point clouds, these methods typically consider a least-squares estimate

of the ego-velocity from Doppler data (see Section 9.2.1) as an initial estimate and

perform point cloud registration to refine it. The registration-based odometry com-

ponent in 4DRadarSLAM [1266] uses a variant of GICP [990] that is adapted for

radar point clouds, where points are weighted by a covariance matrix that assigns



266 Radar SLAM

a higher uncertainty to points far from the sensor due to the limited azimuth and

elevation angle accuracy. 4D iRIOM [1305] employ one-to-many distribution-to-

distribution matching in order to alleviate the noise and sparseness of radar point

clouds. Instead of matching each point to its closest corresponding distribution in

the local submap, each point is matched to a weighted set of closest distributions.

(The complete SLAM pipelines [1305, 1266] are further described in Section 9.4.2.)

The EFEAR-4D method [1196] extends CFEAR 2D odometry [15] to 3+1D radar

point clouds. After computing a Doppler-based ego-velocity estimate and remov-

ing outlier points that do not agree with this least-squares estimate and therefore

can be assumed to come from moving obstacles, the remainder of the registration

scheme is similar to CFEAR: registering scans to a sequence of preceding key frames

and using agreement of normal vector and planarity for associating and weighting

individual point matches.

9.2.5 Motion Compensation

As discussed in Section 9.1.3.3, it is important to compensate for motion distortion

in odometry estimation. In the case of a low-speed spinning radar with a frequency

of 4 Hz, egomotion compensation is reported to reduce ATE (Absolute Trajectory

Error) by 29% by using a constant velocity model [15]. Given the time stamps of two

subsequent radar scans and the relative pose computed using the methods above, a

velocity can be computed and each radar point can be shifted accordingly, since the

per-point timing is also available. Offsetting the points of individual radar scans in

such a way compensates for the substantial motion that can be encountered during

the slow sweep of a scanning radar. The same model is also used to provide an initial

estimate to rigid scan registration, and after registering each motion compensated

scan to the previous, it is added as a node in the SLAM pose graph.

However, this approach still works in a discrete pose graph setting. Continuous-

time trajectory representations can be beneficial for obtaining a smooth and ac-

curate trajectory where the pose estimate used for undistortion can be queried at

the time of each sensory reading. In Ng et al. [809] a spline representation is im-

plemented in a pipeline that uses automotive SoC radars. Gaussian processes are

used in Burnett et al. [135] to form a factor graph representing the trajectory by

combining an IMU sensor with a spinning radar.

9.3 Radar Place Recognition

As with other sensor modalities, place recognition (PR) is an essential module for

radar SLAM. A good overview of the problem in general can be found in Chapter

8. As discussed in the chapters on visual and LiDAR PR, securing invariance to

both translational and rotational change is crucial, such as when traversing a street

in a different lane or arriving at a junction from another street.



9.3 Radar Place Recognition 267

Figure 9.10 Two radar scans obtained from the same location. The noise pattern induces
visual aliasing, complicating the process of place recognition.

9.3.1 Unique Challenges in Radar Place Recognition

While, in principle, several of the methods discussed in the earlier chapters could

be applied to radar data after proper data format conversion, some unique charac-

teristics and challenges exist (see also Section 9.1.3).

Several factors contribute to the key challenges in radar place recognition. Firstly,

the low resolution of radar data results in less details and thus fewer distinguishable

features for recognition. The wide beam of radar data contributes to angular am-

biguity, causing distant objects to appear as broad patches that differ significantly

when viewed from closer ranges. Additionally, a relatively low signal-to-noise ratio

poses challenges for place recognition if adequate filtering is not applied, as demon-

strated in Figure 9.6. Receiver saturation can produce a strong radial feature that

varies significantly with the observation angle of a particular target, as illustrated

in the sample image in Figure 9.10. Consequently, the appearance of a place can

change notably from nearby positions due to these challenges.

As there are different types of radars, place recognition needs to be handled

differently based on the type of sensor. How a place is perceived and described sig-

nificantly differs between a long-range 360-degree spinning radar and a SoC radar

with limited range and FOV. For example, a spinning radar produces a 2D radar-

gram, which can be treated as an image. Naturally, approaches inspired by visual

PR have been applied for the spinning radar. Applying a target detection algorithm

such as CFAR to the radargram results in a point cloud, after which methods from

2D LiDAR PR can be adapted. Spinning radars tend to have a very long range

which can be greatly beneficial for place recognition [575] yet their slow scanning

rate may lead to motion distortion even at low driving speeds. SoC radars, on the

other hand, have a faster update rate since they need not mechanically spin the

antenna in order to cover their field of view, and are therefore less susceptible to

motion distortion. Most methods that use SoC radar data for place recognition



268 Radar SLAM

work with a 2D/3D point cloud data format and not the full datacube. As a re-

sult, SoC radar PR often builds upon existing LiDAR PR methods; however, the

measurements from SoC radars are typically restricted to a small FOV and tend to

have higher sparsity and noise.

Currently there is more PR literature using spinning radars than SoC radars. This

is in part because spinning radars capture richer information over a wider FOV,

allowing them to better capture surrounding structures for robust PR, especially

for outdoor applications, and in part due to the availability of large-scale datasets.

However, this advantage does not prevent SoC radars from being used for PR.

While spinning radars offer a larger FOV, their projection model only provides 2D

information, losing elevation details. For indoor PR, where a shorter range and

smaller FOV are sufficient, the 3+1D measurements from SoC radars can still be

advantageous.

9.3.2 Learning-based Radar PR

For spinning radars, treating the 2D radargram as an image, 2D image retrieval

has been leveraged for place recognition.2

Saftescu et al. [968] is an early approach to PR from 2D FMCW radar which uses

a CNN to represent radargrams, specifically addressing their polar nature by using

cylindrical convolutions in order to learn a representation that is rotation invariant.

Then, a query radargram can be matched against a database of reference images

to produce an appearance-only topological PR system. De Martini et al. [255] add

pose refinement to produce a topometric mapping and localization system.

PR methods may be trained with augmented instances of the input data in order

to be more robust to slight variations. Given that PR data typically is recorded

sequentially, scan by scan while driving along a path,“augmented” instances can be

retrieved by sampling frames that are sequentially nearby and artificially adding

rotation by shifting the polar radargram. Contrasting to such augmented instances,

the network is trained not only to recognize similar instances but also to distinguish

instances (and their augmentations) that are sequentially far away. In this way,

data for training a PR algorithm can be obtained in an unsupervised way, without

knowing the true metric location of the radar data [360].

The methods mentioned above have been designed specifically for spinning radar

providing 360-degree long-range coverage. SoC radars, which are more attractive

for automotive applications given that they lack moving parts and have a smaller

size, require slightly different treatment since they typically have lower range and

smaller field of view.

Cai et al. [145] use a deep spatiotemporal encoder (after projecting the point

cloud to a 2D image plane) to generate feature vectors as place descriptors for

2 A more comprehensive overview can be found in [127].



9.3 Radar Place Recognition 269

topological PR. These vectors are passed through a NetVLAD [42] layer after being

re-ranked based on the RCS to filter out non-relevant stationary features. In this

case, multiple radar sensors are mounted around the vehicle to overcome the limited

field of view.

Herraez et al. [462] demonstrate single-scan radar place recognition with a pipeline

that addresses data sparsity and noise by learning to focus on salient points that

are important for place recognition. Similar to Cai et al. [145], Herraez et al. [462]

also leverage NetVLAD to generate a feature encoding. However, they capture

3D contextual information by using rigid kernel point convolutions, as opposed to

projecting the 3D point cloud to a 2D image. Furthermore, a ‘point importance

estimator’ outputs the probability of a point being important for place recognition.

This estimator is trained with sets of known corresponding point clouds, and query

points that have a correspondence within a small radius in the other scan are la-

belled important. RCS information is incorporated through an separate network

that encodes RCS data from the points into a more compact feature representa-

tion. Peng et al. [865] filters noise points in a similar way as the Doppler odometry

methods in Section 9.2.1. Using RANSAC to estimate the ego-velocity produces a

set of inlier points which are likely to be stationary. The remaining outlier points

can then be filtered as noise. Rather than using NetVLAD which was designed for

visual place recognition, Peng et al. [865] demonstrate a radar-specific feature ex-

traction backbone named MinkLoc4D which takes inspiration from LiDAR place

recognition architectures [1315].

9.3.3 Descriptor-based Radar PR

Using hand-crafted descriptors instead of learned embeddings is often effective as

well. A common approach for radar PR is to directly adopt LiDAR descriptors, such

as Scan Context [576], RING [1208], or M2DP [453]; though proper adjustments are

necessary due to the differing sensor data formats. For example, the 3D structural

information (e.g., height) is missing in spinning radar data, but can be replaced

with RCS. Furthermore, additional care should be taken with radar sensor data

to address its inherent challenges, often requiring careful noise filtering, sparsity

handling and motion compensation.

Hong et al. [482] implement place recognition by adapting the M2DP descriptor

[453] originally designed for 3D point clouds to 2D point clouds extracted from

radargrams. Additionally, they investigate the distribution of points on the 2D plane

to assess if a point cloud is likely to be distinctive or not. Performing PCA on the 2D

points produces two eigenvalues that describe the spread of the points along each

eigenvector. Point clouds where the eigenvalues are substantially different indicate

cases where the scan lacks features in one direction (such as data from highway

driving) and those scans are not considered for place recognition by Hong et al.



270 Radar SLAM

Jang et al. [518] modify the RING descriptor [1208] for radar. The descriptor

generated by RING is in a sinogram form providing roto-translation invariance.

The correlation between two sinograms should give the correct match for the PR

problem; yet, the high level of noise in radar images may prohibit a naive compar-

ison. Additional incorporation of auto-correlation has been shown to enhance the

PR performance for radar images.

Adolfsson et al. [16] adapt Scan Context descriptors made from 2D radargrams

in several ways. Firstly, they compute the sum of intensities for all points in a

Scan Context bin as a way to encode both the intensity and the point density.

Further, each descriptor is generated from an aggregated set of noise-filtered and

motion-compensated polar images in order to mitigate some of the challenges listed

in Section 9.3.1. Keeping only the k strongest returns along each azimuth direction

provides a conservative filter that tends to remove a large part of the noise otherwise

present in radar point clouds. Creating the Scan Context descriptor from multiple

registered point clouds further addresses the sparse data remaining after this con-

servative filtering. De-skewing the point cloud via a constant acceleration model is

important for generating comparable descriptors when using spinning radars while

driving.

PR methods designed for 3+1D SoC radars also commonly implement a variant

of the Scan Context descriptor [1266, 1305, 665]. However, as spurious radar points

can easily distort the height measurements, using the maximum height per radial

bin (as in the original Scan Context) is not always as effective for radar point

clouds as for LiDAR. The Intensity Scan Context descriptor [1151] is an alternative

that stores the maximum measured intensity value of the points in a Scan Context

bin rather than the height. Alternatively, the sum of intensities within a bin can

be used, so as to use both the intensity and the point density, thus being able to

encode vertical structures in the descriptor without being as susceptible to noisy

point positions. Another important factor when used with 3+1D radar is that

the modified radar descriptor should cope with a much narrower FOV compared

to the 360◦ LiDAR that Scan Context was designed for. Given that a place will

appear quite differently when observed from two different viewpoints, it is difficult

to achieve rotation invariance when the sensor only covers a small FOV. One way to

address this is to apply loop pre-filtering based on the current odometry estimate,

only attempting to match the current descriptor to those of frames within a certain

range of yaw angles (e.g., 20◦) [1266].

9.4 Radar SLAM

Radar SLAM systems generally implement the same overall structures as LiDAR-

or camera-based SLAM solutions. In this section we briefly describe notable systems

from the past two decades with a focus on aspects that are particular to tailoring



9.4 Radar SLAM 271

SLAM to radar data. We also describe multi-modal systems that combine radar

with other exteroceptive sensors in Section 9.4.3.

9.4.1 Map Representations

Many radar SLAM systems generate maps that rely on similar representations

discussed in Chapter 5. However, the sparse and often spurious nature of radar

measurements introduces unique challenges in the mapping process. Some earlier

works in radar mapping establish a map representation directly from existing target

detection models, often using landmark maps where individual detected targets

constitute the map [232, 279, 146, 988]. This target detection can also be used for

occupancy grid map as in the series of works by Mullane et al. [788], while exploiting

the detection probability [789] in the mapping phase.

A detected target, represented by an individual peak in the signal, can also be

treated the same way as a point from a LiDAR scan. For instance, these points can

be used to create 2D occupancy grid maps [737, 768] or point cloud maps [482]. The

extracted point cloud can also be augmented with additional information, as in [16]

which also computes the distribution of surrounding points to estimate orientation

and weights, similar to surfels or NDT cells. Direct point cloud representations are

also popular in emerging high-resolution SoC radars, which feature a larger vertical

field of view (3+1D) and a larger number of TX/RX antennas (e.g., 48 TX + 48 RX

antennas for the Sensrad Hugin radar) [1266, 1305].

While less common, the full radar heatmap – comprising intensity samples for

each direction and range bin prior to peak detection – can also be used to provide

a dense grid map [955]. In this case, the map represents a global heatmap of the

reflected power at each point in the environment, rather than evidence of occupancy.

The 2D alignment between these heatmaps is then achieved through correlation.

Kramer and Heckman [612], in addition to generating odometry, presented a

novel sensor model for voxel based mapping of radar data, capable of creating sparse

maps even through visual occlusions. The sensor model leverages the log-odds based

estimation of occupied vs free cells used in Octomap [486], but replaces their ray-cast

model. The Octomap ray-cast model assumes that the first contact of a sensor is the

only relevant point of occupation, but the generalized model accounts for radar’s

ability to penetrate certain material types by updating voxel probabilities within

the sensors field of view, increasing probabilities in cells with radar returns and

decreasing probability with missed scans, without assuming information along a ray.

A related grid-map representation specifically designed with radar in mind is due to

Nuss et al. [821] who designed a state estimation filter to address dynamic obstacles

in grid maps called a probability-hypothesis-density multi-instance Bernoulli filter.

This filter casts grid cells as a finite stochastic set, and fuses radar and lidar data

dynamically.

Lastly, the challenges of lower density and higher noise in radar data can be



272 Radar SLAM

addressed using machine learning techniques [1206, 779], where LiDAR data serves

as ground truth to achieve higher resolution and reduced noise in radar outputs.

Mopidevi et al. [779] build a global radar map, where patches of the map are

upscaled using a predictive network that filters noise from free-space regions and

fills in sparse and empty regions, generating a map more similar to what can be

obtained with LiDAR data.

Recently, neural fields, originally developed for RGB data [771] and later applied

for LiDAR data [1288, 1061] have been applied to 2D radar data as well [104]. The

key feature of neural representations is that they implicitly represent the environ-

ment such that the neural network can be queried with a point in space and return

a quantity such as the distance to the closest surface, the colour and opacity, etc.

In the radar fields of Borts et al. [104], a physics-informed radar sensor model as

used to create an implicit neural geometry and reflectance model which can then

be used to synthesize radar measurements from unseen view points. The received

power at the radar sensor depends on the known transmit power and antenna gain

but also the RCS which is composed from the size, radar reflectivity and directivity

of the object. The neural representation learns to decompose the measured RCS

into size (area) on the one hand and the product of reflectivity and directivity on

the other hand.

9.4.2 Radar SLAM

In the preceding sections we have covered the main components that make up graph-

based radar SLAM frameworks: open-loop odometry estimation, place recognition

for loop closure detection, and map representations—in addition to some of the

physical and technical principles that are pertinent to radar SLAM.

This section reviews a number of complete SLAM pipelines that use radar as the

only exteroceptive sensor and discusses how they implement the components. These

pipelines generally follow the same architecture as shown in Figure 9.1, with a front-

end that has a filtering process to the raw radar data into a point cloud and a place

recognition module to identify loop closures and add the corresponding constraints

to the underlying pose graph, and a back-end mapping module that performs frame-

by-frame odometry and SLAM-proper module that globally optimizes the map

when loops have been detected.

Working with 2D radargrams from a spinning radar, the TBV-SLAM (“trust but

verify”) pipeline [16] builds upon the CFEAR 2D radar odometry method discussed

in Section 9.2. The pose of the sensor is tracked using every radar scan in sequence

but in the interest of efficiency, a sparser set of key frames is included in the SLAM

pose graph. Once the estimated traveled distance exceeds a certain threshold (e.g.,

1.5 m) a new key frame is added to the pose graph and an odometry constraint

is created based on the alignment to the latest key frame. As usual, a constraint

in the graph requires both the relative pose offset between the two nodes and the



9.4 Radar SLAM 273

Figure 9.11 Example 3D map produced with radar SLAM using 3+1D radar (Sensrad
Hugin) and IMU input. Color denotes height. Left: before loop closure. Note the accumu-
lated horizontal and vertical drift that is evident in in the left part of 3D map. Right: after
loop closure.

associated uncertainty expressed as a covariance matrix. Interestingly, it has been

shown [16] that using a predefined diagonal covariance matrix with small values

performs better than estimating the covariance based on the Hessian of the reg-

istration cost function, which might otherwise be expected to better capture the

uncertainty stemming from the shape of the input point clouds such that a pair of

point clouds from a tunnel would give a larger uncertainty (along the tunnel’s di-

rection), for example. However, using the Hessian tends to under- or overestimate

the uncertainty which may cause the back-end optimization to slightly misalign

the key frames. A central part of the TBV-SLAM pipeline is the place recognition

module, where several candidate loop closures are retrieved (“trusted”) and later

tested after which the verifiably best candidate is selected. The Scan Context de-

scriptor [571] (see 9.3.3) is adapted to account for both point density and signal

strength (in lieu of the height data that is unavailable in 2D radar). Additionally,

several techniques are implemented for retrieving and verifying loop candidates.

For each key frame, several augmented descriptors are created by shifting the point

cloud by lateral translation offsets. When searching for loop closures, the query

descriptor is matched to all the augmented descriptors currently in the database,

in order to account for loop closures where the vehicle is driving in a different

lane. Loop candidates found by matching descriptors in this way are then filtered

based on the odometry estimate (which hinges on having accurate enough odometry

over large distances). After propagating the uncertainty from the odometry con-

straints between the query and candidate, candidate loop closures where the two

scans are estimated to be far apart can be discarded. However, jointly considering

the descriptor similarity and odometry uncertainty further improves the robust-

ness of loop retrievals. That is, instead of finding the most similar candidate c to a

query descriptor q such that c = arg minc ddescriptor(q, c) and then filtering based on

odometry, the candidate is found from c = arg minc ddescriptor(q, c) + dodometry(q, c),

where dodometry is computed as the likelihood of frame q being at the same place



274 Radar SLAM

as c taking the accumulated odometry uncertainty into account. Pairs of radar

scans thus found are then aligned with the CFEAR registration module and finally,

an alignment verification module which includes overlap measures as well as the

CorAl [14] measure trained to detect slight misalignments. All in all, this pipeline

demonstrates a number of techniques used to adapt descriptor-based place recog-

nition to radar data (taking into account the multiple signal returns available in a

2D radargram and compensating for the comparatively sparse and slow scanning)

and to sift through multiple loop candidates in order to verify the best ones based

on geometric alignment as well as the front-end pose estimate.

The RadarSLAM pipeline of Hong et al. [482] is another prominent example of

radar SLAM with 2D spinning radar data. In this pipeline, odometry (open loop

pose tracking) is achieved by tracking key points detected directly in the radargram.

A blob detector generates key points which are then tracked from frame to frame

with a Lucas–Kanade tracker [715]. From the traveled distance computed by the

tracker, a constant velocity model is used to compensate for the motion during one

revolution of the scanner, and transformed key points are stored in the factor graph

together with the poses of the key frames. Key frames are, as above, selected based

on traveled distance. While pose tracking is done with a sparse set of key points, for

loop closure detection denser point clouds are extracted from the radargrams. This

point cloud extraction is done similarly as in TBV-SLAM [16]; however, instead of

selecting the k strongest points per azimuth, RadarSLAM selects all points with an

intensity higher than one standard deviation over the mean value. M2DP descriptors

[453] are then created from the point clouds of the key frames, and loop closures

are detected by matching frames with similar descriptors. As a safeguard against

matching nondescriptive point clouds, RadarSLAM avoids selecting loop closures

from key frames that are too elongated; i.e., where the two eigenvalues computed

from PCA are markedly different, since such point clouds are expected to be from

non-unique places like a highway section. No other loop verification is performed.

One example of a SLAM pipeline based on SoC 2D radar is due to Schuster et al.

[988]. Differently to the methods above, they maintain a graph that consists not

only of the sensor poses but also individual radar feature nodes, whereas TBV-

SLAM and RadarSLAM only optimize a graph of poses (although radar points are

associated to the pose nodes in order to facilitate place recognition and rendering of

the map). As 2D SoC radars generally provide far fewer detections than 360-degree

spinning radars or 3+1D SoC radars, maintaining all detections in the optimizable

graph is more feasible here. Edges are added in the graph to represent observations

between all concurrently observed features. Their landmarks are extracted using a

binary annular statistics descriptor (BASD [915]). As BASD is a compact binary

descriptor, it is feasible to directly compare the descriptors of all feature points

in a local region so as to associate recent features with those already in the map.

Those features that pass a RANSAC outlier rejection stage are added as vertices to

the graph, along with a pose node with odometry information from wheel encoders.



9.4 Radar SLAM 275

Assuming moderate drift from open-loop tracking, no explicit place recognition step

is included, but point features can be matched with the BASD descriptors after loop

closure, after which the SLAM graph is optimized in the back-end.

Two recent approached to 6DOF radar SLAM with 3+1D SoC radar are 4DRadarSLAM [1266]

and 4D iRIOM [1305], both using 3D radar point clouds as input, where the point

detection (filtering of the datacube) is handled onboard the sensor itself, so CFAR or

other peak detection is not explicitly included in the SLAM pipeline. Still, the input

point cloud may contain a lot of noise points. The Doppler radial velocity informa-

tion included in the 3+1D point clouds is exploited by both methods to filter points

from moving objects. The vehicle’s ego-velocity can be estimated from linear least

squares of the measured Doppler point velocities, and outlier points for which the

velocity model does not agree are removed. iRIOM further denoises the point clouds

by keeping as inlier points only those that have sufficiently many neighbor points

(within a fixed radius) and where those points are compactly distributed (consid-

ering the covariance matrix of their spatial distribution). The Doppler ego-velocity

estimation is used as a prior to a scan-to-submap registration step. 4DRadarSLAM

uses a variant of GICP [990] termed APDGICP where points are weighted by a co-

variance matrix that assigns a higher uncertainty to points far from the sensor due

to the limited azimuth and elevation angle accuracy. The submaps (key frames) are

inserted into a graph. Loop closures are detected by Scan Context matching, and

as opposed to the 2D methods above, the original Scan Context descriptor that in-

cludes point elevation can be used. While 4D iRIOM uses the original Scan Context,

4DRadarSLAM uses Intensity Scan Context [1151] in order to avoid uninformative

descriptors due to noisy elevation measurements. 4DRadarSLAM additionally in-

cludes a validation step to reject candidate matches returned by Scan Context

if the accumulated odometry distance between the two frames is above a certain

threshold.

9.4.3 Multi-modality in Radar SLAM

So far we have mostly been concerned with methods for radar SLAM that use only

radar data and in some cases propriocetive sensing like IMU or wheel odometry.

In this section we discuss systems that combine mmWave radar with other extero-

ceptive sensors (e.g., LiDAR, camera) or external data (satellite imagery or prior

maps).

Some works in radar mapping have employed radar–LiDAR fusion so as to gen-

erate the best possible set of points given the current visibility conditions (trusting

LiDAR more in clear conditions and radar more in low visibility). Fritsche et al.

[350, 351] fuse the sensors based on estimated ranges to determine which sensor to

trust in a given case. Radar and LiDAR have also been combined to improve place

recognition, overcoming different sensor modalities by registering radar to LiDAR

maps [1242, 1243].



276 Radar SLAM

Doer and Trommer [281] extend ROVIO [96], which is a filter-based visual-inertial

odometry approach, to integrate radar egovelociy estimates using the Doppler

odometry approach described in Section 9.2.1 [280]. In a similar way, also ther-

mal camera data can be fused with radar to achieve a multi-modal radar-thermal

estimation pipeline [281]. Zhang et al. [1267] combine data from thermal camera

and a 3+1D radar point cloud in order to get robust frame-to-frame odometry in

low-visibility settings. A transformer-based feature matcher detects corresponding

points in sequential thermal frames and the radar point cloud is used to improve

the depth estimate.

In terms of using multi-modal data for radar-based navigation, it is also worth

mentioning methods that make use of overhead images and road maps, although

most works in the literature exploit this kind of data specifically for localization,

rather than for full SLAM. Hong et al. [483] demonstrate how 2D scanning radar

data can be used to localize in prior public maps such as OpenStreetMap. Their

system runs odometry using RadarSLAM [482] and represents the estimated pose

of the sensor as a Gaussian mixture model. Line segments corresponding to building

walls are extracted from OpenStreetMap which is used as a prior. Oriented points

that are extracted from the radargram are then matched to the features of the

prior map. However, given that the prior map information is uncertain and may be

incomplete or outdated, this point-to-feature data association is challenging. Poses

are sampled from the Gaussian mixture model of the current pose estimate and

for each pose the oriented points of the current radar scan are matched to the line

features of the prior, which localizes the scan to the prior. Another method that

uses prior map data, in this case satellite imagery, for localising 2D radargrams is

RSL-Net [1073], which consist of a set of deep neural networks. The first generates

a synthetic image from an input overhead photo, showing what a radargram from

that place might look like. Another networks estimates the relative rotation between

a real radargram and an overhead photo (via the synthetic radargram generated in

the previous network). Finally, another network estimates the relative translation

offset between the radargram and the overhead image.

Some systems make use of so-called ultra-wideband (UWB) radio sensing. While

UWB also uses electromagnetic waves within the radio spectrum and is sometimes

referred to as UWB radar, the ranging capabilites of UWB differ dramatically

from mmWave radar. When used in a radar SLAM framework, UWB radar is

mostly used to detect similarities between sensor readings from different places. The

frequency reponse after sending out a wide-band and wide-beam signal can provide

a signature of the current location. The metric information is instead derived from

wheel encoders or IMU data. Schouten and Steckel [984] and Takeuchi et al. [1070]

use a database of UWB wave signatures to detect revisited places, For each place

(node), a signature from the radar echo is stored along with the estimated pose.

A graph is then created and optimized with odometry and loop constraints. Both

approaches rely on odometry to obtain distances between nodes (i.e., edges in a



9.5 Radar Datasets 277

graph) for metric SLAM and the signatures are created using a pulse-echo UWB

sensor. Premachandra et al. [893] conversely use UWB radar to detect point features

to be used in a landmark-based SLAM framework. They make use of multiple radar

modules on each side of the robot and use trilateration of matched peaks in the

signals from the sensors on either side to detect landmarks. In addition to the above,

several UWB-based localization approaches use anchor-tag sensor configurations,

where anchors are fixed to known locations and a battery-powered UWB tag is

mounted on the robot or the asset to be localized. However, as this approach requires

preinstalled infrastructure it is not directly related to SLAM.

9.5 Radar Datasets

In this section, we briefly summarize notable datasets from the radar SLAM liter-

ature. The datasets as also listed in Table 9.1.

Spinning Radar The datasets with spinning radar in Table 9.1 all use Navtech 2D

radar sensors. Two of the first large-scale radar datasets for odometry and SLAM

are the Oxford Radar Robotcar dataset [61] and MulRan [575]. These datasets

have both been quite well used in the literature. The Oxford dataset covers a set of

traversals of an urban driving route, totaling 280 km in various weather conditions.

The MulRan dataset covers a more diverse set of environments, both dense urban

and more rural driving, and longer time spans between sessions, but less driving

in total. MulRan focuses on facilitating PR research but has also been well used

to benchmark odometry and SLAM methods. The Boreas dataset [134] includes

data from driving a route repeatedly over the course of one year (385 km in total),

notably including adverse weather conditions such as snow and rain. In addition

to SLAM-related benchmarks, this dataset also includes benchmarks for object

detection (cars, pedestrians, cyclists). The Oxford Offroad Radar Dataset [361] is

focusing on non-urban driving, in contrast to the other datasets in Table 9.1. This

dataset covers about 154 km driving on unpaved roads and mountain trails in

unpopulated areas.

SoC Radar Several SoC radar datasets are also available, both with 2+1D and

3+1D data. Some datasets geared towards autonomous driving focus primarily on

object detection but have also been used for developing and testing SLAM ap-

proaches. NuScenes [143] combines data from five Continental ARS408-21 radars

mounted on the car used for data collection with one LiDAR and six cameras. The

dataset focuses on urban driving, in four cities, and notably includes annotated

labels for object detection of 23 object classes. RadarScenes [987] is a dataset with

four 77 GHz automotive 2+1D radars (unnamed) and one camera. It focuses on se-

mantic perception and contains labels for 11 object types, but lacks accurate ground

truth as well as IMU and LiDAR data. ColoRadar [614] is a radar SLAM dataset



278 Radar SLAM

Dataset Lidar Cameras Ground truth Environment Inclement Weather

Spinning

radar

Oxford Radar RobotCar [61] Yes Stereo/Mono GPS/IMU + VO Dense Urban !, �

Boreas [134] Yes Mono GPS/IMU + RTK Sparse Urban !, �, �

MulRan [575] Yes No SLAM Mixed Urban –

RADIATE [1007] Yes Stereo GPS/IMU Mixed Urban !, �

OORD [361] Yes Mono GPS Urban and Offroad �, �

SoC

array

radar

nuScenes [143] Yes Stereo GPS/IMU Mixed Urban and Natural !

RadarScenes [987] No Mono None Mixed Urban Roadways !, �

ColoRadar [614] Yes No SLAM Varying –

NTU4DRadLM [1268] Yes Mono SLAM Mixed Urban –

MSC-RAD4R [220] Yes Stereo GPS + RTK Mixed Urban \, �, �

Snail [490] Yes Stereo TLS Roadways and Tunnels !, �

K-Radar [842] Yes Stereo GPS/IMU + RTK Roadways !, �, �, �

TruckScene [332] Yes Stereo GPS/IMU + RTK Roadways !, �, �, �

Both HeRCULES [577] Yes Stereo GPS/IMU + RTK Mixed Urban and Natural !, �, �

(!: Rain �: Snow �: Night �: Fog \: Smoke)

Table 9.1 Overview of public radar-related datasets. In the ‘ground truth’ column,

VO denotes visual odometry, TLS denotes survey-grade terrestrial laser scans,

RTK indicates GPS with real-time kinematic corrections.

with data from a 3+1D Texas Instruments MMWCAS-RF-EVM board as well as

2+1D Texas Instruments module, in addition to IMU and 3D LiDAR data. Notably,

this dataset includes raw analog-to-digital converter (ADC) values from the radar

sensors in addition to 3D ‘heat maps’ (data cubes) and individual point targets. It

covers both indoor and outdoor data, as well as data from an underground mine,

and includes 6-Degree of Freedom (DoF) ground-truth tracking for pose estimation.

NTU4DRadLM [1268] and MSC-RAD4R [220] both include high-resolution 3+1D

radar data from an Oculii Eagle sensor. NTU4DRadLM covers structured (uni-

versity campus) and unstructured (park) environments and MSC-RAD4R covers

urban and rural on-road driving. The Snail-Radar dataset [490] features two high-

resolution 3+1D radars: both Oculii Eagle and Continental ARS548, and includes

data from handheld collection and on-road driving in urban environments.

9.6 Outlook and challenges

Radar SLAM pipelines that work in 3D are still rather few but as high-resolution

SoC sensors develop we can expect there to be more work on fully 3D odometry

and place recognition for radar. This will be particularly important on drones, for

example, where radar is less utilized today. Creative designs will be required to

enable 3D wide field-of-view radar units. In the meantime, we are likely to see

significant advancements in handling constellations of several small field-of-view

(FoV) radars in SLAM. This naturally comes along with calibration and other

issues.

There will also likely be a shift towards making better use of the raw radargrams

and datacubes, which contains spectral data. Traditional radar SLAM systems often

resort to generating point clouds to interpret the environment. However, future sys-

tems are expected to take fuller advantage of the rich spectral information available



9.6 Outlook and challenges 279

in radar data, providing more detailed and nuanced maps and improving both ob-

ject detection and classification. One challenge to this is convincing manufacturers

to open up access to the raw output of their products for research.

Radar semantic segmentation may also play a more prominent role in place recog-

nition. By leveraging segmentation techniques, SLAM systems can more effectively

differentiate between various types of objects in the environment, allowing for more

intelligent navigation and decision-making. This will also help in reducing ambigu-

ities in radar returns, leading to more reliable mapping.

Finally, there will be a greater focus on multi-modal data approaches, which

integrate radar data with other sources of information including other sensors and

also geographic priors (e.g., OpenStreetMap). For example, by combining radar

observations with these priors, radar SLAM systems may be able to localize more

accurately in large-scale outdoor environments, further enhancing the robustness

and reliability of autonomous systems.



10

Event-based SLAM
Guillermo Gallego, Javier Hidalgo-Carrió, and Davide Scaramuzza

An inquisitive reader would notice that SLAM is paramount in applications that

involve interpretation of spatial relationships and interaction with the surroundings

to solve complex real-world problems. SLAM’s primary sensors are critical for the

system’s success and adaptability. Visual SLAM is the most extended category of

all because cameras are broadly available (affordable) and produce an intuitive and

informative signal that allows us to sense the world in a wide range of scenarios

(e.g., yielding lightweight systems that do not require additional infrastructure like

GNSS). Despite the progress so far, state-of-the-art artificial intelligence systems

are not as effective (robust and efficient) in real-world tasks as their biological coun-

terparts. Standard cameras sense the world at a fixed frame rate that is independent

of the scene dynamics. Thus, they become blind in the time between frames, in-

troduce latency, potentially lose tracking, and produce large amounts of redundant

data if nothing moves in the scene. This chapter pursues the visionary challenge of

understanding and building visual SLAM systems that are fast (not limited by a

frame rate), low-power, and robust to broad illumination conditions by leveraging

the bioinspired technology of silicon retinas or “event cameras”, which overcome

several of the limitations of standard cameras. See Fig. 10.1.

10.1 Sensor Description

10.1.1 Working principle

In contrast to traditional cameras, which acquire full images at a rate given by an

external clock (e.g., 30 Hz), the pixels of event cameras like the Dynamic Vision

Sensor (DVS) [668, 369] operate independently from each other, responding to

brightness changes in the scene asynchronously, as they occur (Figure 10.2b). These

pixelwise changes are due to scene illumination (e.g., flickering lights) and/or to the

relative motion of the camera and the scene (including moving objects). Hence, the

output of an event camera is a sequence of digital “events” (or “spikes”), where

each event represents a change of brightness (logarithmic intensity). This encoding

is inspired by the spiking nature of biological visual pathways (Figure 10.2a).



10.1 Sensor Description 281

Figure 10.1 Drone with a downlooking DAVIS camera [117] (240×180 px) performing an
autonomous flight using a visual-inertial odometry (VIO) algorithm [949] for state estima-
tion. The high speed and high dynamic range of the event camera data are leveraged to
operate in difficult illumination conditions. The insets show features (i.e., keypoints) de-
tected and tracked in grayscale frames (left, motion-blurred) and in motion-compensated
images of warped events (middle, sharp). The event data (in red/blue according to polar-
ity) clearly respond to the scene contours. The same VIO algorithm [949] is also demon-
strated on high-speed scenarios, such as an event camera spinning tied to a rope. Image
from [369] (©2020 IEEE).

Specifically, each pixel memorizes the logarithmic intensity L each time it sends

an event, and continuously monitors for a change ∆L of sufficient magnitude from

this memorized value (Figure 10.2). When the change reaches a threshold C,

∆L
.
= L(xk, tk)− L(xk, tk −∆tk) = pkC, (10.1)

the camera sends an event, ek
.
= (xk, tk, pk), which is transmitted from the chip

with the x, y pixel location xk, the time tk, and the 1-bit polarity pk ∈ {+1,−1} of

the change (i.e., brightness increase or decrease). ∆tk is the time elapsed since the

previous event at the same pixel.

Event cameras are data-driven sensors: their output depends on the amount of

motion or illumination change in the scene. The faster the motion, the more events

per second are produced because each pixel adapts its sampling rate to the rate of

change of the intensity signal that it monitors.

Bio-inspiration: The transient pathway. Event cameras are inspired by the op-

eration of biological visual pathways, which are the information processing routes

in animals and humans. Following the two-stream hypothesis, the dorsal stream

(also called “transient” or “where” pathway) is dedicated to processing dynamic

visual information (e.g., motion in the scene), whereas the ventral stream (called

“sustained” or “what” pathway) is dedicated to object and visual identification and



282 Event-based SLAM

(a)

(b)

(c)

Figure 10.2 Working principle of an event camera (e.g., DVS): (a) Three-layer model of
a human retina and corresponding DVS pixel circuit; (b) Schematic of the operation of a
DVS pixel, converting light into events (spikes), with the colors of the signals matching
those of the layers in (a); (c) Comparison of the response of a standard camera and an
event camera to a visual stimulus consisting of a black dot on a rotating disk. An event
camera transmits the brightness changes continuously, forming a spiral of events in space-
time. Red color: positive events (ON spikes), blue color: negative events (OFF spikes).
Image adapted from [891]. TODO: Reuse permission for (a) and (b)

recognition. The DVS [668] corresponds to the part of the transient pathway from

the photoreceptors up to the ganglion cells, adopting a simplified 3-layer pixel de-

sign that balances biological fidelity and circuitry stability (Figure 10.2). The three

layers realize the functions of light conversion, delta-modulation and comparison,

respectively. Cameras like the Asynchronous time-based image sensor (ATIS) [890]

or the Dynamic and Active-Pixel Vision Sensor (DAVIS) [117] model both visual

pathways, and therefore output two types of signals: DVS events and grayscale in-

formation (e.g., images). More details of the main event camera types are provided

in [891, 369].

10.1.2 Advantages of Event Cameras

The sensing principle of event cameras is radically different from that of standard

(exposure-based) cameras that have dominated computer and robot vision for the

last seven decades, and it offers numerous advantages:

High Temporal Resolution: events are detected and timestamped with microsec-

ond resolution, which enables capturing very fast motions without suffering from

motion blur typical of frame-based cameras. Events are produced almost continu-

ously in time, thus avoiding blind times that can cause large inter-image displace-

ments and ruin data association in standard cameras.



10.1 Sensor Description 283

Low Latency: each pixel works independently, without waiting for a global expo-

sure time, thus events are transmitted as soon as a brightness change is detected,

with submillisecond latency.

Low Power and Bandwith: events represent non-redundant temporal data, hence

power is purposely spent. Bandwidth is also reduced (compared to a traditional

camera operating at the same rate). At the die level, cameras consume less than

10 mW, allowing embedded systems to consume 100 mW or less [38].

High Dynamic Range (HDR): the range of light values that event cameras can

sense is very high (typically >120 dB vs. 60 dB of standard cameras), enabling them

to sense very dark (moonlight) and very bright (daylight) regions, simultaneously.

Hence, they do not suffer from under/over-exposure typical of frame-based cameras.

This property is due two facts: each pixel works independently and converts light

to voltage in logarithmic scale.

10.1.3 Current Devices and Trends.

Which event camera should I buy or use to solve my SLAM problem? We often

get asked this question by people entering this emerging field. The characteristics

of event cameras are often compared via tables [369, Tab. 1], [168, Tabs. 1–2].

Although multiple event camera designs exist, most of them are laboratory proto-

types. Only a few make it into commercialized devices that enable the exploration

of novel solutions to classical as well as new problems, such as event-based SLAM.

Among the devices commercialized by the main manufacturers (SONY, Samsung,

iniVation / SynSense, Prophesee, Omnivision), some trends are worth mentioning:

Pixel size: following the megapixel race of traditional cameras and pressure from

industry requirements, the pixel pitch (i.e., size) has considerably decreased, from

40 µm (DVS128 [668]) to less than 5 µm [334]. DVS pixels carry out more operations

(modulation, comparison, etc.) than their traditional counterparts; hence, they re-

quire more transistors, which are more difficult to pack in the same sensor area.

To maximize the area of the pixels exposed to light (that is, the fill factor) and

reduce the gap between the photoreceptive parts of the pixels, stacked technology

and backside illumination have been adopted [334].

Grayscale output: early devices such as the DAVIS or ATIS concurrently output

grayscale data (e.g., images [117]), which is especially useful in applications with

stationary cameras (albeit this is not the usual scenario in SLAM). Newer models

such as HD event cameras [334] discontinued the grayscale output in favor of more

area for the event output, driven by the megapixel race.

Color is not essential in many motion-related tasks, and therefore only a couple

of event camera models offer color filters to detect changes in respective color chan-

nels (red, green and blue – RGB) [776].

Inertial data: some cameras also provide data from an inertial measurement unit

(IMU) integrated in the same device. IMUs are valuable complementary proprio-



284 Event-based SLAM

ceptive sensors to cameras, enabling visual-inertial odometry (VIO) (sensor fusion),

yielding higher robustness and accuracy than single-sensor systems.

It is unrealistic to think that high-spatial–resolution event cameras are per se

better than low-resolution ones. While capturing fine spatial details is important,

noise and bandwidth also play an important role in the target application require-

ments. In SLAM and related tasks, where event cameras may move fast and/or

over high-textured scenes, HD (1 Megapixel) event cameras can produce hundreds

of millions of events per second. This poses problems, such as saturation of the

output transmission bus of the camera), and high processing demands; currently

there is no algorithm-and-hardware combination that can process such event rate

in real time (without resorting to array-like conversion and/or sub/downsampling).

New hybrid sensors, such as [1233], with lower spatial resolution for events than

for intensity output, or foveated sensors [325], mimicking biological vision to de-

crease bandwidth), are being developed; they may provide alternative solutions to

the above issue. In SLAM, a lower pixel resolution (e.g., QVGA) is preferred for

algorithm prototyping and for real-time operation on computationally-constrained

robots. Often the choice of field of view (optics) is as important as the pixel count.

10.2 Challenges and Applications

Event cameras represent a revolutionary technology in visual data acquisition.

Hence, they pose the challenge of designing novel methods (algorithms and hard-

ware) to process the acquired data and extract valuable information from it, un-

locking the advantages of the sensor. In particular, the main challenges are:

Dealing with the space-time output: The output of event cameras is fundamen-

tally different from that of standard cameras: events are asynchronous and spatially

sparse, whereas images are synchronous and dense. Hence, visual SLAM algorithms

designed for image sequences are not directly applicable to event data.

Dealing with motion-dependent data: Unlike images, each event contains binary

(increase/decrease) brightness change information that depends not only on the

scene texture, but also on the relative motion between the scene and the camera.

Dealing with noise and dynamic effects: Event cameras are noisy because of the

inherent photon shot noise, transistor circuit noise, their dependency on the amount

of incident light, non-idealities and low-power (sub-threshold) operation.

These challenges call for new approaches that rethink the space-time, photometric

and stochastic nature of event data. In the context of SLAM, this poses questions

such as: What is the best way to extract information from the events for pose or

depth estimation? What map and camera trajectory representations shall be used

that take into account the quasi-continuous temporal granularity and sparse nature

of event data? How to establish correspondences (data association) under motion-

dependent data? How to model the problem (and its solution) without introducing

the typical bottlenecks of frame-based technology?



10.3 Methodology Overview 285

The above questions have been driving the research on event-based SLAM (Fig. 10.3).

This topic has evolved both on its own and in conjunction with other tasks, i.e., re-

search on event-based SLAM has fostered research on other event-based tasks. For

example, the synergy between SLAM and image reconstruction (the task of recov-

ering absolute intensity from events) has been leveraged as early as the first works

[237, 578] (rotational-motion SLAM) and [579] (6-DoF SLAM). Event-based SLAM

and optical flow estimation have been treated together in [237, 1238, 1016, 593].

10.3 Methodology Overview

Event-based SLAM methods can be broadly categorized in two, depending on how

many events are processed simultaneously: (i) methods that operate on an event-by-

event basis, where the state of the system (e.g., scene map and camera trajectory)

can change upon the arrival of a single event, thus achieving minimum latency, and

(ii) methods that operate on groups / batches / slices / packets of events, which

introduce some latency. A key design choice in the latter category is how to select

the size of the packet, for which many solutions have been proposed (e.g., fixed

number of events, fixed temporal duration, and hybrid criteria).

Orthogonally, depending on how events are processed, model-based approaches

and data-driven (i.e., machine learning) approaches can be distinguished. Mimick-

ing the categorization in frame-based SLAM, event-based SLAM methods can be

classified into indirect methods (feature-based, using event corners, lines, normal

flow, etc.) and direct (using all events). This categorization is related to the type of

objective or loss function used: geometric- vs. photometric-based (e.g., a function

of the event polarity or the event rate/activity), and also to the overall philosophy:

indirect methods typically have two steps (a feature extraction step, which “con-

verts” events into geometric primitives, followed by a geometric SLAM pipeline),

whereas direct methods typically comprise a single step that maps event data into

motion and scenen parameters. In the latter, the event generation model (10.1) (or

its linearized version [369]) is a cornerstone for designing estimation methods. Han-

dling data association between events is a central problem in event-based vision,

and SLAM in particular. Due to the high temporal resolution of event cameras,

data association is typically handled by temporal and spatial vicinity; both hard-

association and soft-association strategies have been explored.

Each of the above categories has advantages and disadvantages. The problem of

solving SLAM with event cameras is challenging, and has been historically tackled

with increasing complexity along several axes: the number of unknowns (degrees

of freedom – DoFs), the type of motion (from rotational or 2D scenarios) to 6-

DoF motion, the scene complexity (texture) and its motion (static vs. dynamic –

independent moving objects – IMOs). Event-based SLAM is not an isolated prob-

lem; as mentioned in Sec. 10.2, it has connections with other problems (optical

flow, tracking, segmentation, etc.), in stronger or weaker form depending on the



286 Event-based SLAM

Figure 10.3 Event-based SLAM is actively being investigated, with systems that explore
a large variety of approaches, including classical methods and more recent deep learning
solutions. Since events are triggered by moving edges on the image plane, it is natural
to recover scene maps in the form of edges (e.g., sparse or semi-dense 3D maps). Images
adapted from EVO [921] (©2017 IEEE), EDS [469] (©2022 IEEE), CMax-SLAM [423]
(©2024 IEEE), Kim et al. [579] (TODO: Reuse permission), ESVO2 [818] (©2025 IEEE),
DEVO [593] (TODO: Reuse permission) and Wang et al. [1154] (TODO: Reuse permis-
sion).

assumptions or scenario considered. In addition to the above-identified trends, it is

noticeable that early research has focuses on model-based methods, whereas more

recent papers explore the possibilities that deep-learning–based approaches offer.



10.4 Front-end 287

10.4 Front-end

Event-based SLAM systems often consist of several modules, which tackle smaller

subproblems, such as feature extraction, data association, bootstrapping, pose es-

timation, depth estimation, etc. A primary division consists of the front-end and

the back-end. From an input-output point of view, the front-end receives the raw

sensor data (plus possibly auxiliary information, such as camera calibration) and

outputs a set of event camera poses and scene map(s) (see Fig. 10.4). The back-

end refines these variables (i.e., the SLAM problem unknowns) to improve the fit

between them and the sensor data. It operates after the front-end, at a slower pace

(depending on the number of variables involved) and can feed back its output to

the front-end to help reduce drift and correct errors.

Therefore, the front-end converts the information from the sensor (e.g., photons)

into geometric primitives (e.g., camera poses) and also photometric information

(e.g., map appearance). This often comprises a step of “feature” or “information”

extraction. Hence, the first challenge is to understand the information contained

in the event stream and be able to extract it using methods that preserve the

characteristics of the data (low latency, sparsity, HDR, etc.). Assuming constant

illumination, events are caused by moving contours (edges). Therefore, we may

consider a moving event camera as an asynchronous edge detector, which means

that the SLAM problem is formulated in terms of scene contours (Fig. 10.3). This

is a priori sensible because contours are the most informative regions of the image

plane, allowing us to estimate retinal motion, from which 3D information is inferred.

Each event consists only of a 4-tuple and is subject to noise, hence it carries little

information; thus many events (e.g., thousands, millions) are needed to produce

reliable estimates of quantities such as camera poses and scene maps. Extraction

of information from the event stream depends on the task and on many design

choices, such as the type of representation of the SLAM variables (scene map,

camera trajectory), the hardware used to process the data, the output rate, etc.

10.4.1 Pre-processing. Event Representations

In the SLAM problem, the event camera continuously outputs data as it moves

through the scene. Events are triggered “everywhere” on the image plane, as from

the camera’s point of view it appears that all scene edges are moving. Since events

are sparse and have microsecond resolution, each of them corresponds to a differ-

ent camera pose. This is radically different from traditional (frame-based) cameras,

where all pixel measurements of an image have the same timestamp and therefore

share a common camera pose (this is the paradigm on which traditional multi-view

geometry [444] has been built). Many SLAM methods convert event data into al-

terantive representations (event images, time maps or “time surfaces”, voxel grids,

etc.) [369] for different reasons, such as compatibility with conventional computer



288 Event-based SLAM

roll pitch

yaw Events Front-end EMBA Poisson

Figure 10.4 Event-based SLAM pipeline with a front-end (that computes and a map and
camera poses) and a back-end (that refines the map and poses). Since events respond to
moving edges, the recovered map is often an edge (gradient) map. The example shows a
direct, rotational SLAM pipeline (poses consists of rotations, and the map reduces to a
panoramic map) [424]. An absolute intensity map may be recovered by Poisson integration.

vision methods, easier interpretation, etc. This conversion step often implies a quan-

tization of the information (e.g., grouping events with similar timestamps) and/or

a loss of the sparsity (e.g., zero-filling arrays at locations where no events happen).

Therefore, the study of event representations [369, 378] has gained attention. It

is typically the first stage of the front-end and it highly influences later processing

stages: events are converted into a more familiar representation (e.g., images) that

are easier to work with (to feed to mature SLAM methods designed for traditional

images, or to design learning-based methods based on images). This conversion is in

part due to the fact that the research community is still exploring the best way to

extract information from the event stream and tries to reutilize mature image-based

methods. The front-end may use different event representations; for example, EVO

[921] uses raw events for its mapping module (EMVS [923]) and event (edge-like)

images for its camera tracking module. Ideally, one would design SLAM methods

that use event representations that preserve the high speed and sparse properties of

event cameras and do not suffer from the issues of traditional cameras (quantized

time, latency, non-sparsity). In practice, this is an emerging research topic that

requires rethinking visual processing asynchronously, and there is still ample room

for improvement and investigation of fundamental results.

10.4.2 Indirect Methods

The design choices of the front-end largely influence the rest of the system. A major

design choice is the type of processing method: indirect or direct. Indirect meth-

ods have broadly two steps; they first extract and track point-based, line-based

or other type of feature from the events, and then leverage results from classical

SLAM to estimate the camera motion and the structure of the 3D scene based on

such geometric primitives. Features compress the event data into few informative

primitives, which enables focusing the computational resources. A central problem

consists in establishing and maintaining correspondences among the event features



10.4 Front-end 289

(and the map landmakrs), which is known as data association. This is challenging,

as each event carries little information and is motion-dependent to unambiguously

determine association. Due to the high temporal resolution of event cameras, as-

sociation can be established by spatio-temporal vicinity in pixel space. Hence, it is

natural to track features rather than to match them.

Camera pose estimation or camera tracking is often formulated as the solution of

a feature registration / alignment problem by minimization of a geometric objective

(e.g., the reprojection error, measured using Euclidean distance in pixel space) given

a map of the scene. The 3D structure of the scene is typically computed by means

of triangulation (i.e., back-projection) of corresponding feature locations (e.g., to

obtain 3D points and lines) using given camera poses. A large toolbox of mature

geometric methods (multi-view geometry [444]) can be exploited.

Like conventional visual SLAM, indirect event-based methods rely heavily on

robust feature extraction and tracking. However, these components are not yet as

mature as their frame-based counterparts because they have to deal with unique

challenges (large noise, sparsity, asynchrony, motion dependence, etc.). This limits

the accuracy and therefore applicability of these systems. To address these issues,

some systems resort to sensor fusion (with grayscale images and/or IMU data).

10.4.3 Direct Methods

Direct methods use all data available (not just the event data that conform to the

definition of a feature) to estimate camera motion and 3D scene structure. They

directly align event data with maps, images or other events without explicit feature

extraction. If the event rate is high compared to the processing capacity of the

system, data reduction mechanisms (e.g., denoising, subsampling, etc.) are adopted

to reduce the number of events to process [423, 580].

As direct methods have only one step, the motion (camera tracking) or scene pa-

rameters (mapping) are obtained by optimization of some objective function (e.g.,

photometric error, spatial event rate error, etc.). The photometric-based objective

induces a geometric registration objective. The problem unknowns are obtained by

the alignment of edge-like brightness patterns conveyed by events and/or corre-

sponding image or map pixels. Direct methods rely on the quasi-continuous nature

of event data, for example to compute an incremental camera pose from the pre-

viously estimated one: the increment is small, as events are continuously triggered

without gaps or blind times.

Among direct methods, a prominent subclass due to their state-of-the-art ac-

curacy performance is that of methods that estimate motion or scene parameters

by event alignment, which appears in the form of sharp images of warped events

(IWEs). The idea is to estimate motion by “undoing it”, i.e., finding the parame-

ters that motion-compensate the event data. Event alignment can be measured by

means of different objectives: variance, gradient magnitude, disperson, etc. They



290 Event-based SLAM

are equivalently known as Focus or Contrast Maximization (CMax) [368, 1016]. In

problems where events can be warped to a few pixels or a line, these methods can

suffer from undesired global optima [1015]. Data association in direct methods is

typically handled implicitly and in a soft manner, inherited by the distance in the

pixel grid. Nevertheless, hard associations using nearest-neighbor values are also

possible and effective in some cases.

10.4.4 Model-based and Learning-based Methods

So far, the majority of event-based SLAM approaches are hand-crafted, designed by

human intuition on principles of operation of the event camera and the SLAM prob-

lem. Instead, deep-learning methods leverage artificial neural networks (ANNs) to

model event data, either by converting events into image-like representations or by

processing them directly with Spiking Neural Networks (SNNs). These methods are

often categorized into supervised or self-supervised, depending on the type of super-

visory signal. Self-supervised methods rely on events or other sensors (e.g., colocated

grayscale images) to estimate depth and camera pose by leveraging some tempo-

ral dynamics or photometric consistency loss [1238]; whereas supervised methods

require ground truth data for training [593], which is typically difficult to acquire

in the real world. In recent years, many multi-sensor datasets have been recorded

onboard cars, drones, etc., which can provide the data needed for ANN training.

Learning-based solutions may substitute parts of the SLAM pipeline, such as

feature extraction and tracking [767], or try to replace the entire system (end-

to-end). Learning-based approaches offer the advantage of handling complex data

representations and noise implicitly, but require large datasets for training and may

suffer from generalization issues when applied to significantly different scenes (i.e.,

“domain shift”) from the ones in the training set.

10.5 Back-end

The goal of a refinement module like the SLAM back-end [142] is to improve the

consistency between the variables of the SLAM problem and the sensor data, thus

improving accuracy and robustness of the fit, reducing the propagation of errors

between tracking and mapping modules of the system. Often, bundle adjustment

(BA) [1111] is used as synonym for back-end.

Event-based BA is still in its infancy, as most event-based SLAM systems lack a

refinement step. Instead, they operate in a parallel tracking-and-mapping manner

[579, 921, 1297], with each module relying on the output of the other concurrently

running module as input to work properly. They have prioritized simplicity and tak-

ing advantage of the low-latency benefits of event cameras over accuracy and robust-

ness. In addition to the challenges mentioned in Sec. 10.2 (noise, motion-dependent



10.6 State-of-the-Art Systems 291

appearance, etc.), an event-based back-end poses the challenge of jointly estimat-

ing correlated variables, which implies a high-dimensional search space, making

optimization costly (in complexity and latency) and prone to local minima.

Only recently the problem of BA has been tackled in systems that include event

cameras. Since the back-end of a SLAM system is highly determined by the output

of the front-end (as there needs to be a tight integration between both modules for

best performance), we categorize event-based back-ends as indirect (feature-based)

or direct (photometric-based).

Indirect back-ends are inherited from classical indirect frame-based methods

[1111, 652, 793]. They operate on geometric primitives (corners, lines, etc.) that are

detected in the event stream (possibly preceded by an events-to-image conversion

[212, 949] to reutilize frame-based detectors). The objective typically consists in the

minimization of the reprojection error, measured by the Euclidean distance in the

image plane [444]. This approach has the advantage of reutilizing mature, robust

techniques in classical SLAM. However, it discards the large amount of information

contained in the events (as revealed by image reconstruction methods [925, 1275])

and it is not yet effective: due to noise and the dependency of events on motion,

current event corners are not as accurate and stable as frame-based ones, hence

their use in SLAM has been scarce [619]. Examples of indirect back-ends include

[949, 212, 1154].

Direct back-ends work on sensor data (rather than geometric primitives) and

the objective typically consists in the minimization of some form of photometric er-

ror. Hence they are more tailored than indirect ones. Approaches like [469], which

leverage grayscale information from colocated frames, borrow the back-end from

frame-based systems [316, 33]. However, grayscale frames can suffer from motion

blur and low dynamic range. Event-only back-ends do not suffer from these lim-

itations; they are recent and so far have been developed for constrained motions

(planar or rotational). The objective may consist in the maximization of event align-

ment (also called motion compensation or CMax) [367, 423] or the minimization of

the photometric error (i.e., temporal contrast) conveyed by each event [424, 425].

They are designed based on the event generation model (10.1). As each event carries

little information and the number of problem unknows in SLAM is typically large,

many events are needed for accurate BA, which poses demands on computational

resources, power and latency. There is plenty of room for investigatation of efficient

direct, event-only BA in natural scenes and 6-DoF motion scenarios.

10.6 State-of-the-Art Systems

Table 10.1 collects concrete systems in event-based VO/SLAM, describing some

of their characteristics (direct, indirect, etc.) according to the categorization intro-

duced in previous sections. While it is not possible to describe all of them in detail

in this chapter (and neither is our intention), certain trends are worth mentioning.



292 Event-based SLAM

System M/DL I/D Event represent. BA Motion Scene Input Remarks

Cook [237] M D Event Frame ✗ Rot Natural E Interacting network using optical flow

Weikersdorfer [1173] M I Individual Event ✗ Planar 2D B&W E First filter-based Ev-SLAM.

PF-SMT [578] M D Individual Event ✗ Rot Natural E Two interleaved Bayesian filters

Censi [166] M D Event Packet ✗ 6DoF B&W E+F+D Filter-based VO based on image gradient

EB-SLAM-3D [1174] M D Individual Event ✗ 6DoF Natural E+D Augment events with depth sensor

Yuan [1255] M I Event Frame ✗ 6DoF B&W E+I+M Vertical line-based camera tracking

Kueng [619] M I Local Point Set ✗ 6DoF Natural E+F Event-based feature tracking VO

ETAM [579] M D Individual Events ✗ 6DoF Natural E Three interleaved filters

CMax -ω [364] M D Individual Events ✗ Rot Natural E Contrast Maximization

EVO [921] M D Edge Map ✗ 6DoF Natural E Event-event geometric alignment

EVIO [1298] M I Point sets ✗ 6DoF Natural E+I Filter-based and MC features

Rebecq [922] M I MC Event Images ✓ 6DoF Natural E+I Feature-based, sliding-window back-end

RTPT [931] M D Individual Events ✗ Rot Natural E Panoramic tracker and mapper

Gallego [366] M D Individual Events ✗ 6DoF Natural E+M Resilient sensor model

Mueggler [785] M D Individual Events ✓ 6DoF Natural E+I+M Continuous-time pose estimator

USLAM [949] M I MC Event Images ✓ 6DoF Natural E+F+I Sensor fusion & sliding-window back-end

Chin [212] M I Event Frames ✓ Rot Stars E Tailored to star tracking

ESVO [1297] M D Time surfaces (TS) ✗ 6DoF Natural 2E Stereo matching on TS patches

Hadviger [432] M I Corners on TS ✗ 6DoF Natural 2E Cross-corr. feature descriptors

CMax-GAE [580] M D Individual Events ✗ Rot Natural E Contrast maximization

EKLT-VIO [732] M I Individual events ✓ 6DoF Natural E+F+I EKLT tracker and VIO back-end

EDS [469] M D Event images ✓ 6DoF Natural E+F Frame-based back-end (DSO)

CB-VIO [691] M I Individual events ✓ 6DoF Natural E+F+I Feature tracker and VIO back-end

Wang [1154] M I Binary images ✓ 6DoF Natural 2E Feature matching

El Moudni [311] M D Time Surfaces TS ✗ 6DoF Natural 2E Use ESVO tracker and EMVS mapper

ESVIO [189] M I Time surfaces (TS) ✓ 6DoF Natural 2E+2F+I Feature tracking on from TS

ESVIO-direct [692] M D Time surfaces (TS) ✓ 6DoF Natural 2E+I Extension of ESVO

PL-EVIO [418] M I Time surfaces (TS) ✓ 6DoF Natural E+F+I Point & line features, sliding-window BA

CMax-SLAM [423] M D Individual Events ✓ Rot Natural E Contrast Maximization refines motion

EVI-SAM [417] M D,I Individual Events ✓ 6DoF Natural E+F+I Dense mapping

Zuo [1312] M D Individual Event ✗ 6DoF Natural E+D Augment events with depth sensor

DEVO [593] DL I Event voxel grids ✓ 6DoF Natural E Event-version of DPVO [1088]

EMBA [424] M D Individual Events ✓ Rot Natural E Refines motion and gradient map

EPBA [425] M D Individual Events ✓ Rot Natural E Refines motion and intensity map

ES-PTAM [389] M D Events (also as frames) ✗ 6DoF Natural 2E Use EVO tracker and EMVS mapper

ESVO2 [818] M D Time surfaces (TS) ✓ 6DoF Natural 2E+I Extension of ESVO

DEIO [416] DL I Event voxel grids ✓ 6DoF Natural E+I Extension of DEVO and DPVO

Table 10.1 Summary of Event-based Visual SLAM methods, sorted

chronologically. The columns indicate: the type of method (Model-based or

Deep-Learning–based, Direct or Indirect), whether the method has a global

refinement module (i.e., back-end / BA), the type of camera motions (Rotational,

Planar, 6-DoF) and scenes (high-contrast black-and-white, etc.) it can handle,

and the type of input data used (Event camera, Frame-based camera, Depth

sensor, IMU and Map), where “2E” means stereo events (two sensors).

The literature is dominated by model-based systems; data-driven approaches have

not taken over yet (although that might happen in the near future, as it occurred

with other computer vision tasks). Ever since the beginning, the problem of SLAM

with event cameras has been tackled under different assumptions, increasing the

complexity in terms of (i) camera motions, (ii) type of scenes, and (iii) additional

sensors (or information, such as a map of the scene) to simplify the problem (e.g., a

depth sensor attached to an event camera decreases the burden of depth estimation

from events alone, and IMUs provide accurate angular velocity information, etc.).

Once an event-based method shows good performance, it is incrementally im-



10.7 Datasets, Simulators, and Benchmarks 293

proved in an almost standard “exploitation” roadmap (similar to frame-based SLAM):

for example, monocular methods [921] can be extended into stereo or multi-camera

scenarios [389], event-only methods like [1297] (resp. [593]) can be robustified using

inertial data fusion [692, 818] (resp. [416]), base system can be extended to handle

omnidirectional lenses, etc. Despite this “exploitation” path, event-based SLAM is

still an emerging field and, therefore, is in an exploration phase (of different tech-

niques). This becomes evident when analyzing the methods in Tab. 10.1: diverse

ideas and principles, leading to different map representations, event representations,

loss functions, etc., are leveraged to design the estimation algorithms underpining

these systems. There is still plenty of room to investigate new state estimation ideas,

especially those that take advantage of the genuine characteristics of the sensor.

10.7 Datasets, Simulators, and Benchmarks

Prototyping, training and benchmarking event-based vision systems places high de-

mands for high-quality, diverse and rich data (real and synthetic). The development

of simulators, datasets and leaderboards is essential to move the field forward and

establish a common and solid ground in scientific and technical progress. Let us

describe prominent SLAM datasets, benchmarks and simulators for event cameras.

10.7.1 Simulators

There are a variety of publicly available tools for generating high-quality synthetic

event camera data. ESIM [924] is an evolved version of [784], which was one of the

first simulators to mimic the principle of operation of an event camera. Previous

efforts, such as [543], just thresholded the difference between two successive frames

to create edge-like images that resembled the output of an event camera. ESIM

tightly couples the rendering engine and the event simulator, which allows the

latter to adaptively render frames based on the dynamics of the visual signal.

The event camera simulator in CARLA [287] expands ESIM in more diverse, rich,

and complex scenarios for autonomous driving. In the context of learning monocular

depth from events [468], the event camera sensor developed in CARLA takes the

rendered images from the simulator and computes per-pixel brightness changes to

simulate an event camera in the same way as in ESIM. Figure 10.5 shows RGB

images and events generated in the CARLA simulator.

Motivated by learning-based approaches that require large amounts of event data

for training and the fact that event data are hardly available due to the novelty of

the sensor, a tool for converting any existing video recorded with a conventional

camera into synthetic event data was developed: Video to Events (Vid2E) [379].

Hence, Vid2E aims at reducing the gap between publicly available datasets in tradi-

tional and event-based computer vision by enabling the use of a virtually unlimited

number of existing video datasets for training networks designed for real event data.



294 Event-based SLAM

(a) CARLA simulator (b) v2e simulator

Figure 10.5 Event camera simulators: (a) RGB image and generated events using the
ESIM simulator in CARLA [287]; (b) Detailed data processing steps of the V2E tool [1277]
(TODO: Reuse permission).

Vid2E solves the event data scarcity bottleneck by combining ESIM and adaptive

video frame interpolation. ESIM can address this problem by adaptively rendering

virtual scenes at arbitrary temporal resolution. However, video sequences typically

only provide intensity measurements at fixed and low temporal resolution. Super

SloMo [528] allows to reconstruct frames at arbitrary temporal resolution and then

applies the event camera simulator ESIM. The number of intermediate frames is

carefully chosen since, on the one hand, a low value leads to aliasing of the bright-

ness signal, and on the other hand, high values impose a computational burden.

An important aspect of an event camera simulator is to accurately model noise, to

reduce the simulation-to-real gap when transferring the algorithms. For example,

ESIM, and therefore its derivative simulators, implement a simple noise model

based on empirical observation [668]: the contrast threshold of an event camera

(C in (10.1)) is not fixed but follows a normal distribution. To simulate this, at

each step of the simulation, ESIM samples from a normal distribution N (C, σ2
C),

where the noise level σC can be adjusted. Additionally, ESIM allows for separate

positive and negative contrast thresholds (C+ and C−) to more accurately simulate

a real event camera. Other noise effects, such as spatial and temporal variations in

contrast thresholds due to electronic noise or the limited bandwidth of event pixels,

shall also be considered in event camera simulators.

Vid2E [379] models an ideal event camera lighting. V2E [489] proposes instead a

more realistic noise simulator of an event camera based on the DVS circuitry. V2E is

the first event camera simulator that includes temporal noise, leak events, and finite

intensity-dependent bandwidth, including the same Gaussian threshold distribution

as in Vid2E. V2E is a step forward towards a more realistic simulator enabling the

generation of synthetic datasets covering a range of illumination conditions, which

is an important use case for events. Similarly to Vid2E, V2E uses Super SloMo [528]

to increase the temporal resolution of the input video. Figure 10.5 depicts the V2E

architecture in detail.

Simulating event camera noises is a challenging topic for realistic synthetic event

generation, EventGan [1301] proposes an end-to-end approach using deep learning



10.7 Datasets, Simulators, and Benchmarks 295

to simulate event camera data. Their work proposes a method that leverages the

existing labeled data for images by simulating events from a pair of temporal image

frames, using a U-Net [940] encoder-decoder network. The methodology consists

of training a neural network on pairs of images and events. Instead of applying a

direct numerical error loss, they use an adversarial discriminator loss and a pair of

cycle consistency losses. EventGAN generates a 3D spatio-temporal voxel grid for

each polarity (instead of a set of individual events). This voxel grid representation

is commonly used as input to ANNs.

VISTA 2.0 [37] is a simulator that integrates multiple sensor types, including

RGB cameras, LiDAR, and event-based cameras, to facilitate policy learning for

autonomous vehicles. It uses high-fidelity, real-world data to simulate diverse sce-

narios, such as varying weather, lighting, and road conditions. The event camera

simulator works similarly to ESIM with adaptive sampling. The bidirectional op-

tical flow between two consecutive frames is estimated using an ANN. VISTA 2.0

is designed for training perception-to-control policies, demonstrating enhanced ro-

bustness and sim-to-real transfer capabilities compared to real-world training data

alone, thereby improving vehicle control in safety-critical situations.

Video to Continuous Events (V2CE) [1277] tackles the problem of producing

events with more realistic timestamps than previous simulators. Vid2E and V2E

generate events at discrete timestamps, instead of a continuous-time fashion like real

events. This is not negligible in tasks that are sensitive to timestamp distribution,

which prohibits the use of synthetic events since they can bring a significant domain

shift with respect to real events. V2CE simulator works in two stages. The first stage

consists of a supervised 3D U-Net encoder-decoder ANN that predicts two voxel

grids (one per polarity, similar to EventGAN) from video. The second stage recovers

precise event timestamps from the voxel grids. The method iteratively deduces the

event count and their relative positions in each voxel. V2CE also shows that it can

accurately generate events in saturated light areas and in edges where the event

generation model for an ideal sensor does not hold.

10.7.2 Datasets and Benchmarks

The number of event-based datasets dedicated to Visual Odometry and SLAM

has increased significantly since the publication of the ECDS [784] (see Tab. 10.2).

ECDS was the first dataset with synchronized events, IMU, and ground-truth cam-

era poses in 6-DoF. Previous datasets [960] included both synthetic and real events

featuring pure rotational motion (3 DoF) in simple scenes with high visual contrast;

ground-truth data was obtained using an IMU. Other work [62] enabled a 5 DoF

comparison of event-based and frame-based camera movements; and ground truth

was obtained from the pan-tilt unit encoders and the ground robot’s wheel odom-

etry, making it prone to drift. ECDS contains hand-held, 6-DoF motion (slow- and

high-speed) on a variety of scenes with precise ground-truth camera poses from a



296 Event-based SLAM

motion-capture system. The dataset consists of 11 scenes with real events and two

additional scenes with synthetic events. The synthetic data was produced with the

first version of what became the ESIM [924] simulator.

The RPG stereo dataset [1296] consists of eight hand-held sequences recorded

with a stereo DAVIS [117] in an office environment and a synthetic sequence (fea-

turing three fronto-parallel planes at various depths) produced by the simulator

[784]. Although this dataset does not provide ground-truth depth, it has accurate

ground-truth poses from a motion capture system and serves as a good starting

point for prototyping and evaluating event-based stereo SLAM methods.

The Multi Vehicle Stereo Event Camera Dataset (MVSEC) [1299] is the first

dataset to offer ground-truth depth across a variety of platforms. It captures both

indoor and outdoor scenes with varying levels of illumination and movement speeds.

The platforms include a handheld rig, a hexacopter, a car, and a motorcycle, all

equipped with calibrated sensors like 3D Lidar, IMUs, and standard frame-based

cameras. MVSEC has wide-ranging applications in pose estimation, mapping, ob-

stacle avoidance, and 3D reconstruction, offering accurate ground-truth depth and

pose data through its integrated Lidar system. The datasets contain long sequences

that enable a comprehensive evaluation of event-based algorithms.

The UZH-FPV (First Person View) dataset [265] is specifically designed to ad-

vance research in autonomous drone racing. It features a custom-built quadrotor

with a Qualcomm Flight Board and an mDAVIS346 [1078] event camera mounted on

a Lumenier QAV-R carbon fiber frame. The recordings capture indoor and outdoor

scenes at varying speeds and trajectories, which present challenges for navigation

and state estimation. This dataset supports research in VIO, event data processing,

and real-time drone applications in fast scenarios. It has become a key resource for

developing high-speed camera motion algorithms, particularly in autonomous drone

racing, and has also been used for competitions at conferences and workshops.

The Event Camera Motion Segmentation Dataset (EV-IMO) [775] is the first

event-based dataset created specifically for segmentation of independently moving

objects (IMO) in indoor environments. It contains 32 minutes of recordings, track-

ing up to three fast-moving IMOs using a motion capture system. The dataset

provides pixel-wise motion masks, and ground-truth egomotion and depth. It is

useful in robotics, especially in scene-constrained environments where accurate mo-

tion detection is crucial for tasks like object tracking and autonomous navigation.

EV-IMO2 [132] builds on its predecessor by offering more sequences, three higher

quality event cameras, and more complex scenarios. This version serves as both a

challenging benchmark for current algorithms and a rich training set for developing

new methods, including event-based SLAM in monocular and stereo setups.

The Stereo Event Camera Dataset for Driving Scenarios (DSEC) [380] is large-

scale, intended to support research in autonomous driving, especially in developing

robust perception systems capable of handling adverse lighting conditions through

sensor fusion of events and frames. The dataset features a platform with a multi-



10.7 Datasets, Simulators, and Benchmarks 297

Dataset Platforms Pixel Resolution Sensors

ECDS [784] Hand-held 240× 180 E, F, I

RPG-stereo [1296] Hand-held 240× 180 2E

MVSEC [1299] Hand-held, Drone, Car, Byke 346× 240 2E, 2F, I, Lidar, GPS

UZH-FPV [265] Drone 346× 260 E, F, I

EV-IMO [775] Hand-held 346× 260 E, F, I, Depth

EV-IMO2 [132] Hand-held 640× 480 3E, F, I, Depth

DSEC [380] Car 640× 480 2E, 2F, Lidar, GPS

TUM-VIE [592] Hand-held 1280× 720 2E, 2F, I

EDS [469] Hand-held 640× 480 E, F(RGB), I

VECtor [371] Hand-held 640× 480 2E, 2F, RGB-D, I, Lidar

M2DGR [1245] Ground Robot 640× 480 E, F, I, Lidar, GPS, Thermal

ViViD++ [642] Hand-held, Car 240× 180, 640× 480 E, F, RGB-D, Thermal, Lidar, GPS

FusionPortable [530] Hand-held, Quadruped Robot 346× 240 2E, 2F, I, Lidar, GPS

Stereo HKU-VIO [189] Hand-held 346× 260 2E, 2F, I

M3DE [169] Drone, Car, Quadruped Robot 1280× 720 2E, 2F, I, Lidar, GPS

CoSEC [868] Car 1280× 720 2E, 2F, I, Lidar, GPS

Table 10.2 Summary of event-based SLAM datasets, sorted chronologically. Same

notation for sensor data as in Tab. 10.1. Stereo and multi-sensor datasets are

further described in the survey [388].

camera setup, including two VGA-resolution event cameras (Prophesee Gen 3.1)

with a 60 cm baseline and two RGB cameras (FLIR Blackfly S) with a 51 cm base-

line (see Fig. 10.6). The setup includes a Velodyne VLP-16 lidar and an RTK GPS

for precise localization. Data were collected in various urban and rural settings in

Switzerland under diverse illumination conditions, such as day, night, and direct

sunlight, providing ground-truth depth maps for stereo matching. DSEC also pro-

vides Optical Flow and Disparity to benchmark algorithms in challenging driving

conditions. These benchmarks use metrics like N-pixel disparity error, Mean Abso-

lute Error (MAE), and Root Mean Square Error (RMSE) to assess the performance

of algorithms combining high-resolution event camera data with RGB frames.

The TUM Stereo Visual-Inertial Event Dataset (TUM-VIE) [592] employs stereo

Prophesee Gen4 event cameras (1 Megapixel resolution) along with synchronized

IMU data at 200Hz and stereo grayscale frames at 20Hz. It includes sequences

from handheld and head-mounted setups in diverse indoor and outdoor environ-

ments, covering various scenes such as sports activities, HDR scenarios, and low-

light conditions. TUM-VIE is intended to facilitate research on VIO, SLAM, 3D

reconstruction, and sensor fusion, especially in challenging conditions where tra-

ditional methods may fail, pushing the boundaries of high-resolution event-based

perception algorithms.

The Event-Aided Direct Sparse Odometry (EDS) dataset [469] includes high-

quality events, color frames, and IMU data to support research in monocular VIO.

Data were acquired using a custom-made beamsplitter device (see Fig. 10.6), allow-

ing for precise alignment of RGB frames and events on the same optical axis, which

is not commonly found in previous datasets. The scenes recorded include natural in-



298 Event-based SLAM

(a) DSEC (b) EDS

Figure 10.6 Details of some Event-SLAM datasets: (a) the sensor suite mounted on top
of a car, in the DSEC [380] dataset (©2021 IEEE). (b) Details of the beamsplitter that
allows the sensors to share a spatially aligned field of view in the EDS [469] dataset (©2022
IEEE).

door environments, providing high-resolution, well-calibrated data for applications

like optical flow estimation, depth estimation, and robust visual odometry under

various motion and lighting conditions.

The Versatile Event-Centric (VECtor) Benchmark Dataset [371] is also designed

to evaluate event-based SLAM algorithms. The recording platform holds a diverse

sensor suite, including stereo cameras (event- and frame-based), an RGB-D sensor,

a 128-channel LiDAR, and a nine-axis IMU, all mounted on a versatile 3D-printed

holder. The dataset features both small-scale indoor environments, like a motion

capture arena, and large-scale indoor environments with various complexities and il-

lumination conditions. It claims to offer high-resolution (VGA), synchronized data

across diverse environments, ensuring reliable evaluation of SLAM algorithms in

both static and dynamic, low-light, and HDR scenarios. This makes it a compre-

hensive resource for advancing research in multi-sensor SLAM applications.

The Vision for Visibility Dataset (ViViD++) [642] was recorded with a multi-

sensor platform, including thermal cameras, to support research on SLAM al-

gorithms that can handle poor visibility, motion disturbances, and appearance

changes, leveraging the complementary strengths of different sensors. The Fusion-

Portable dataset [530] includes a Quadruped robot that moves in various scenes,

such as corridors, canteens, roads, and gardens under different lighting conditions.

Finally, the Multi-robot, Multi-Sensor, Multi-Environment Event Dataset (M3ED)

[169] (informally known as MVSEC 2.0) is focused on high-speed dynamic motions

in robotics applications. It combines 1 Megapixel stereo event cameras, grayscale

and RGB cameras, a 64-beam LiDAR, and high-quality IMU, all synchronized with

RTK localization. Unlike previous datasets, M3ED offers heterogeneous data from

multiple platforms in both structured and unstructured environments, with ground

truth pose, depth, and semantic labels, making it a valuable resource for devel-

oping robust event-based perception algorithms for dynamic environments beyond

traditional driving or indoor applications.



10.7 Datasets, Simulators, and Benchmarks 299

10.7.3 Metrics

Ideally, SLAM systems should characterize the quality of their localization and

mapping modules individually. However, because (i) both modules operate in an

intertwined way (depth errors affect camera pose errors, and vice versa), and (ii)

ground-truth localization information is considerably more compact (6-DoF) and

easier to acquire than accurate ground-truth depth, the result is that depth esti-

mation errors are subsumed in the evaluation of camera trajectory errors.

Conceptually, since both classical SLAM and event-based SLAM output cam-

era trajectories, event-based SLAM inherits the performance evaluation protocol

from classical SLAM. Two commonly used metrics are the Absolute Trajectory

Error (ATE) and the Relative Pose Error (RPE) [1050]. The ATE assesses the ac-

curacy of the camera’s pose relative to a fixed world coordinate system; hence, it

provides a broad assessment of the VO system’s long-term performance. The RPE

evaluates the relative poses between consecutive (i.e., nearby) timesteps; hence, it

focuses on the local consistency of VO system. The translational error in ATE,

also known as positional error, is calculated as the Euclidean distance between the

estimated and ground-truth camera positions. The rotational error, or orientation

error, is determined by the geodesic distance in SO(3). Similarly, the translational

and rotational parts of RPE are calculated between pairs of camera poses over a

time interval. Some studies also compute the positional error relative to the mean

scene depth or total distance traveled, ensuring that the error remains invariant to

the scale of the scene or trajectory.

Additional error metrics –Average RPE (ARPE), Average Relative Rotation Er-

ror (ARRE) and Average Endpoint Error (AEE)– may be used to assess the es-

timated translation vectors and rotation matrices [1300]. Specifically, ARPE and

AEE measure differences in position and orientation between two translation vec-

tors, while ARRE calculates the geodesic distance between two rotation matrices.

Beyond these metrics, average linear and angular velocity errors can also be

useful for evaluating camera pose estimation, especially when working with event

cameras, where abrupt and fast camera motions are estimated thanks to the events.

Camera poses are functions of both velocities over time. Several toolboxes [413,

1278] are publicly available to facilitate the reproducibility of research and reduce

the complication in SLAM trajectory evaluation.

In case depth estimation is evaluated separately, the average depth error at var-

ious cutoffs up to fixed depth values is often used, allowing for comparison across

methods on different scales of 3D maps. However, there are not many datasets that

contain ground-truth depth information (see Sec. 10.7). The Root Mean Square

Error (RMSE) of the Euclidean distance between the estimated 3D point with

respect to the closest surface on the ground truth map is the preferred metric.

Additional metrics, such as the Relative Error (REL) and completion (number of

points recovered), are also used in the literature [310, 468, 389].



300 Event-based SLAM

10.8 Outlook

Although research on event-based SLAM has made considerable progress, many

open questions and problems remain given the novelty of the technology. These

questions pertain to what are the best ways (hardware and software) to acquire

and process visual information for a given task (e.g., SLAM) in order to rival or

surpass the performance (in terms of robustness, latency, efficiency, accuracy, etc.)

observed in biological species.

The sensor is asynchronous, but most of the systems in the literature are designed

on serial (i.e., von Neumann) processors (due to the entry barrier to neuromorphic

computing). This is suboptimal in terms of efficiency (power consumption), latency,

etc. compared to the expected performance of fully neuromorphic systems [851],

where event cameras are paired with asynchronous (brain-inspired, spike-based)

processors, controllers, actuators, etc. It is a long-standing dream of the research

community: to build robots that mimic the efficient processing of animals and their

ability to map and localize themselves in the environment (with potential appli-

cations in “always on” inside-out tracking for AR/VR, etc.). This dream requires

rethinking and co-designing sensors, processors, and algorithms [254] in a neuro-

morphic engineering way, which is very challenging, as it takes great breadth and

depth of expertise, and coordination of multiple disciplines.

In the near future, novel hybrid sensors are being developed that provide data

inspired by the two visual streams [1233], spatially and temporally aligned, with low

latency, HDR, and fine details (pixel count). Alternatively, foveated sensors [325],

mimicking biology, are also investigated to reduce bandwidth requirements. There is

still a big field to explore in terms of event cameras, their evolution (e.g., near-sensor

processors like pixel processor arrays, Aeveon sensors), and their combination with

other sensors (frame-based cameras, structured light, LiDAR, RADAR, etc.) for

data fusion and improved SLAM performance.

Acknowledgment

The authors thank Giovanni Cioffi for his support in preparing this chapter.



11

Inertial Odometry for SLAM
Guoquan (Paul) Huang, Cédric Le Gentil, Teresa Vidal-Calleja,

Davide Scaramuzza, Frank Dellaert, and Luca Carlone

Inertial Measurement Units (IMUs) have become one of the most pervasive sources

of odometry for robot simultaneous localization and mapping. An IMU measures

the linear acceleration and the rotation rate of the body the sensor is attached

to. IMUs are available in a broad range of form factors, costs, and performance

levels, from large and accurate optical sensors used on airplanes to small but more

noisy micro-electromechanical systems (MEMS) used in smart phones and other

consumer devices. The low-SWAP and inexpensive nature of MEMS IMU sensors

renders them great candidates as sensors for robotics, where these sensors have

been extensively studied with application to SLAM for more than two decades.

In this chapter, we first introduce basic facts about IMUs and describe their

measurement model (Section 11.1). Then, we introduce the concept of IMU prein-

tegration (Section 11.2), which allows adding high-rate IMU data into a factor

graph optimization framework. Next, we observe that using IMU data introduces

extra variables in the optimization (e.g., sensor biases) and discuss observability1

properties of systems that combine IMUs with exteroceptive sensors, e.g., cam-

era or LiDAR (Section 11.3). Finally, we showcase examples of what’s achievable

with modern IMU-centric SLAM systems (Section 11.4) and review recent trends

(Section 11.5).

11.1 Basics of Inertial Sensing and Navigation

A 6-axis Inertial Measurement Unit (IMU) comprises an accelerometer, which mea-

sures the linear acceleration of the sensor with respect to an inertial frame, and

a gyroscope, which measures the angular velocity (or rotation rate) of the sen-

sor.2 Traditionally studied in aerospace engineering, inertial navigation systems

(INS) aim at estimating the current state (e.g., pose, velocity) of the platform the

1 Observability establishes under which conditions the estimation problem is well posed, i.e., whether
it is at all possible to compute an estimate close to the ground truth given the measurements.

2 An IMU typically also includes a compass that measures the direction to the magnetic north. This
sensor is less used in SLAM applications since in many robotics applications, including in indoor
and urban environments, it exhibits large biases. These biases are induced by local magnetic
disturbances, which can be caused by, e.g., large metallic structures and electronic devices.



302 Inertial Odometry for SLAM

IMU is mounted on, from the initial state and the history of the IMU measure-

ments [177, 1103]. Different INS can be categorized into strapdown systems, where

the IMU is mounted to the frame of the platform, and stabilized systems, where

the IMU is mounted on an inner gimbal, multi-gimbal structure, or floating ball,

which is designed to maintain its orientation constant with respect to an inertial

frame. Most INS in robotics fall into the former category, i.e., they rely on an IMU

that measures the local linear acceleration and angular velocity of the sensing plat-

form it is rigidly connected to. In robotics, the term inertial odometry is commonly

used as a synonym of inertial navigation, to emphasize the odometric nature of the

estimate.

Clearly, the odometric estimate produced by an INS drifts over time, so in most

applications the estimation also relies on other sensors (e.g., GPS, cameras, Li-

DARs), in which case one talks about aided inertial navigation systems (AINS). In

robotics, it is common to directly specify the combination of sensors used with the

IMU. For instance, a system that combines cameras and IMUs to provide 3D mo-

tion tracking is called a visual-inertial odometry, while a system that also includes

loop closures is called a visual-inertial SLAM system.

11.1.1 Sensing Principles and Measurement Models

An IMU commonly includes a 3-axis accelerometer and a 3-axis gyroscope, measur-

ing the angular rate and the linear acceleration of the sensor platform. The basic

principle underlying gyroscope design is the conservation of angular momentum.

On the other hand, an accelerometer uses the inertia of a mass to measure the

difference between the kinematic acceleration with respect to the inertial frame

and the gravitational acceleration. Different principles can be used for the design

of accelerometers, for example, by using a rate gyroscope mounted as a pendulum

mass, based on the inertia of a proof mass inside a low-friction case, or based on

the difference in vibration of two thin metal tapes suspended inside a case with a

proof mass suspended between them.

Measurement Model. We now describe the IMU measurement model, which

relates the IMU measurements to the state of the robot and other quantities (e.g.,

biases) we need to estimate. For simplicity, we assume the sensor frame coincides

with the body frame B of the robot, and the world frame W is an inertial frame.3

The IMU measurements collected at time t, namely v̇(t) and ω(t), are typically

assumed to be corrupted by additive white Gaussian noise η and slowly varying

3 In aerospace, it is standard practice to distinguish non-inertial navigation frames, e.g.,
Earth-Centered Earth-Fixed (ECEF) and Local Geodetic Vertical (LGV) frames, from inertial ones,
e.g., Earth-Centered Inertial (ECI) [326]. In robotics, this distinction is often de-emphasized in
near-Earth small-scale applications where noisy low-cost IMUs are often used and the impact of the
Earth rotation is negligible compared to the measurement noise. For this reason, the world frame
W, which in robotics is typically chosen to be fixed at a location on Earth, is approximately treated
as an inertial frame.



11.1 Basics of Inertial Sensing and Navigation 303

sensor biases b:

v̇(t) = RB

W(t)T (v̇W(t)− gW) + ba(t) + ηa(t), (11.1)

ω(t) = ωB

WB(t) + bg(t) + ηg(t). (11.2)

As usual, the superscript B denotes that the corresponding quantity is expressed

in the body (IMU) frame B. The pose of the IMU at time t is described by the

transformation {RW
B (t),pW(t)}, which maps a point from sensor frame B to W;

v̇W(t)∈R3 is the acceleration of the sensor in the world frame; gW is the gravity

vector in the world frame. Therefore, the term RB
W(t) (v̇W(t)− gW) is the acceler-

ation experienced by the IMU in the Body/IMU frame. The vector ωB
WB(t) ∈ R3

is the instantaneous angular velocity of B relative to W expressed in coordinate

frame B. The noise terms ηg(t) and ηa(t) are assumed to be zero-mean Gaussian

random variables, and the to-be-estimated biases ba(t) and bg(t) are assumed to

follow random walks. Note that here the superscripts for noise and bias vectors do

not refer to the frames but the sensors (accelerometer and gyroscope).

Extended Models. While the IMU measurement model (11.1)-(11.2) often suf-

fices in robotics, more sophisticated models that more accurately model the sensing

process may be needed, for example, when (re-)calibrating the sensor platform. Due

to the imperfection in manufacturing, accelerometers may suffer from misalignment

and scale errors, and the model (11.2) can be extended to:

v̇(t) = Ta R
B

W(t)T (v̇W(t)− gW) + ba(t) + ηa(t), (11.3)

where Ta is the shape matrix that models both misalignment and scale errors in the

accelerometer measurements. Scale errors can be made of static or temperature-

related components and can be determined during sensor (intrinsic) calibration.

Similarly, the gyroscope measurement model can be extended to capture misalign-

ment and scale errors:

ω(t) = Tg ω
B

WB(t) + bg(t) + ηg(t), (11.4)

where Tg is the shape matrix that models both misalignment and scale errors

in the gyroscope measurements. Gyroscope measurements are often influenced by

acceleration, a phenomenon called g-sensitivity. The magnitude of this influence is

considered negligible if it is within the range of the additive white noise ηg(t), while

in some MEMS hardware, it can be more significant and modeled as follows:

ω(t) = Tg ω
B

WB(t) + Ts R
B

W(t)T (v̇W(t)− gW) + bg(t) + ηg(t), (11.5)

where Ts is the g-sensitivity matrix, which can be estimated during calibration.

11.1.2 Initial Alignment

In SLAM it is customary to set the global coordinate frame to be the starting

pose of the trajectory, i.e., set the initial pose {RW
B (0),pW(0)} to be the identity



304 Inertial Odometry for SLAM

pose. However, in INS, as the IMU measurements involve the gravitational force

(c.f. (11.1)), we may choose the world frame to be gravity-aligned, thus requiring

to align the initial pose with the gravity direction. In other words, since the IMU

measurements depend on the gravity direction, the orientation of the robot is no

longer an arbitrary choice, and it must be consistent with the gravity direction.

Specifically, we need to compute the rotation RW
B (0) that aligns the body (IMU)

frame to the world frame. For simplicity, assume the robot is initially static, i.e.,

at the beginning of deployment, no specific force is applied to the robot and the

commonly-used low-cost MEMS IMU only measures the gravitational force. Clearly,

given only the local gravity measurement gB, we cannot recover the rotation along

gravity (i.e., yaw), which is thus up to free choice depending on applications. How-

ever, we can determine the rotation corresponding to roll and pitch via the following

static initialization:



zB
W = gB

||gB||
xB

W =
e1−zB

We⊤
1 zB

W

||e1−zB
We⊤

1 zB
W||

yB
W = zB

W × xB
W

⇒ RB

W =
[
xB

W yB
W zB

W

]
(11.6)

where we perform the Gram–Schmidt orthonormalization given vectors e1 = [1 0 0]⊤

and gB, and × is the cross product. Intuitively, the last column of the rotation ma-

trix RB
W, namely zB

W, is the direction of the z-axis of the world frame with respect

to the body frame. Since the z-axis of the world frame is aligned with gravity,

eq. (11.6) computes zB
W from the measurement of the body-frame gravity vector

gB. Then, the orthonormalization procedure computes orthonormal vectors xB
W and

yB
W to complete the columns of the rotation matrix RB

W for an arbitrary choice of

yaw.

Alignment with High-end IMUs. When using high-end IMUs, the gyroscope

is sensitive enough to measure the Earth rotation rate ωie. In this case, assuming

the chosen world frame is an inertial frame (e.g., the Earth-Centered Inertial frame,

or ECI [326]), one can use the measurement of the body-frame gravity vector gB

and the Earth rotation rate ωie to perform analytical alignment:




gB = RB
Wg

W

ωB
ie = RB

Wω
W
ie

gB × ωB
ie = RB

W (gW × ωW
ie)

⇒ RW

B =




gW⊤

ωW
ie

⊤

(gW × ωW
ie)

⊤




−1 


gB⊤

ωB
ie

⊤

(gB × ωW
ie)

⊤


 (11.7)

where the resulting rotation matrix RW
B typically needs to be projected onto SO(3)

to mitigate the impact of measurement noise in practice.

11.2 IMU Preintegration and Factor Graphs

In the previous section, we have introduced the IMU measurement model (11.1)-

(11.2), which relates the IMU measurements to the state of the robot, and in partic-



11.2 IMU Preintegration and Factor Graphs 305

ular its pose and velocity, as well as the sensor biases. While in principle we can use

these models to derive a Maximum a Posteriori estimator as described in Chapter 1,

this leads to impractically large factor graphs: a typical IMU provides measurements

at a high-rate (e.g., 200-1000 Hz) and the measurement model would require adding

states to the factor graph at each IMU sampling time. The resulting factor graph

would quickly become impractical to solve. The more astute reader might observe

that a continuous-time formulation of the problem could circumvent the high-rate

addition of variables to the factor graph. However, in a continuous-time formulation

of inertial navigation, one would still need to add factors at high-rate, one for each

measurement, again leading to a quickly growing factor graph.

In this chapter, we present the key idea of IMU preintegration, which provides

a way to avoid adding states or measurements at IMU rate to the factor graph.

Intuitively, we can integrate IMU measurements over time to obtain relative motion

measurements, and we can add these motion measurements to the factor graph

instead. A naive integration of the IMU measurements (reviewed in Section 11.2.1)

would still require repeating the integration of the measurements at each iteration

of the factor graph solver. IMU preintegration avoids this issue by separating terms

that depend on the state variables from the measurements. The original idea of

preintegration goes back to [717] and has been extended to operate on manifold

in [342, 343]; in Section 11.2.2, we closely follow the presentation in [342, 343]; then

discuss more advanced preintegration techniques in Section 11.2.3. As usual, we

postpone the discussion of recent works on the topic to Section 11.5.

11.2.1 Motion Integration

In this section, we start by inferring the motion of the robot from IMU measure-

ments. For this purpose we introduce the following kinematic model [796, 326]:

ṘW

B = RW

B (ωB

WB)∧, v̇W = v̇W, ṗW = vW, (11.8)

which describes the evolution of the rotation RW
B , translation pW, and velocity vW

of the body frame B with respect to the world frame W.

The state at time t + ∆t, where ∆t is the IMU sampling period, is obtained by

integrating (11.8):

RW

B (t+ ∆t) = RW

B (t) Exp

(∫ t+∆t

t

ωB

WB(τ)dτ

)
(11.9)

vW(t+ ∆t) = vW(t) +

∫ t+∆t

t

v̇W(τ)dτ

pW(t+ ∆t) = pW(t) +

∫ t+∆t

t

vW(τ)dτ (11.10)

where in the first equation we assumed that the direction of the angular velocity



306 Inertial Odometry for SLAM

ωB
WB does not change in the interval [t, t+∆t].4 Further assuming that v̇W and ωB

WB

remain constant in the time interval [t, t+ ∆t], we can write:

RW

B (t+ ∆t) = RW

B (t) Exp (ωB

WB(t)∆t)

vW(t+ ∆t) = vW(t) + v̇W(t)∆t

pW(t+ ∆t) = pW(t) + vW(t)∆t+
1

2
v̇W(t)∆t2. (11.11)

More generally, eq. (11.11) can be understood as applying Euler integration to

numerically solve the integrals in (11.9). Using Eqs. (11.1)-(11.2), we can write v̇W

and ωB
WB as functions of the IMU measurements, hence (11.11) becomes

R(t+ ∆t) = R(t) Exp
((
ω̃(t)− bg(t)− ηgd(t)

)
∆t
)

v(t+ ∆t) = v(t) + g∆t+R(t)
(

˜̇v(t)−ba(t)−ηad(t)
)

∆t

p(t+ ∆t) = p(t) + v(t)∆t+
1

2
g∆t2 +

1

2
R(t)

(
˜̇v(t)−ba(t)−ηad(t)

)
∆t2,

(11.12)

where we dropped the coordinate frame subscripts for readability (the notation

should be unambiguous from now on). This numeric integration of the velocity and

position assumes a constant orientation R(t) for the time of integration between

two measurements, which is not an exact solution of the differential equation (11.8)

for measurements with non-zero rotation rate. In practice, the use of a high-rate

IMU mitigates the effects of this approximation. We adopt the integration scheme

(11.12) as it is simple and amenable for modeling and uncertainty propagation, and

then discuss more advanced integration techniques in Section 11.2.3. The covariance

of the discrete-time noise ηgd is a function of the sampling rate and relates to the

continuous-time noise ηg via Cov(ηgd(t)) = 1
∆tCov(ηg(t)). The same relation holds

for ηad (cf., [240, Appendix]).

While Eq. (11.12) could be readily seen as a probabilistic constraint in a factor

graph, it would require including states in the factor graph at high rate. Intuitively,

Eq. (11.12) relates states at time t and t+ ∆t, where ∆t is the sampling period of

the IMU, hence we would have to add new states in the estimation at every new

IMU measurement [511].

We can try to avoid this issue by integrating over longer time intervals. In par-

ticular, if we assume that we already have a factor graph modeling other sensor

measurements in our problem (e.g., the vision measurements in Chapter 7), we can

use the expression (11.12) and integrate IMU measurements between two tempo-

rally consecutive states in our factor graph. We are going to refer to these states

as “keyframe states”.5 Iterating the IMU integration (11.12) for all ∆t intervals

4 We provide a more general expression for the rotation integration in eq. (11.35) below.
5 We use this terminology, since in many applications involving IMUs and cameras, the states in the

factor graph are added at a subset of the camera frames, namely the keyframes. However, this term



11.2 IMU Preintegration and Factor Graphs 307

Images:

IMU:

Keyframes:

i j

Pre-Int. IMU:

i + 1

k

∆t

Figure 11.1 Different rates for IMU and camera. From [343] (©2016 IEEE).

between two consecutive keyframes at times ti and tj (c.f., Fig. 11.1), we get:6

Rj = Ri

j−1∏

k=i

Exp
((
ω̃k − bg

k − η
gd
k

)
∆t
)
,

vj =vi+ g∆tij +

j−1∑

k=i

Rk

(
˜̇vk − ba

k − ηad
k

)
∆t (11.13)

pj =pi+

j−1∑

k=i

[
vk∆t+

1

2
g∆t2 +

1

2
Rk

(
˜̇vk−ba

k−ηad
k

)
∆t2

]

where we introduced the shorthands ∆tij
.
=
∑j−1

k=i ∆t and (·)i .
= (·)(ti) for read-

ability. While Eq. (11.13) already provides an estimate of the motion between time

ti and tj , it has the drawback that the integration in (11.13) has to be repeated

whenever the linearization point at time ti changes [652] (e.g., at each iteration of

a Gauss-Newton solver). For instance, a change in the rotation Ri implies a change

in all future rotations Rk, k = i, . . . , j − 1, and makes necessary to re-evaluate

summations and products in (11.13).

11.2.2 IMU Preintegration on Manifold

Here we show that a small manipulation of the motion integration results (11.13)

allows computing relative measurements between states at time ti and tj that do

not need to be recomputed when the linearization point changes. The key insight

is to express measurements in a local frame (such that they do not change when

the global state estimate of the robot changes) and isolating the contribution of

gravity (which again carries information about the global frame). This process

is used without loss of generality here, and one can decide to instantiate keyframe states arbitrarily
(e.g., at every camera frame, LiDAR scans, every “n” IMU measurements, etc).

6 For simplicity, we assume that the IMU is synchronized with the other sensors, and IMU
measurements are sampled at time ti and tj . In practice, one can interpolate measurements to
approximate the case where IMU measurements are exactly sampled at time ti and tj ; see
Section 11.4.3 for further discussion about temporal synchronization.



308 Inertial Odometry for SLAM

leads to computing the so called preintegrated IMU measurements, which constrain

the motion between consecutive states in the factor graph.

Towards this goal, we define the following relative motion increments that are

independent of the pose and velocity at ti:

∆Rij
.
= RT

i Rj =

j−1∏

k=i

Exp
((
ω̃k − bg

k − η
gd
k

)
∆t
)

∆vij
.
= RT

i (vj−vi−g∆tij)=

j−1∑

k=i

∆Rik

(
˜̇vk−ba

k−ηad
k

)
∆t

∆pij
.
= RT

i

(
pj − pi − vi∆tij − 1

2g∆t2ij
)

=

j−1∑

k=i

[
∆vik∆t+

1

2
∆Rik

(
˜̇vk−ba

k−ηad
k

)
∆t2

]
, (11.14)

where ∆Rik
.
= RT

i Rk and ∆vik
.
= RT

i (vk−vi−g∆tik). We highlight that, in

contrast to the “delta” rotation ∆Rij , neither ∆vij nor ∆pij correspond to the true

physical change in velocity and position but are defined in a way that make the right-

hand side of (11.14) independent from the state at time i as well as gravitational

effects. Indeed, we will be able to compute the right-hand side of (11.14) directly

from the inertial measurements between the two keyframes.

Unfortunately, summations and products in (11.14) are still function of the bias

estimate. We tackle this problem in two steps. In Section 11.2.2.1, we assume bi

is known; then, in Section 11.2.2.3 we show how to avoid repeating the integration

when the bias estimate changes. In both cases, we assume the biases remain constant

between times ti and tj :

bg
i = bg

i+1 = . . . = bg
j−1, ba

i = ba
i+1 = . . . = ba

j−1. (11.15)

11.2.2.1 Preintegrated IMU Measurements

Equation (11.14) relates the states of keyframes i and j (left-hand side) to the

measurements (right-hand side). In this sense, it can be already understood as

a measurement model. Unfortunately, it has a fairly intricate dependence on the

measurement noise and this complicates a direct application of MAP estimation;

intuitively, the MAP estimator requires to clearly define the densities (and their log-

likelihood) of the measurements. In this section we manipulate (11.14) so to make

easier the derivation of the measurement log-likelihood. More concretely, we isolate

the noise terms of the individual inertial measurements in (11.14). As discussed

above, within this section assume that the bias at time ti is known.

Let us start with the rotation increment ∆Rij in (11.14). Towards this goal, we



11.2 IMU Preintegration and Factor Graphs 309

use the following properties of the exponential map for SO(3):

Exp(ϕ+ δϕ) ≈ Exp(ϕ) Exp(Jr(ϕ)δϕ), (11.16)

Exp(ϕ) R = R Exp(RTϕ). (11.17)

where the first relations is a first-order approximation of the exponential of a sum,

and the second can be derived from the group’s adjoint representation.

Using (11.16) and (11.17), we rearrange the terms in the expression of ∆Rij

in (11.14), by “moving” the noise to the end:

∆Rij

eq.(11.16)≃
j−1∏

k=i

[
Exp ((ω̃k − bg

i ) ∆t) Exp
(
−Jkr ηgd

k ∆t
)]

eq.(11.17)
= ∆R̃ij

j−1∏

k=i

Exp
(
−∆R̃T

k+1j J
k
r η

gd
k ∆t

)

.
= ∆R̃ijExp (−δϕij) (11.18)

with Jkr
.
= Jkr ((ω̃k −bg

i )∆t). In the last line of (11.18), we defined the preintegrated

rotation measurement ∆R̃ij
.
=
∏j−1

k=i Exp ((ω̃k − bg
i ) ∆t), and its noise δϕij , which

will be further analysed in the next section.

Similarly, we can manipulate the velocity and position equations in (11.14) by

using the following relations:

exp(ϕ∧) ≈ I + ϕ∧, (11.19)

a∧ b = −b∧ a, ∀ a,b ∈ R3, (11.20)

where the first relation is a first-order approximation of the exponential map at the

origin, while the second is a property of the wedge operator of a vector.

Substituting (11.18) back into the expression of ∆vij in (11.14), using the first-

order approximation (11.19) for Exp (−δϕij), and dropping higher-order noise terms,

we obtain:

∆vij

eq.(11.19)≃
j−1∑

k=i

∆R̃ik(I− δϕ∧
ik)
(

˜̇vk−ba
i

)
∆t−∆R̃ikη

ad
k ∆t

eq.(11.20)
= ∆ṽij+

j−1∑

k=i

[
∆R̃ik

(
˜̇vk−ba

i

)∧
δϕik∆t−∆R̃ikη

ad
k ∆t

]

.
= ∆ṽij − δvij (11.21)

where we defined the preintegrated velocity measurement ∆ṽij
.
=
∑j−1

k=i∆R̃ik

(
˜̇vk−ba

i

)
∆t

and its noise δvij .
Similarly, substituting (11.18) and (11.21) in the expression of ∆pij in (11.14),



310 Inertial Odometry for SLAM

and using the first-order approximation (11.19), we obtain:

∆pij

eq.(11.19)
≃

j−1∑
k=i

[
(∆ṽik−δvik)∆t+

1

2
∆R̃ik(I−δϕ∧

ik)
(
˜̇vk−ba

i

)
∆t2

− 1

2
∆R̃ikη

ad
k ∆t2

]
eq.(11.20)

= ∆p̃ij+

j−1∑
k=i

[
− δvik∆t+

1

2
∆R̃ik

(
˜̇vk−ba

i

)∧
δϕik∆t2

− 1

2
∆R̃ikη

ad
k ∆t2

]
.
= ∆p̃ij − δpij , (11.22)

where we defined the preintegrated position measurement ∆p̃ij and its noise δpij .

Substituting the expressions (11.18), (11.21), (11.22) back in the original defini-

tion of ∆Rij ,∆vij ,∆pij in (11.14), we finally get our preintegrated measurement

model (remember Exp (−δϕij)
T

= Exp (δϕij)):

∆R̃ij = RT
i RjExp (δϕij)

∆ṽij = RT
i (vj−vi−g∆tij) + δvij

∆p̃ij = RT
i

(
pj − pi − vi∆tij −

1

2
g∆t2ij

)
+ δpij (11.23)

where our compound measurements are written as a function of the (to-be-estimated)

state “plus” a random noise, described by the random vector [δϕT
ij , δv

T
ij , δp

T
ij ]

T.

In summary, in this section we manipulated the measurement model (11.14) and

rewrote it as (11.23). The advantage of the measurements in eq. (11.23) is that, for

a suitable distribution of the noise, they can be used directly to instantiate factors

between states at time ti and tj in our factor graph. The nature of the noise terms

is discussed in the following section.

11.2.2.2 Noise Propagation

In this section we derive the statistics of the noise vector [δϕT
ij , δv

T
ij , δp

T
ij ]

T. While

we already observed that it is convenient to approximate the noise vector to be zero-

mean Normally distributed, it is of paramount importance to accurately model the

noise covariance. In this section, we therefore provide a derivation of the covariance

Σij of the preintegrated measurements:

η∆
ij
.
= [δϕT

ij , δv
T
ij , δp

T
ij ]

T ∼ N (09×1,Σij). (11.24)

We first consider the preintegrated rotation noise δϕij . Recall from (11.18) that

Exp (−δϕij)
.
=
∏j−1

k=i Exp
(
−∆R̃T

k+1jJ
k
r η

gd
k ∆t

)
. (11.25)

Taking the Log on both sides and changing signs, we get:

δϕij = −Log
(∏j−1

k=i Exp
(
−∆R̃T

k+1jJ
k
r η

gd
k ∆t

))
. (11.26)



11.2 IMU Preintegration and Factor Graphs 311

Next, we use the following first-order approximation holds for SO(3) logarithm:

Log
(

Exp(ϕ) Exp(δϕ)
)
≈ ϕ+ J−1

r (ϕ)δϕ. (11.27)

where J−1
r (ϕ) is the inverse of the right Jacobian. Repeated application of (11.27)

(recall that ηgd
k as well as δϕij are small rotation noises, hence the right Jacobians

are close to the identity) produces:

δϕij ≃
∑j−1

k=i ∆R̃T
k+1j J

k
r η

gd
k ∆t (11.28)

Up to first order, the noise δϕij is zero-mean and Gaussian, as it is a linear com-

bination of zero-mean noise terms ηgd
k .

Dealing with the noise terms δvij and δpij is now easy: these are linear combina-
tions of the acceleration noise ηad

k and the preintegrated rotation noise δϕij , hence
they are also zero-mean and Gaussian. Simple manipulation leads to:

δvij ≃
j−1∑
k=i

[
−∆R̃ik

(
˜̇vk−ba

i

)∧
δϕik∆t+∆R̃ikη

ad
k ∆t

]
(11.29)

δpij ≃
j−1∑
k=i

[
δvik∆t− 1

2
∆R̃ik

(
˜̇vk−ba

i

)∧
δϕik∆t2+

1

2
∆R̃ikη

ad
k ∆t2

]
where the relations are valid up to the first order.

Eqs. (11.28)-(11.29) express the preintegrated noise η∆
ij as a linear function of

the IMU measurement noise ηd
k
.
= [ηgd

k ,ηad
k ], k = 1, . . . , j − 1. Therefore, from the

knowledge of the covariance of ηd
k (given in the IMU specifications), we can compute

the covariance of η∆
ij , namely Σij , by a simple linear propagation.

An extended derivation of the noise propagation can be found in [343], which

also provides an iterative expression to compute the covariance by incrementally

adding new measurements as they are collected. The iterative computation leads

to simpler expressions and is more amenable for online inference.

11.2.2.3 Incorporating Bias Updates

In the previous section, we assumed that the bias {b̄a
i , b̄

g
i } that is used during

preintegration between k = i and k = j is correct and does not change. However,

more likely, the bias estimate changes by a small amount δb during optimization.

One solution would be to recompute the delta measurements when the bias changes;

however, that is computationally expensive. Instead, given a bias update b ←
b̄ + δb, we can update the delta measurements using a first-order expansion:

∆R̃ij(b
g
i ) ≃ ∆R̃ij(b̄

g
i ) Exp

(
∂∆R̄ij

∂bg δbg
)

(11.30)

∆ṽij(b
g
i ,b

a
i ) ≃ ∆ṽij(b̄

g
i , b̄

a
i ) +

∂∆v̄ij

∂bg δbg
i +

∂∆v̄ij

∂ba δba
i

∆p̃ij(b
g
i ,b

a
i ) ≃ ∆p̃ij(b̄

g
i , b̄

a
i ) +

∂∆T̄
ij

∂bg δbg
i +

∂∆T̄
ij

∂ba δba
i



312 Inertial Odometry for SLAM

This is similar to the bias correction in [717] but operates directly on SO(3). The

Jacobians {∂∆R̄ij

∂bg ,
∂∆v̄ij

∂bg , . . .} (computed at b̄i, the bias estimate at integration

time) describe how the measurements change due to a change in the bias estimate.

The Jacobians remain constant and can be precomputed during the preintegration.

The derivation of the Jacobians is very similar to the one we used in Section 11.2.2.1

to express the measurements as a large value plus a small perturbation and is given

in [343].

11.2.2.4 Preintegrated IMU Factors and Bias Models

Given the preintegrated measurement model in (11.23) and since measurement

noise is zero-mean and Gaussian (with covariance Σij) up to first order (11.24), it

is now easy to write the residual errors rIij

.
= [rT∆Rij

, rT∆vij
, rT∆pij

]T ∈ R9, which

will appear in the factor graph optimization:

r∆Rij

.
= Log

((
∆R̃ij(b̄

g
i )Exp

(
∂∆R̄ij

∂bg δbg
))T

RT
i Rj

)

r∆vij

.
= RT

i (vj − vi − g∆tij)

−
[
∆ṽij(b̄

g
i , b̄

a
i ) +

∂∆v̄ij

∂bg δbg +
∂∆v̄ij

∂ba δba
]

r∆pij

.
= RT

i

(
pj − pi − vi∆tij − 1

2g∆t2ij
)

−
[
∆p̃ij(b̄

g
i , b̄

a
i ) +

∂∆T̄
ij

∂bg δbg +
∂∆T̄

ij

∂ba
δba

]
, (11.31)

in which we also included the bias updates of Eq. (11.30). These terms can be

readily added to the factor graph by adding the term
∥∥rIij

∥∥2
Σij

to the objective of

the minimization.

When presenting the IMU model (11.1)-(11.2), we said that biases are slowly

time-varying quantities. Hence, we model them with a “Brownian motion”, i.e.,

integrated white noise:

ḃg(t) = ηbg, ḃa(t) = ηba. (11.32)

Integrating (11.32) over the time interval [ti, tj ] between two consecutive keyframes

i and j we get:

bg
j = bg

i + ηbgd, ba
j = ba

i + ηbad, (11.33)

where, as done before, we use the shorthand bg
i
.
= bg(ti), and we define the discrete

noises ηbgd and ηbad, which have zero mean and covariance Σbgd .
= ∆tijCov(ηbg)

and Σbad .
= ∆tijCov(ηba), respectively (cf. [240, Appendix]).

The model (11.33) can be readily included in our factor graph, as a further

additive term in the objective function, for all consecutive keyframes:

∥rbij
∥2 .

= ∥bg
j − bg

i ∥2Σbgd + ∥ba
j − ba

i ∥2Σbad (11.34)



11.2 IMU Preintegration and Factor Graphs 313

0.0 0.5 1.0 1.5 2.0
Time [s]

0.2

0.0

0.2
Ac

ce
le

ra
tio

n 
[m

/s
^2

]

Acceleration ground truth
Rectangle approx.

0.0 0.5 1.0 1.5 2.0
Time [s]

0.06
0.04
0.02
0.00
0.02
0.04

Ve
lo

cit
y 

[m
/s

]

Euler integration low sampling frequency (RMSE vel.: 0.0123 m/s, pos.: 0.0118 m)

Velocity ground truth
Num. integration

0.0 0.5 1.0 1.5 2.0
Time [s]

0.01

0.00

0.01

0.02

0.03

Po
sit

io
n 

[m
]

Position ground truth
Num. double integration

0.0 0.5 1.0 1.5 2.0
Time [s]

0.2

0.0

0.2

Ac
ce

le
ra

tio
n 

[m
/s

^2
]

Acceleration ground truth
Rectangle approx.

0.0 0.5 1.0 1.5 2.0
Time [s]

0.06
0.04
0.02
0.00
0.02
0.04

Ve
lo

cit
y 

[m
/s

]

Euler integration medium sampling frequency (RMSE vel.: 0.0024 m/s, pos.: 0.0023 m)

Velocity ground truth
Num. integration

0.0 0.5 1.0 1.5 2.0
Time [s]

0.01

0.00

0.01

0.02

0.03

Po
sit

io
n 

[m
]

Position ground truth
Num. double integration

Figure 11.2 Example of Euler integration (with known initial conditions) using low (top
row) and high (bottom row) sampling frequencies.

11.2.3 Advanced Preintegration Techniques

In this section, we look at some limitations of the standard preintegration approach

and explore newer alternatives. We first look at the underlying signal and motion

assumptions embedded in (11.14). Then we go through various works that alleviate

these assumptions leading to more accurate preintegrated measurements, thus im-

proved localization and mapping accuracy when used for aided inertial navigation.

Note that we do not detail the derivation of each of the methods and invite the

reader to refer to the corresponding papers for a more extensive treatment.

11.2.3.1 Numerical Integration Accuracy

As described in the previous section, standard preintegration relies on the Euler

method to integrate inertial signals into rotation, velocity, and position pseudo-

measurements at discrete times. This approach is fast and efficient but introduces

integration error (hence drift) in the preintegration process. In short, the Euler

method consists in applying the rectangle rule to a signal to numerically obtain

its integral. As illustrated in Figure 11.2 (left), it means that the signal is ap-

proximated with piecewise constant chunks sampled at a given frequency. In the

context of inertial systems, the samples correspond to accelerometer or gyroscope

measurements.

With a fairly low sampling frequency, the piecewise constant assumption does

not accurately represent the input signal. Consequently, the double integration

rapidly accumulates error (Figure 11.2 (top)). A possible workaround consists in

increasing the sampling frequency of the signal (Figure 11.2 (bottom)). However,

in real-world inertial navigation problems, the sampling frequency is limited by the

hardware characteristics of the inertial sensor.



314 Inertial Odometry for SLAM

In [638], the authors propose to use GP regression7 as a mean to virtually up-

sample the input signal at any chosen timestamp for both the gyroscope and ac-

celerometer data. While improving over standard preintegration, such an approach

still performs numerical integration based on the piecewise constant assumption

and does not fully leverage the continuous nature of GP models. Below, we review

more sophisticated integration approaches.

11.2.3.2 Continuous Acceleration Preintegration

Another way to reduced the integration error is to leverage continuous representa-

tions —which are not limited to discrete timestamps— that better approximate the

true inertial signals and perform analytical integration. Atop the gain in accuracy,

continuous representations allow for asynchronous query of the preintegrated mea-

surements. This is especially useful when performing inertial-aided state estimation

with other sensors that are not hardware-synchronized or that have completely

asynchronous sampling processes (e.g., event cameras).

A challenging component of preintegration is dealing with the space of rotations.

The non-commutative nature of rotation operations prevents the use of numerous

tools available for classic Riemann integration. Accordingly, several works have dis-

sociated the rotational and translation parts of preintegration. In this subsection,

we first explore the translation component of preintegration using continuous repre-

sentations while assuming solved rotation integration. Continuous integration over

the rotation space will be addressed in the following subsection.

In [308], after using a zeroth-order integrator [1109] to integrate the gyroscope

measurements, the authors present a continuous formulation of the velocity and po-

sition preintegrated measurements by solving the continuous-time system of differ-

ential equation (LTV) assuming constant accelerometer measurements or constant

local acceleration (the two different models are presented in [308]). Compared with

the standard preintegration [343] that consider constant global acceleration, the

work [308] demonstrates that the assumption of constant local acceleration is more

representative of real scenarios leading to an overall VIO accuracy improvement of

around 5% on the EuRoc dataset [137] over both the standard preintegration and

the constant accelerometer measurement model.

In order to loosen the constant acceleration motion model assumptions, one can

approximate the input data with analytically integrable functions. Assuming that

the rotational part of the preintegration is solved, the authors in [639] represent

the rotation-corrected accelerometer measurements ˆ̇vk, defined as ˆ̇vk = ∆Rik
˜̇vk,

in a continuous manner. We show in Figure 11.3 the accuracy gain of integration

with both piecewise-linear and GP-based continuous representations compared to

the Euler method shown in Figure 11.2. With the piecewise-linear approximation,

the first integral (from ˆ̇vk to ∆vik) corresponds to the classic trapezoidal rule

7 GP regression is a non-parametric, probabilistic approach for interpolation. We invite the reader to
refer to [916] for a deeper understanding of GP regression.



11.2 IMU Preintegration and Factor Graphs 315

0.0 0.5 1.0 1.5 2.0
Time [s]

0.2

0.0

0.2
Ac

ce
le

ra
tio

n 
[m

/s
^2

]

Acceleration ground truth
Rotated acceleration
Piece-wise linear approx.

0.0 0.5 1.0 1.5 2.0
Time [s]

0.06

0.04

0.02

0.00

0.02

0.04

Ve
lo

cit
y 

[m
/s

]

Piece-wise linear integration (RMSE vel.: 0.0011 m/s, pos.: 0.0007 m)

Velocity ground truth
Piece-wise linear integration

0.0 0.5 1.0 1.5 2.0
Time [s]

0.010

0.005

0.000

0.005

0.010

Po
sit

io
n 

[m
]

Position ground truth
Piece-wise linear double integration

0.0 0.5 1.0 1.5 2.0
Time [s]

0.2

0.0

0.2

Ac
ce

le
ra

tio
n 

[m
/s

^2
]

Acceleration ground truth
Rotated acceleration
GP regression
95% confidence interval

0.0 0.5 1.0 1.5 2.0
Time [s]

0.06

0.04

0.02

0.00

0.02

0.04

Ve
lo

cit
y 

[m
/s

]

GP integration (RMSE vel.: 0.0003 m/s, pos.: 0.0003 m)

Velocity ground truth
GP analytical integration

0.0 0.5 1.0 1.5 2.0
Time [s]

0.010

0.005

0.000

0.005

0.010

Po
sit

io
n 

[m
]

Position ground truth
GP analytical double integration

Figure 11.3 Top row: Continuous integration with piecewise-linear approximation (corre-
sponding to constant-jerk motion assumption). Bottom row: Model-free integration with
Gaussian Process regression.

for numerical integration. This model can be interpreted as a constant-jerk mo-

tion model and already provides a significant accuracy gain compared to the Euler

method. Going further in the quest for model-less integration, using GP regression

with ˆ̇v ∼ GP (0, kv̇(t, t′)I) and kv̇(t, t′) is the square exponential covariance ker-

nel function, the direct analytical inference of the integral (and double integral)

of ˆ̇v is enabled by the application of linear operators on GPs [974]. Accordingly,

the method does not rely on any explicit motion model as the square exponential

kernel is infinitely differentiable. The bottom row of Figure 11.3 shows how the non-

parametric GP model improves the integration accuracy compared to the piecewise-

linear method. Note that the kernel’s hyperparameters control the smoothness of

the signal and can be learned from the data or be set with an educated guess.

11.2.3.3 Continuous Rotation Preintegration

Looking at the accuracy gain brought by continuous representations for the trans-

lation and velocity preintegration, we naturally want to extend the concept to the

rotation part. However, integrating over the space of rotations is challenging as

the rotations R belong to the SO(3) Lie group, which is not an Euclidean space.

Properties like the commutativity of the group operation do not hold for rotations.

Indeed, the product integral

RW

B (t+ ∆t) = RW

B (t)
t+∆t∏

t

Exp (ωB

WB(τ))
dτ

(11.35)

that solves the kinematic model (11.8) does not have a known generic solution [115]

and novel approaches are required to perform continuous model-less integration over

the space of rotations.



316 Inertial Odometry for SLAM

In response to this challenge, the authors of [637] propose to leverage the rotation

vector representation r(t) in the Lie algebra (with R(t) = Exp(r(t))) as a linear

vector space to perform continuous integration using linear tools. In that space, the

system’s dynamics is

ṙ = (Jr(r))
−1
ωB

WB, (11.36)

where Jr(r) is the right-hand Jacobian of SO(3) evaluated at r. Unfortunately, nei-

ther r nor ṙ are directly observed by the IMU. The key idea of [637] is to model ṙ

with a GP and a set of virtual observations ṙt• to represent the continuous rotation

vector function r via the use of linear operators on GPs. Intuitively, the virtual

observations can be interpreted as control points of the continuous rotational dy-

namics. These are estimated through a non-linear least-square optimisation problem

with residuals based on (11.36) and the gyroscope measurements as observations

of ωB
WB. This results in a model-less approach to continuous rotation preintegra-

tion and yields accuracy improvements of at least one order of magnitude over the

standard discrete preintegration.

This continuous approach shares a lot of similarities with the STEAM continuous-

time state estimation detailed in [54] as both operate in the Lie algebra to perform

GP-based interpolation. A major difference is the use of the square exponential

kernel that results in a dense linear system, compared to the sparse Markovian

approach used in STEAM. However, for the sake of IMU preintegration the length

of an integration window is generally short enough that solving a dense system

is not an issue. The concept of optimized inducing values is extended in [384] to

also estimate the rotation-corrected acceleration along with the rotation vector.

This allows to correlate the rotation and translation parts of the preintegrated

measurement covariance matrix.

11.3 Observability of Aided Inertial Navigation

As we mentioned earlier in this chapter, due to measurement noise, biases, and

inaccuracies of numerical integration, pure inertial odometry may drift quickly, in

particular when using low-fidelity inertial sensors. A common approach to reduce

the drift is to pair the IMU with exteroceptive sensors, e.g., cameras or LiDARs,

leading to aided INS (AINS). In many cases, the introduction of exteroceptive

sensors further increases the size of the state we have to estimate, e.g., by adding

extra variables corresponding to external landmarks, hence a natural question to

ask is whether the sensor data is sufficient to unambiguously estimate the SLAM

state of the system. This is the goal of the observability analysis, which ascertains

whether the information provided by the available measurements is sufficient for

estimating the state/parameters without ambiguity [123, 461].

The observability analysis is typically performed by deriving linearized measure-

ment models and computing the observability matrix, which is closely related to the



11.3 Observability of Aided Inertial Navigation 317

Fisher information (and covariance) matrix of the state estimate [495, 493]. When

a system is observable, the observability matrix is full-rank; if not, as this matrix

describes the information available in the measurements, studying its nullspace en-

ables us to gain insights about the directions in the state space along which the

estimator lacks sufficient information. The results of the observability analysis can

be used to improve estimation consistency [1229, 464, 660], determine the minimal

measurements needed to initialize an estimator [464, 744], and also identify degen-

erate motions that cause additional unobservable directions and should be avoided

or alerted if possible in practice [1230]. For these reasons, significant research efforts

have been devoted to the observability analysis of AINS [1229], and in particular

visual-inertial systems (e.g., [465, 661, 1230]).

In this section we discuss observability properties when the sensors used to aid the

IMU produces geometric features, including points, lines, and planes. This general

treatment allows discussing observability for a broad range of sensors, including

cameras and LiDARs, and understanding degenerate configurations. In particular,

Section 11.3.1 introduces linearized models assuming exteroceptive measurements of

geometric landmarks, Section 11.3.2 uses these models to perform the observability

analysis, and Section 11.3.3 discusses degenerate configurations.

11.3.1 Linearized Measurement Models

We describe the measurement models assuming that the sensor (e.g., camera, Li-

DAR) used to aid the IMU produces geometric features; in other words, we focus

on SLAM and odometry front-ends which produce landmark-based representations.

While most AINS use point features, in particular when relying on cameras (e.g.,

[464, 660, 652, 903, 383, 343]), line and plane features can be utilized when avail-

able (e.g., [607, 463, 421, 1231]). In such a case, we may need to augment the

to-be-estimated state vector with all these different geometric features. Specifically,

the AINS state that we are trying to estimate (at each time step) includes both the

state of the robot xB and the state of external features xW
f (expressed in the world

frame):

x = {RW

B ,b
g,vW,ba,pW,xW

f } (11.37)

where RW
B is the rotation of the body frame B with respect to the world frame

W, and pW,vW are the robot position and velocity expressed in the world frame,

respectively, while bg,ba are the gyroscope and accelerometer biases in the body

frame. The features xW
f can be either points, lines, or planes (or a combination

thereof) and are expressed in the world frame.

For the ensuing observability analysis, we need both the system dynamic model

(which is related to the accelerations and angular rate measurements of the IMU)

and the exteroceptive measurement model. Below, we start by reviewing the INS



318 Inertial Odometry for SLAM

kinematic model —building on the IMU equations introduced in the previous

section— and then consider exteroceptive measurement equations.

11.3.1.1 Linearized IMU Kinematic Model

The IMU-based kinematic model is given by (cf. (11.8) and (11.32)):

ṘW

B = RW

B (ωB

WB)∧, v̇W = v̇W, ṗW = vW, (11.38)

ḃg(t) = ηbg, ḃa(t) = ηba (11.39)

where ηbg and ηba are the zero-mean Gaussian noises driving the gyroscope and

accelerometer biases (which are modeled as random walks). In order to perform

the observability analysis, we linearize the above nonlinear system and obtain the

following continuous-time linearized error-state dynamical system:

˙̃x(t) ≃
[
Fc(t) 015×nf

0nf×15 0nf

]
x̃(t) +

[
Gc(t)

0nf×12

]
η(t) =: F(t)x̃(t) + G(t)η(t) (11.40)

where the error-state vector x̃ = {θ̃, b̃g, ṽW, b̃a, p̃W, x̃W
f } (expressed as a column

vector) represents the deviation from the linearization point (e.g., b̃g is the change

of the bias with respect to the linearization point), and for the rotation component

we use the tangent-space representation θ̃ at the linearization point.8 In (11.40), nf

is the dimension of x̃W
f , Fc(t) and Gc(t) are the continuous-time linearized transition

matrix and the noise Jacobian matrix for the IMU state, respectively, and η(t) is

the stacked noise, including both ηbg and ηba as well as the IMU noise which arises

when substituting the actual acceleration and rotation rates in (11.38) with the

accelerometer and gyroscope measurements (cf. with derivation in Section 11.2.1).

As in practice AINS estimators are typically implemented in discrete time, the

discrete-time dynamic model is needed and can be derived by computing its state

transition matrix Φ(k+1,k) from time tk to tk+1, based on Φ̇(k+1,k) = F(tk)Φ(k+1,k)

with identity as the initial condition:

Φ(k+1,k) =




Φ11 Φ12 03 03 03 0nf×3

03 I3 03 03 03 0nf×3

Φ31 Φ32 I3 Φ34 03 0nf×3

03 03 03 I3 03 0nf×3

Φ51 Φ52 Φ53 Φ54 I3 0nf×3

03×nf
03×nf

03×nf
03×nf

03×nf
Inf




(11.41)

where the (i, j) block Φij can be found analytically or numerically [464].

8 Intuitively, to linearize the rotation variables, we use the fact that we can rewrite any rotation RW
B

as a perturbation of the rotation at the linearization point R̂W
B : RW

B = R̂W
B RW

B (θ̃), where θ̃ is a
suitable tangent-space vector. Then we can use the following small-angle approximation to linearize

the expression: RW
B = R̂W

B RW
B (θ̃) ≃ R̂W

B (I + θ̃∧).



11.3 Observability of Aided Inertial Navigation 319

11.3.1.2 Exteroceptive Measurement Models

Now we present the measurement models of different geometric features and their

linearized models, which are essential for the linearized AINS observability analysis.

Point Features. Consider point feature measurements provided by exterocep-

tive sensors (such as monocular/stereo camera, acoustic sonar, and LiDAR). These

can generally be modeled as range and/or bearing observations, which are functions

of the relative position of the feature in the sensor frame C:

zp =

[
λr 01×2

02×1 λbI2

]

︸ ︷︷ ︸
Λ

[
zr
zb

]
= Λ

[ ∥pC
f ∥+ ηr

hb (pC
f ) + ηb

]
(11.42)

where pC
f = RC

W (pW
f − pW

C ) is the position of the feature in the sensor frame,

and zr and zb denote range and bearing measurements, respectively. In particular,

hb(·) is a generic bearing measurement function whose actual form depends on the

particular sensor used. Λ is a measurement selection matrix, with binary entries

λr and λb; for example, if λb = 1 and λr = 1, then zp contains both range and

bearing measurements. ηr and ηb are the measurement noises and are assumed to

be additive for simplicity. Linearizing (11.42) with the chain rule of differentiation

at the current state estimate yields the following measurement error equation:

z̃p = zp − ẑp ≃ Λ




∂zr
∂pC

f

∂pC
f

∂x

∣∣∣
x̂
x̃+ ηr

∂zb

∂pC
f

∂pC
f

∂x

∣∣∣
x̂
x̃+ ηb


 =: Λ

[
Hr

Hb

]
Hfx̃+ Λ

[
ηr

ηb

]
=: Hxx̃+ ηp

(11.43)

where ẑp is the measurement at the linearization point. Depending on the selection

matrix Λ, the Jacobian Hx may include the range-only measurement Jacobian Hr

(λr = 1, λb = 0), the bearing-only Jacobian Hb (λr = 0, λb = 1), or both.

Line Features. Given two 3D points pW
1 and pW

2 , we can represent the line

passing through the two points using its Plücker coordinates:

lW =

[
nW
ℓ

vW
ℓ

]
=

[
pW
1 × pW

2

pW
2 − pW

1

]
(11.44)

where nW
ℓ is the line moment that encodes the normal direction of the plane defined

by the two points and the origin, and vW
ℓ is the line direction vector which can be

normalized to a unit vector if needed. Note that the distance from the origin to the

line can be computed as dW

ℓ =
∥nW

ℓ ∥
∥vW

ℓ ∥ , and the above Plücker coordinate —expressed

in the world frame— can be transformed to the camera frame as [1027]:
[
nC

ℓ

vC

ℓ

]
=

[
RW

C

⊤ −RW
C

⊤(pW
C )∧

0 RW
C

⊤

] [
nW

ℓ

vW

ℓ

]
(11.45)

We now consider a case where the 3D line is observed in 2D images. Specifically,

given two endpoints of a line segment in the image: q1 := [u1, v1, 1]T and q2 :=



320 Inertial Odometry for SLAM

[u2, v2, 1]T, we derive the 2D visual line measurement model as the distances of

these two endpoints to the back-projected 3D Plücker line onto the image plane

[1310]. To this end, we transform the 3D line from the world frame to the current

camera frame via (11.45) and then project it onto the image with the known intrinsic

parameters of the camera [1027]:

ℓ =




f2 0 0

0 f1 0

−f2c1 −f1c2 f1f2




︸ ︷︷ ︸
K

[
I3 03

] [nC
ℓ

vC
ℓ

]
=:



ℓ1
ℓ2
ℓ3


 (11.46)

where K is the canonical projection Plücker matrix and f1, f2, c1 and c2 are the

standard camera intrinsic parameters. Note that only the moment vector nC
ℓ in the

Plücker coordinates is involved in the above projection, which implies that the line

range and orientation contained in vC
ℓ are not measurable. Therefore, the distances

of the two endpoints of the line segment to the projected line ℓ in the image can

be finally computed and used as the line feature measurements:

zℓ =




q⊤
1 ℓ√

ℓ21+ℓ22
q⊤
2 ℓ√

ℓ21+ℓ22


+ ηℓ (11.47)

where ηℓ is the measurement noise. Similarly, with the chain rule of differentiation,

we can linearize (11.47) with respect to the state and obtain the measurement

Jacobian: Hx = ∂zℓ

∂ℓ
∂ℓ
∂x .

Plane Features. A 3D plane can be parameterized by its distance to the origin

and normal direction in the world frame: πW =

[
nW
π

dW
π

]
, which can be transformed

to the local sensor frame where the plane feature is typically detected:

[
nC

π

dC
π

]
=

[
RC

W 03×1

−(pW

C )T 1

] [
nW

π

dW
π

]
(11.48)

Without loss of generality, we consider a plane feature (nC
π, d

C
π) is extracted from

point clouds (e.g., LiDAR or depth sensors), and employ the closes point pC
π =

dC
πn

C
π from the plane to the origin as the plane representation in the AINS state

vector [382].

zπ = dC

πn
C

π + ηπ = pC

π + ηπ (11.49)

where ηπ is the plane measurement noise. Linearization of (11.49) yields the plane

measurement Jacobian Hx = ∂zπ

∂pC
π

∂pC
π

∂x .



11.3 Observability of Aided Inertial Navigation 321

11.3.2 Observability Analysis

Based on the linearized system and measurement models presented in the previous

sections, we can now perform the observability analysis. The analysis relies on the

following observability matrix M(x̂) to gain insights about the system (cf. [494]):

M(x̂) =




Hx1
Φ(1,1)

Hx2Φ(2,1)

...

Hxk
Φ(k,1)


 (11.50)

where Hxk
stacks the Jacobians for all the measurements (of points, lines, or planes)

collected at discrete time k, and the notation M(x̂) stresses the fact that the observ-

ability matrix depends on the linearization point x̂. The nullspace U of this matrix,

i.e., the span of the null vectors span([· · · ui · · · ]) = U such that M(x)ui = 0,

describes the unobservable subspace of AINS. If the nullspace is empty, the sys-

tem is fully observable. It has been shown in [1229] that AINS in general has 4

unobservable directions (i.e., it has four independent vectors in the null space U),

describing the fact that the global 3D position and global yaw are unobservable

from IMU measurements and local observations of previously unknown landmarks.

To understand the structure of the 4-dimensional null space, we consider the case

where all three types of geometric features (i.e., a single point, line, and plane)

are in the state vector: xW
f = {pW

f , l
W,πW}, and the exteroceptive measurements

include: z = {zp, zℓ, zπ} (cf. (11.42), (11.47), and (11.49)). By computing the

related system and measurement Jacobians (i.e., Hxi
and Φ(i,1)) and substituting

them into (11.50), we can build the corresponding linearized AINS observability

matrix M. By mathematically computing the nullspace of this matrix null(M), we

should be able to find the following four null-vectors (cf. [1229]):

null(M) = span[u1 u2:4] = span




ug 012×3

−pW
1 × gW I3

−pW
f × gW I3

−gW vW
ℓ

dW
ℓ ||vW

ℓ || (RW

ℓ e1)
T

0 − (RW

ℓ e3)
T

−dW
π nW

π × gW nW
π (RW

π e3)
T




(11.51)

where ug =
[
(RC1

W gW) T 01×3 − (vW
1 × gW) T 01×3

]
T, pW

1 refers to the sensor

position at the time k = 1, RC1
W is the rotation matrix from the sensor frame C1

at time k = 1 to the world frame W , while RW
π is a rotation matrix built using

the plane normal vector nW
π using Gram–Schmidt orthonormalization (cf. (11.6)),

and RW

ℓ =
[

nW
ℓ

||nW
ℓ ||

vW
ℓ

||vW
ℓ ||

nW
ℓ

||nW
ℓ || ×

vW
ℓ

||vW
ℓ ||

]
is the rotation matrix constructed with

the line normal and line direction. It is possible to see that the first null vector u1



322 Inertial Odometry for SLAM

is related to the rotation around the gravity (and hence the yaw) and u2:4 to the

motion of the robot. Readers are referred to [1229, 1228] for more detailed analysis.

In summary, the fact that the observability matrix admits a 4-dimensional null

space (cf. (11.51)) correctly describes the fact that the global position and yaw of the

system are not observable. Intuitively, none of the measurements (IMU data, mea-

surements of unknown point, line, or plane landmarks) convey information about

the global frame, with the exception of roll and pitch, which are observable from the

accelerometer measurements of the gravity direction. This unobservability is com-

mon in SLAM9 and it not pathological: it only means that we can arbitrarily set

the yaw and 3D origin of our world frame since we only have relative measurements

for those variables. This unobservability would disappear when adding a sensor

providing absolute measurements, e.g., a GPS. More concerning is that fact that

for certain motions (and linearization points), the null space of the observability

matrix can grow larger, creating additional unobservable dimensions. We explore

this phenomenon below.

11.3.3 Degenerate Motions

Certain types of motions might induce additional unobservable directions for AINS

(i.e., in addition to the 4 expected ones that we discussed above). This is of prac-

tical importance since these degenerate motions might lead to large errors in some

directions of the state space and lead to navigation failures. The degenerate motions

of AINS are summarized in Table 11.1 (see [1229] for a full derivation). Specifically,

pure translation is degenerate for all feature types, causing the full global rotation

to become unobservable. Intuitively, if the system is not rotating, we might confuse

gravity measurements with accelerometer biases, hence making the roll and pitch

no longer observable. The other three degenerate motions, namely constant acceler-

ation (including the case of constant velocity, where the acceleration is set to zero),

pure rotation, and motion in the direction of the feature (for the case where we have

a single point feature), cause the scale to be unobservable for the case of monocular

camera (i.e., bearing-only measurements). However, constant acceleration causes

the whole system (i.e., position, velocity, acceleration bias, and features) scale to

be unobservable, while pure rotation and moving toward a feature only make the

feature scale unobservable. Note that these three degenerate motions hold only if

the distance from the sensor to the feature is significantly larger than the extrin-

sic translation between the sensor and robot body (if they do not coincide), i.e.,

||pC
f || >> ||pC

B||, which typically is the case in practice.

9 Without using an IMU, the null space for a landmark-based SLAM problem would be at least
6-dimensional, capturing the fact that without an IMU, the entire 3D rotation (in addition to the
3D position) of the system is unobservable.



11.4 Visual-Inertial Odometry and Practical Considerations 323

Table 11.1 Degenerate motions of AINS.

Motion Sensor Unobservable

1. Pure translation General Global orientation

2. Constant acceleration Mono cam System scale

3. Pure rotation Mono cam Feature scale

4. Moving toward point feature Mono cam Feature scale

11.4 Visual-Inertial Odometry and Practical Considerations

As mentioned above, inertial measurements are typically fused with data from other

sensors to mitigate the odometry drift. In this section, we particularly focus on the

case where visual measurements from a camera are fused with IMU measurements

using factor graphs.10 Camera and IMU are a popular combination, since the are

both inexpensive, lightweight, and low-power sensors. Moreover, they are comple-

mentary sensors, where the IMU is able to capture quick acceleration and rotations,

while cameras are able to provide rich observations of the surrounding environment.

On one side, the use of cameras largely reduces the drift as compared to pure inertial

odometry; on the other side, an IMU might allow observing quantities that would

not be possible to estimate otherwise. In particular, when using a monocular cam-

era for SLAM, one cannot estimate the scale of the scene without relying on prior

information (in other words, the scale is unobservable), while adding an IMU allows

retrieving the scale as well, as long as the motion of the robot is non-degenerate

(Section 11.3.3). As we mentioned earlier in this chapter, systems comprising one or

more cameras as well as an IMU are typically referred to as visual-inertial odometry

(VIO) systems, and become visual-inertial SLAM systems when loop closures are

incorporated.

11.4.1 Visual-Inertial Odometry

VIO systems are commonly used as a source of odometry and are often used to

close control loops over trajectory tracking and control. In other applications, such

as virtual reality, VIO systems are used to compensate for the motion of the user in

the virtual environment. In both cases, VIO is required to produce estimates with

very low-latency, typically in the order of 10-50ms. For instance, the refresh rate

of the Meta Quest 3 is between 72Hz and 120Hz [7], and the VIO latency directly

impacts the quality of the VR experience and is key to mitigating motion sickness.

Similarly, for trajectory tracking it is important to keep the latency low since large

delays might induce instability and divergence of the tracking controller.

10 In robotics, it is also common to use inertial data in combination with other sensors, including
LiDAR and radars. We postpone the discussion about these other types of inertial odometry
systems to Chapters 8 and 9.



324 Inertial Odometry for SLAM

p0 p1 p2 p3 p4

v0 v1 v2 v3 v4

b0 b1 b2 b3 b4

f0 f1 f2 f3
State variables

Pose
Velocity
Bias
Feature

Factors

IMU
Bias
Projection
Prior

Figure 11.4 Example of factor graph used for visual-inertial odometry with preintegrated
IMU factors [343]. The factor graph shows preintegrated IMU factors in violet (constrain-
ing consecutive poses, velocity, and bias), bias factors in blue (constraining the evolution
of the IMU biases over time), vision factors in orange (relating camera poses and positions
of external landmarks), and priors in black.

Based on these consideration, factor-graph based VIO systems typically imple-

ment a fixed-lag smoother (also called sliding-window optimization), where one only

attempts to estimate states in a receding horizon (e.g., the last 5-10 seconds). An

example of the resulting factor graph is shown in Fig. 11.4, which shows preinte-

grated IMU factors in violet, bias factors in blue, vision factors in orange, and priors

in black. The horizon is chosen in a way to trade-off computation with accuracy,

since the longer the horizon, the larger the state space for estimation. Then factors

and variables falling out of the receding horizon are gradually marginalized as time

progresses. In many cases, optimized implementations also eliminate visual land-

marks from the optimization using the Schur complement to further reduce the size

of the state space, see, e.g., [343]. An alternative to using a fixed-lag smoother is to

use an incremental solver like iSAM2 (Section 1.7), which reuses computation from

previous optimizations when computing an estimate at the current time. While this

approach has been shown to lead to very accurate results in practice [343], it has

the drawback of not providing guarantees on the latency of the system and might

lead to spikes in the runtime, which is problematic for certain applications.

VIO Systems and Performance. The last decade has seen a proliferation of

visual-inertial odometry/SLAM systems, many of which have open-source imple-

mentations. Popular approaches include a visual-inertial version of ORB-SLAM [792],

Direct Sparse Visual-Inertial Odometry [1120], VINS-Mono [903], OpenVINS [383],

Kimera [10, 947], BASALT [1122], and DM-VIO [1048]. A good VIO system has a

drift below 1% of the distance traveled (e.g., it accumulates an error smaller than

1m after covering a 100m trajectory), and in some cases the drift can be as low as

0.1%.

Sliding-window optimization approaches such as VINS-Mono [903] have seen

tremendous success in practice. As an example, here we show how a more recent



11.4 Visual-Inertial Odometry and Practical Considerations 325

Figure 11.5 Illustration of a recent sliding-window optimization-based VIO algorithm [186]
running on the KAIST urban autonomous driving dataset, sequence 38. This sequence has
a total duration of 36 minutes and is 11.42 km in length. The VIO estimates and ground
truth are overlaid on the Google map. Bottom are two sample images. The final ATE of
the VIO (i.e., without loop closure) is 2.05 degrees and 21.2 meters (0.18%).

sliding-window-based approach, called First-Estimate Jacobian (FEJ)-based Win-

dow Bundle Adjustment (WBA)-VINS [186, 187] performs on the KAIST Urban

Dataset [522]. The KAIST urban dataset focuses on autonomous driving and lo-

calization in challenging complex urban environments. The dataset was collected

in Korea with a vehicle equipped with stereo camera pair, 2D/3D LiDARs, Xsens

IMU, Fiber Optic Gyro (FoG), wheel encoders, and RKT GPS. The camera oper-

ates at 10Hz, while the IMU sensing rate is 100Hz. A ground-truth trajectory is

also provided which is obtained from the fusion of the FoG, RKT GPS, and wheel

encoders. Fig. 11.5 illustrates the FEJ-WBA-VINS [186, 187] (VIO) estimated tra-

jectory for sequence 38, overlaid on a Google map alongside the ground truth (GT)

trajectory. The final absolute trajectory error (ATE) for the 11.42-kilometer path



326 Inertial Odometry for SLAM

is approximately 2.05 degrees and 21.2 meters (0.18% of the trajectory traveled).

Notably, these results are obtained from the pure online VIO without loop closure.

Applications of VIO to self-driving cars and other autonomous systems is dis-

cussed in [10, 11], which also discusses challenges related to feature tracking, keyframe

section, and fusion of different sensor modalities (including monocular, stereo, and

RGB-D camera images, as well as wheel odometry).

11.4.2 Extrinsic Calibration

In order to enable accurate aided inertial navigation, one needs to perform extrin-

sic calibration of the sensors. The extrinsic calibration corresponds to estimating

the relative pose between the different sensors (e.g., the pose of the camera with

respect to the IMU). The literature provides a variety of methods to address the

calibration problem. These can be mainly divided into two categories: offline and

online calibration methods. Offline approaches require a calibration procedure to

be performed before the system is deployed. It often involves the use of a cali-

bration target [358], a known motion pattern [693], or a prior knowledge about

the environment [638, 722]. These procedures can be more-or-less time consuming,

and may require specific equipment and trained operators. Thus, while generally

more accurate, offline calibration methods can be cumbersome and undesirable in

some scenarios where the final system is expected to be used at large scale by

non-experts. Online methods, on the other hand, do not require a specific proce-

dure [309, 640, 1207, 1232]. Instead, the extrinsic calibration parameters are esti-

mated as part of the state estimation problem. This offers the advantage of being

able to adapt to changes in the system, such as sensor displacement, without the

need for a new calibration procedure. However, online calibration methods can be

less accurate than offline methods, and may render the state estimation problem

more complex or even ill-posed [1230].

11.4.3 Temporal Synchronization

Another crucial aspect of inertial-aided system is the temporal synchronization of

the sensor data. An erroneous synchronization that is not accounted for can lead to

significant errors in the trajectory estimates and/or introduce a bias in the bench-

marking metrics. The synchronization can be done either in hardware or in software.

The low-level hardware approach often relies on a dedicated piece of hardware that

triggers the various sensors’ data acquisition based on a common clock signal via

specific synchronization input pins. This is not always possible, especially when

the sensors are connected to the computer via different communication protocols.

Some sensors may have a built-in synchronization mechanism that can be used to

synchronize the different sensors’ clock without the need for a dedicated hardware



11.5 New trends 327

input. The use of PTP (Precision Time Protocol) is an example of such a software-

based synchronization over Ethernet. Many LiDARs, radars and INS solutions can

be synchronized with this protocol. Another solution is time-stamping the data at

the sensor level and then aligning the timestamps in a post-processing step. This

last approach is generally less accurate and robust than the aforementioned ones.

If the system cannot be synchronized and post-processing is not an option (e.g.,

online applications), some state estimation algorithms integrate the time offset as

a state variable in the estimation problem [309, 384, 1232].

11.5 New trends

While progress in inertial odometry is steadily transitioning into industry products,

aided inertial navigation is still the subject of intense research.

Extended Pose Preintegration. Latest trends in inertial odometry for SLAM

include the use of extended-pose manifolds and higher-order noise propagation [126]

to improve the uncertainty modeling of IMU preintegration. The authors of [126]

extend the preintegration theory to account for Earth’s rotation with the Coriolis

and centrifugal forces. The work [1130] provides an example of extended pose prein-

tegration leveraging both a linear velocity sensor and a navigational-grade IMU.

After an hour of marine navigation over a 1.8km trajectory, the authors report a

translation error of around 5m.

Continuous-time State Representations. We have mostly been interested in

the use of IMUs under the scope of preintegration as a mean to reduce the number

of discrete state variables in our factor graphs. However, other approaches bases

on continuous-time state representation can also account from many IMU mea-

surements without increasing the dimensionality of the estimated state. We find

such examples in [357] using B-splines basis functions and in [54] with GP pri-

ors. Both formulations allow to use IMU measurements at high rates in residuals

based on interpolated dynamics between a fixed set of state variables. Recently, the

work [136] compares the integration of IMU measurements directly as inputs in the

continuous-time GP prior against using IMU measurements directly in residuals.

They concluded that using inertial information as measurements of the state re-

sulted in better odometry accuracy using a LiDAR-inertial sensor suite. Another

interesting work on continuous-time representations is [666], where the authors com-

pare the GP-based state representation from [54] with the continuous GP-based

preintegration from [384] (presented earlier in this chapter). In a event-based VIO

context, the authors show that the later provides a slight advantage over the former

both in terms of accuracy and computational efficiency.

Proprioception-only Odometry. Recent works use proprioceptive sensors for

aided inertial navigation. For odometry, works like [448] with legged robots and [819]

with wheel-mounted IMUs demonstrate how some knowledge about the system’s

kinematics can be used to provide competitive IMU-based odometry estimates with



328 Inertial Odometry for SLAM

sub-percent positional error. In [448] the critical information is the knowledge of

contact between the robot’s feet and the ground, while in [819] the one-plane-

rotation motion is used to constrain the IMU biases and therefore limit the dead-

reckoning drift. The work [819] has been extended into a full SLAM system [1197]

by detecting loop closures based on pattern recognition in the road bank angle

over time, providing an interesting example of an IMU-based proprioceptive system

that can perform loop closure detection and correction. It is important to note that

while the use of inertial sensors generally offers better performance and robustness,

dropouts or saturation of the IMU sensor can have catastrophic effects on the overall

system’s performance. In [274] the authors investigate the use of accelerometer

data to estimate angular velocity when the gyroscope saturates, thus improving

the robustness of downstream SLAM algorithms.

Inertial-only Odometry (IOO). Naive integration of IMU measurements —

without aiding sources such as vision— typically leads to quick divergence of the

odometric estimate. This is a cause of concern even in aided inertial odometry

when the source of aiding becomes unavailable. For example, for hand tracking

in mobile AR/VR applications, highly dynamic hands can easily move out of the

tracking camera’s FOV, leaving only IMU data available to keep motion track-

ing alive; or textureless scenes may prevent feature detection and tracking, caus-

ing VIO to only rely on IMU data. For this reason, recent work investigates the

use of learning and neural networks to reduce the drift in inertial-only odome-

try [1211, 185, 1060, 459, 460, 228, 905]. These include attempts to model IMU

bias in a data-driven manner with neural networks [233] or directly predicting dis-

placements from a sequence of noisy IMU measurements [689]. For instance, one

may use a differentiable integration module to integrate IMU readings with the

predicted bias removed [1271, 905], or directly use ground truth bias for supervi-

sion [129], or use a conditional diffusion model to approximate bias which is modeled

as a probability distribution [1293]. These methods have demonstrated the possibil-

ity of largely reducing the drift in inertial-only odometry, but currently they have

limited generalization (e.g., to different sensors or to motions not seen at training

time).

Ultra-efficient and Robust VIO at the Edge. Despite recent advancements

in SLAM, computational constraints arising in embedded robotic systems still pose

critical challenges. Building robust VIO on these small form-factor platforms is

hard due to strict size, weight, and power (SWAP) constraints, with the primary

difficulty often arising from data management rather than computation. For exam-

ple, in SLAM and hand-tracking modules of Meta XR wearable devices, the major

energy consumption is data access in RAM [5]. To reduce the data transfer, an

on-sensor computing architecture is presented [398], and a quantized visual-inertial

odometry (QVIO) algorithms is developed in [872, 874]. For low-SWaP platforms,

where only single-precision floating-point arithmetic is available on the computation

unit or is required to speed up and achieve real-time performance, new square-root



11.5 New trends 329

(information or covariance) filters [873, 1191] have been introduced to improve effi-

ciency while maintaining numerical stability. An ASIC design and implementation

for on-chip visual-inertial odometry system is presented in [1274, 1053].



12

Leg Odometry for SLAM
Marco Camurri and Mat́ıas Mattamala

Legged robots are becoming widespread thanks to their ability to traverse highly

unstructured terrains. Their main advantage is that legs provide an active suspen-

sion that decouples the motion of the robot’s body from the terrain profile [993].

This enables them to negotiate staircases, uneven terrain, and other ground obsta-

cles that are challenging for wheeled platforms [226, 508]. Even though the SLAM

algorithms reviewed in the other chapters are directly applicable to legged robots,

the additional sensing introduced by the legs is a valuable new source of information

that can be exploited for odometry. This is particularly important for legged loco-

motion control and planning, where high-frequency and low drift real-time pose and

velocity estimation is required to prevent falls and failures, which is challenging.

In this chapter, we introduce the main fundaments to estimate the real-time pose

and velocity of a legged robot equipped with an onboard IMU and joint sensing

(position and torque). We will particularly focus on leg odometry, which aims to

determine the relative motion of the robot’s body from leg sensing. We will intro-

duce the theory to estimate leg odometry in Section 12.2 and Section 12.3, and how

to combine it with different sensor modalities within factor graphs in Section 12.4.

We will conclude with a review of the open problems in the field (Section 12.6), as

well as new trends that have arisen to address them (Section 12.5).

12.1 Introduction

While most of modern legged platforms carry sensors we have studied in other

chapters, namely cameras (Chapter 7), LiDAR (Chapter 8), and inertial measure-

ment units (Chapter 11), in legged platforms we can additionally exploit kinematic

and dynamic information from the robot’s legs to obtain measurements of the rel-

ative motion of the robot’s body, a technique known as leg odometry . The term

was introduced in analogy with the odometry of wheeled vehicles, which infer the

distance travelled by measuring how much the wheels turn over time.

In contrast to wheeled vehicles, legged robots move by making and breaking

contacts between their legs and the ground. Each leg stride is defined by a phase

where the leg is temporarily lifted off the ground (aerial or swing phase), and then



12.1 Introduction 331

it stays in non-slipping contact with the ground (stance phase). Because the legs in

the stance phase are the ones responsible for propelling the robot, the leg odometry

problem can be decomposed into two sub-problems:

1 Contact estimation—establishing what legs are in stance phase at a given period

of time.

2 Motion estimation—determining the incremental motion from such legs during

the stance phase.

In the next sections we will provide the technical details to implement leg odom-

etry. In Section 12.2 we will explain how the relative motion can be obtained from

the joint sensing of the legs, assuming that the stance legs are known. This practi-

cally allows us to consider leg odometry as a measurement in our SLAM or general

estimation problems, in a similar way to wheel odometry or inertial preintegration.

Then, Section 12.3 will describe how contact is estimated, and the main techniques

adopted in practice.

12.1.1 Historical Background

Leg odometry has been directly related to the development of machines able to

walk. The origins of legged robotics go back to 1950s and 1960s, with the first at-

tempts to create transportation systems able to overcome the limitations of wheeled

vehicles on rough terrain [681]. General Electric’s Walking Truck [782], a 1400 kg

machine, is one of the best examples of the human-operated machines designed

in this period. With the development of new control strategies in the 1960s, the

efforts shifted to smaller scale platforms that could generate automatic walking be-

havior [757, 758, 1104]. Raibert’s monopods, bipeds, and quadrupeds developed in

the late 1980s showed remarkable locomotion capabilities [909], motivating the use

of legged platforms for real-world tasks. Achieving real-world autonomy has then

been the main driver to develop leg odometry and state estimation systems.

The work by Roston and Krotkov presented one of the earliest uses of leg kine-

matics for the estimation of the motion of a legged platform—the Ambler hexapod,

a 2.5 tonnes robot designed for space exploration [952]. Similar approaches were

developed for other hexapods with different leg morphologies, such as RHex [675].

Later works combined leg odometry with other sensor modalities such as IMU

and vision, via particle filters [216] or Kalman filters [210, 932]. The milestone

work by Bloesch et al. [94] established the foundations for filtering-based, all ter-

rain, kinematic-inertial odometry estimators for quadrupeds [95], and extensions to

bipedal platforms [953, 881].

The DARPA Robotics Challenge (DRC), developed between 2012 and 2015, moti-

vated the development of whole-body state estimation systems for humanoid robots,

aiming not only to estimate a 6 DoF but also the full state of the robot’s body.

For this, various teams combined kinematic and dynamic information [1200] with



332 Leg Odometry for SLAM

inertial and joint sensing, as well as exteroceptive modalities such as LiDAR [323]

and stereo vision [324]. In this period most of the solutions relied on Kalman fil-

tering but a few works also explored optimization-based solutions [1201] and factor

graphs [344].

With the recent rise and commercialization of legged platforms, particularly

quadrupeds, there has been a growing interest in developing more principled and

resilient leg odometry and state estimation algorithms. This has been reflected in the

further development of factor graph-based estimation solutions for quadrupedal [1188]

and bipedal platforms [446], which have enabled its principled fusion with other sen-

sor modalities. Other directions have been explored more fundamental challenges

in modelling [26], as well as invariant estimation frameworks [448, 445]. The recent

DARPA Subterranean (SubT) Challenge (2018-2021) also posed new challenges for

legged state estimation in extreme scenarios, where complementary estimation solu-

tions leveraged different sensor modalities across diverse legged, wheeled, and aerial

platforms [566, 1282, 844]. Section 12.6 will provide further insights on the recent

trends, and how they are re-shaping the research in state estimation for legged

platforms.

12.1.2 Reference Frames

In Figure 12.1, we illustrate the reference frames relevant to our estimation problem.

The inertial frame W and the base frame Fb are rigidly attached to the ground and

the robot’s floating base, respectively. Without loss of generality, we assume the

IMU to be coincident to Fb. A frame is attached to each end effector, corresponding

to the feet (Ff1 and Ff2 in the example shown in Figure 12.1).

Additionally, one or more temporary inertial frames Fk are created when a foot

comes into contact with the ground. These are coincident with the foot frame at

touchdown for humanoids, or have the same Cartesian position for quadrupeds with

point feet.

12.1.3 State Definition

The state of a legged robot is defined by the pose and velocity of its base, as well as

the joint states. However, in this chapter we assume the joint states to be measured

directly by dedicated sensors (Section 12.1.6), leaving only the pose and velocity of

the robot’s base as the objective of our estimation. Therefore, we use the term state

estimation and odometry interchangeably, with the latter term being equivalent to

SLAM without loop closures [142].

More formally, the robot state is defined as the set combining position, orienta-

tion, linear velocity, and angular velocity:

xk =
[
tk Rk vk ωk

]T
(12.1)



12.1 Introduction 333

×

×

×

×

Figure 12.1 Reference frame conventions for legged robots. The world frame W is fixed to
earth, while the base frame Fb is attached to the main chassis. Without loss of generality,
the IMU frame B is not shown as it can be considered coincident with Fb. When a
foot touches the ground, a contact frame Fk is defined. Fk is rigidly attached to earth,
perpendicular to the ground, and coincident with the foot frame Ff .

where the following conventions are adopted: the robot position t = tWb ∈ R3

and orientation R = RW

b ∈ SO(3) express the pose of the robot’s base in world

coordinates; the robot velocities v = vb
b, ω = ωb

b ∈ R3 express the base’s twist, in

base coordinates.

12.1.4 Legged Robot Kinematics

A legged robot is kinematically described by a main link for the body (also re-

ferred as trunk, or torso) to which one or more kinematic chains (i.e., the legs)

are attached. In this chapter, we consider the most common kinematic configura-

tions adopted in practice: bipeds with 6 actuated DoF per leg and flat feet, and

quadrupeds with 3 DoF per each leg and point feet (Figure 12.2). We assume that

the robot has a rigid body (e.g., with no articulated spine), and ignore any other

upper limbs (e.g., arms).

For leg odometry, we are interested in modeling the relative pose (or position) of

the flat (or point) feet with respect to the robot’s body. Let q ∈ RN = [q1, . . . , qN ]T

be the set of joint positions of an articulated robot with N active DoF, which

correspond to the angular position of revolute joints of the legs. In Figure 12.1

and for the rest of the chapter, the active DoFs of the quadruped and biped is

N = 12, although this can be different in other platforms. The joint positions q are

typically measured directly via rotary encoders placed on each joint (see Section

12.1.6.1), or indirectly using the kinematic model of the robot in addition to the

readings from the encoders placed on a transmission between the motor and the

joint (e.g., by measuring the displacement of a hydraulic piston via a linear encoder,

and calculating the corresponding angle of the revolute joint moved by the piston).

The time derivatives of the joint positions are the joint velocities q̇ = [q̇1, . . . , q̇N ]T,



334 Leg Odometry for SLAM

Figure 12.2 Kinematic chains of typical legged robots: quadrupeds and humanoids.

which are typically estimated by numerical differentiation of the encoder readings.

In some cases, when the reading are particularly noisy, additional sensing such as

IMUs placed at the links can also be used to estimate the joint velocities [1202].

Given q and a specific foot f of a humanoid robot, the Forward kinematics

function fk(q) : R12 → SE(3) [725] maps the joint positions to the pose of the foot

respect to the robot’s base:

T b
f = fk(q) =

[
fR(q) fp(q)

0 1

]
(12.2)

where we defined two convenient functions fR : R12 → SO(3) and fp : R12 → R3

expressing the orientation and Cartesian position of the foot in the base frame, re-

spectively. For quadruped robots with point feet, only fp(q) is used for leg odometry,

since the foot can pivot on the contact point with no change in the joint positions.

The time derivative of the forward kinematics function from (12.2) is the Jacobian

matrix J(q) : R12 → R6×12 which can be used to compute the velocity of the end

effector respect to the robot’s base as follows [726]:
[
vb
f

ωb
f

]
= J(q)q̇ =

[
Jv(q)

Jω(q)

]
q̇ (12.3)

where Jv(q) and Jω(q) are the linear and angular part of the Jacobian respectively

(note that some references [327][448] define the angular block first). Since each

leg is kinematically independent from the other, J(q) is as a sparse block matrix,

where the only two non-zero blocks Jf,v(q), Jf,ω(q) map the subset of joint angle

velocities of a leg to the linear and angular velocity of the corresponding foot f .

For example, the Jacobian of the second leg of a humanoid J2(q) is represented as:

J2(q) =
[
06 J̄2(q)

]
(12.4)

where J̄2(q) ∈ R6×6 indicates the non-zero block of the Jacobian matrix.

The expressions from (12.2) to (12.3) are the basis to design state estimators for



12.1 Introduction 335

legged platforms, as they relate the joint states to the robot’s base motion. However,

as mentioned previously, we assume we can measure the joint states directly via

encoders, as explained in Section 12.1.6.

12.1.5 Legged Robot Dynamics

The dynamics of a floating-base articulated-body system can be expressed as two

coupled dynamics equations, computed using Recursive Newton-Euler algorithms [327].

The first equation describes the dynamics of the floating-base body (6 DoF, un-

deractuated), while the second describes the dynamics of the N rigid-bodies (i.e.,

N = 12) attached to it through active joints (i.e., active DoF). The two equations

of motion can be put in matrix form as follows:

M(q)



v̇b
b

ω̇b
b

q̈


+ h(q, q̇) =

[
JT
b

JT
q

]
f +

[
06

τ

]
(12.5)

where the first term M(q) is the mass matrix, which is multiplied by the stack of

v̇ ∈ R3, ω̇ ∈ R3, and q̈ ∈ R12 which represent the floating-base linear, floating-base

angular, and active joints accelerations, respectively. The second term h ∈ R18 is a

bias term that accounts for Coriolis, centrifugal, and gravitational effects. Regarding

the right side of (12.5), the last term describes the torques of the base, which are

zero because the base is not actuated, and the torques of the active joints τ ∈ R12.

Finally, the second to last term is the most relevant for leg odometry and its

factors have variable dimensions depending on the robot configuration (humanoid

or quadruped) and the number of legs in contact. Let c be the number of legs in

contact and d be the number of active joints per a single leg (d = 3 for quadrupeds,

d = 6 for humanoids). Then, Jb ∈ Rdc×6 is the Jacobian matrix mapping the base

twist to feet velocities, which depends on the forward kinematics of the robot and

its absolute body orientation in the inertial frame W. Jq ∈ Rdc×12 is the stack of

Jacobians described in (12.3) whose arrangement depends on the type of robot and

number of contact legs. For example, a humanoid standing on both legs will have:

Jq =

[
J1(q)

J2(q)

]
(12.6)

For quadrupeds, since the leg can pivot around the contact point, only the linear

velocity Jacobian Jv is used for Jq. For example, a quadruped standing on the first,

third, and fourth leg, will have:

Jq =



J1,v(q)

J3,v(q)

J4,v(q)


 (12.7)

The last term to consider is f ∈ Rdc represents the collection of all the forces



336 Leg Odometry for SLAM

and/or torques acting at each foot in contact with the ground. For a quadruped

with all feet on the ground, f is the stack of four linear forces:

f =




f1
f2
f3
f4


 (12.8)

For a humanoid with both feet on the ground, it contains the linear forces and

torques acting on the three axes of the contact point:

f =




f1
τ1
f2
τ2


 (12.9)

As explained in more detail in Section 12.3.4, we can infer leg contact using the

aforementioned forces and torques.

12.1.6 Joint Sensing

Similarly to fixed-base manipulators, the joints and the end effectors of legged

robots are equipped with a variety of sensors, which are primarly used for planning

and control [1018]. We briefly describe the most important sensors that are used

also for leg odometry, namely encoders, force/torque sensors, and contact sensors.

12.1.6.1 Rotary Encoders

Rotary encoders are electromechanical devices that convert an angular position of

a rotating shaft into an analog or digital signal. In legged robots, they enable us to

measure the joint angles and determine the robot kinematics, but they can also be

found in other components. For example, mechanical LiDAR use them to measure

the azimuthal angle of the beam array (see Chapter 8).

Encoders can be categorized depending on the principle of operation (optical

or magnetic), the type of reading (absolute or incremental), and type of output

(analog or digital). The most adopted type on legged robots are absolute and rela-

tive optical digital encoders; other encoders are discussed in more detail in related

literature [727].

Absolute optical digital encoders (Figure 12.3a) measure the joint angles in an

absolute manner—for the same joint configuration they will provide the same sensor

readings. Their operation principle is that an IR light source (e.g., a Light Emitting

Diode (LED)) hits an array of sensitive elements (e.g., photoresistors) disposed

radially on the static part of the device. In between the light source and the sensitive

elements sits a disc that rotates with the shaft. The disc is divided in concentric

sectors that can be either opaque or transparent. The sectors are arranged according



12.1 Introduction 337

LED

DISC
PHOTORESISTOR

GRAY CODE

11110110

BINARY

10100100

DECIMAL

164

(a) Optical Absolute Encoder

CW ROTATION
COUNTER +1

LED

LED

A

B

A

B

(b) Optical Incremental Encoder

Figure 12.3 Left: Principle of operation of an 8-bit optical absolute encoder. An IR light
beam hits a rotating disc that masks light according to a specific pattern that encodes the
angle of rotation of the disc. An array of photoresistors convert the absence or presence
of the light in each sector to a binary number encoded with a Gray code. The Gray code
is then translated into a decimal number representing the absolute angle of rotation. The
encoder in this example has a resolution of 360/256 = 1.41 degrees. Right: Principle of
operation of an optical incremental encoder. The two photoresistors, A and B, are placed
with a 90 degrees phase shift. A rising edge on A followed by a falling edge on B indicates
a clockwise rotation. The change from AB = 11 to AB = 10 causes the increment of the
counter.

to a pattern that encodes a specific angular range to a binary number. The binary

number is ordered according to the Gray code, which maps consecutive natural

numbers to binary numbers that always differ by only one bit, which reduces chances

of reading errors. The process is illustrated in Figure 12.3a for an 8-bit encoder.

The angular resolution of the device is determined by the number of bits (i.e., the

number of concentric sectors) used to make the binary word encoding the angle.

For instance, for an 8-bit sensor there are 256 possible values, and then the angular

resolution is 360/256 = 1.41 degrees.

Incremental optical encoders (Figure 12.3b), conversely, measure relative angular

changes with respect to the initial configuration—they measure a zero angle when

they are turned on, and then measure the angle relative to that reference point.

The angle is calculated by adding or subtracting small angle increments, depending

on the direction of rotation. Instead of relying on Gray codes, they operate by

using a simpler codewheel made of an opaque material with regular slots placed

radially, such that a single photoresistor A produces a square wave over time when

the disc rotates at constant speed. A second photoresistor B is placed at 90 degrees

out of phase with the first one. The 2-bit word composing the two signals AB

can have four different values at any given time, and the transition between them

is used to determine the direction of rotation and whether the count has to be

increased or decreased [727]. Because of their simpler construction and lower cost,

high resolution incremental encoder have been used to compute the joint angle after

a lower resolution absolute encoder measured the initial angle [992]. Even though



338 Leg Odometry for SLAM

they are still in use, incremental encoders are being rapidly replaced by absolute

encoders, whose technology development improves their resolution while reducing

their cost.

12.1.6.2 Force and Torque Sensors

Force and torque sensors are devices that convert a linear force (applied to a point on

a surface) or a mechanical torque (applied to a shaft) into an electrical signal. They

are primarily used for torque control on the actuators or to sense the interaction

between the end effector and the environment. In legged locomotion, each step

involves forces being applied to the ground that need to be measured (directly or

indirectly) so that stance legs can be identified.

The principle of operation for both type of quantities (force and torque) is typ-

ically the same, with different geometries: the internal surfaces of the sensors are

shaped in a way that would slighlty deform under stress along the direction where

the force needs to be measured. Glued to those surfaces is a flexible variable resis-

tive element, the strain gauge. The electrical resistance of the strain gauge changes

proportionally to the amount of deformation it sustains, with compression (exten-

sion) causing a reduction (increase) in resistivity. Figure 12.4 shows an example

with strain gauges applied to a load cell to measure linear force [727]. To measure

torque, a series of strain gauges is applied to flexible spokes of a wheel connected

to a motor shaft.

To measure all forces and torques acting on an end effector, 6-axis sensors are

available, containing strain gauges in a number of configurations sufficient to mea-

sure forces and torques in all directions. These are commonly used for manipulation

tasks, but can be also found on humanoids feet to directly measure the interaction

with the ground.

With the advent of cost effective dynamic legged robots, wich was made possible

by a backdriveable motor design [552], torques can be estimated from the motor

currents, which are proportional to the torque by a constant factor.

12.1.6.3 Contact Sensors

Since the main use for force and torque sensors in leg odometry is to determine the

stance legs, alternative cost effective solutions are contact sensors, whose output is

a binary number indicating whether a certain foot is in contact or not. This type

of sensor was mainly developed for small to medium quadruped robots, whose feet

consist of a spherical or circular rubber sole.

The main types of contact sensors are optical [406] or mechanical [800]. Optical

contact sensors are conceptually similar to encoders: a LED-photodiode pair sense

light through a small aperture. When the foot is in contact, the surface of the

foot deforms enough to create a displacement of a masking panel that occludes the

aperture, allowing the system to detect the contact. Mechanical contact sensors



12.2 Motion Estimation 339

Figure 12.4 Principle of operation of force and torque sensors. A strain gauge is applied
on compressible or flexible elements when under load. Inside the loadcell (on the left),
a strain gauge is applied such that a compression would be detected as a reduction in
resistivity. Inside the torque sensor (on the right), several strain gauges are applied at
the flexible elements (the spokes of a wheel). When torque is applied, the elements would
deform by flexion. The presence of multiple strain gauges allow to work out the magnitude
and direction of the torque e.g., by sensing a compression on one side of the spoke and an
elongation on the other side.

use a simple pushbutton switch hidden inside the sole that is pressed when enough

force is exerted on the foot.

The main disadvantage of contact sensors is the relatively slow response time

compared to costly force/torque sensors. In addition, they suffer from the same

drawbacks of F/T sensors: they require to route cables up to the foot and they

are at risk of damage due to the main impacts they have to substain. For these

reasons, they are mostly available only for small sized quadrupeds mostly designed

for indoor operations.

12.2 Motion Estimation

Given the joint states and kinematics of the robot, we are now interested in com-

puting the incremental motion of the robot’s base. This can be mainly done in

two ways: using the forward kinematics to obtain a relative pose between two time

instants, or using the differential kinematics to estimate the robot’s velocity instan-

taneously. In both cases, the underlying assumption is that a newly formed contact

frame remains stationary for a certain amount of time.

12.2.1 Relative Pose Estimation

Figure 12.5 shows a simplified example of a humanoid robot walking along the zx-

plane. The robot’s base is represented at two consecutive time instants with the



340 Leg Odometry for SLAM

×

×
×

×

×

×

Figure 12.5 How leg odometry works with ideal contact. Left: Assuming the contact frame
Fk is rigidly attached to the ground (in yellow), we can determine the relative motion of
the robot’s body. Right: Alternatively, we can represent how the leg moves with respect
to the body frame (yellow) in two consecutive instants.

frames Fb and Fb′ ; the foot frames and the joint positions at the same two times are

defined similarly. Because the contact frame is stationary, when the foot frame and

the contact frame coincide, the amount of displacement the robot’s body experiences

while moving forward is the same as the foot experiences moving backwards from

the robot’s body:

T b
b′ = T b

k (T b′

k )−1 = (T f
f ′)

−1 = (T b
f ′)−1T b

f = fk(q′)−1fk(q) (12.10)

(12.10) creates a mapping between the joint states and the relative pose of the

robot. While a concatenation of these relative poses would effectively provide a

valid motion estimate by dead reckoning from joint sensing only [952], this is only

possible during the stance phase. Further, to be applied on robots with point feet,

this requires at least three feet in contact with the ground at all times, making it

impractical for quadrupedal platforms.

To overcome these issues, the standard approach for quadrupeds [94] is to aug-

ment the state in (12.1) with the positions ci = tWk ∈ R3 of the contact frames ex-

pressed in world coordinates and associated to each leg of the robot. For humanoids,

since they have ankles, the orientation of the contact points Bi = RW

k ∈ SO(3) can

also be added to the state [953].

Further, since there is no guarantee that at any given time there are a sufficient

number of legs in contact (e.g., a gallop gait has phases were all the legs are off

the ground), it is also commonly assumed that an IMU is present, so the angular

velocity ω in (12.1) is disregarded, and the IMU biases are included as part of the

state instead (see Chapter IMU).

With all the previous considerations, the corresponding states of interest for

quadrupeds and bipeds are then defined as:



12.2 Motion Estimation 341

xk =
[
tk Rk vk ba

k bω
k c1 c2 c3 c4

]T
(12.11)

xk =
[
tk Rk vk ba

k bω
k c1 c2 B1 B2

]T
(12.12)

where (12.11) represents the state of a quadruped robot, whilst (12.12) corresponds

to a humanoid robot. This enables us to precisely express the motion estimate

relationship from (12.10) for an arbitrary i-th leg:

T b
k = fk(q) = (T )−1Ci (12.13)

where

T =

[
R t

0 1

]
(12.14)

is the pose of the base in the fixed frame, whereas

Ci =

[
Bi ci
0 1

]
(12.15)

is the pose of the foot contact in the fixed frame. Expanding (12.13) leads to:

(T )−1Ci =

[
RT −RTt

0 1

] [
Bi ci
0 1

]
=

[
RTBi RTci −RTt

0 1

]
(12.16)

Rearranging (12.16), we can define the following components corresponding to the

upper blocks of right-hand side matrix:

fp(q) = RT(ci − t) (12.17)

fR(q) = RTBi (12.18)

where fp(q) denotes the relative position change of the foot in the fixed frame, and

fR(q) the relative orientation change, as a function of the joint angles. Please note

that for quadrupeds we only use (12.17), since we cannot obtain an orientation

estimate from point feet.

(12.17) and (12.18) are the basic leg odometry expressions used as measurements

within estimation frameworks such as filters or factor graphs. These will be further

described in Section 12.4.

12.2.2 Velocity Estimation

The differential kinematics function from (12.3) can be used get a direct velocity

measurement from each stance leg. This approach is widely adopted on quadrupeds

[95, 149, 586] and less frequently on bipeds [1089]. The advantages are that velocity

measurements can be easily (pre)integrated into a filter (or factor); they do not

retain any history to avoid position error build up [323] and they do not need to

keep track of extra states (contact poses or positions). However, we must point out



342 Leg Odometry for SLAM

that the joint velocities are usually numerically differentiated from joint positions,

possibly degrading the estimation performance due to rounding errors.

Following a similar procedure as with the relative pose measurements, we aim to

describe the velocity relationships that hold while a leg in rigid contact with the

ground moves. First, we observe that the contact point k must be stationary for

stance legs, hence the velocity of the contact point seen from the fixed frame must

be zero:

vW

k = 0. (12.19)

Furthermore, the velocity of the contact point k must coincide with the velocity of

the the foot f , also described by the Jacobian matrix (12.3):

vb
k = vb

f = Jv(q)q̇. (12.20)

Since the angular velocity of the robot is measured by the IMU, we focus on the

linear velocity only. From (12.19) and (12.20), we can determine the robot’s body

velocity as:

vW

k = vW

b + ωW

b × tbk + vb
k

0 = vW

b + ωW

b × fp(q) + Jv(q)q̇

vW

b = −ωW

b × fp(q)− Jv(q)q̇ (12.21)

where we take into account the additional linear velocity caused by the lever arm

between the base and the foot [278]. (12.21) maps the absolute velocity of the robot

to the forward and differential kinematics functions and can therefore be used as a

measurement update or factor in a graph, as we will describe in Section 12.4. Note

that since we conventionally express velocities in body coordinates, these can be

obtained by using the robot orientation R = RW

b .

Up to now we assumed that the stance legs are known. In the next section, we

describe different methods to identify them.

12.3 Contact Estimation

The definition of contact estimation varies with the application. For example, in

collaborative robotics, the end effector of a manipulator might be considered in

contact as soon as it is “touching” something, i.e., there is a non negligible external

force exerted on it. For leg odometry, a foot can be considered in contact only when

the contact point is stationary over time; on robots with point feet, this means

ensuring it does not slip.

Technically, a foot does not slip when the vertical component of the Ground

Reaction Force (GRF), fz, is within the friction cone [954]:
√
f2x + f2y ≤ µx,yfz (12.22)



12.3 Contact Estimation 343

Figure 12.6 The contact point on a quadruped’s leg. A leg can be considered in stance
when the force f = [fx, fy, fz]

⊤ applied by the foot stays within the friction cone.

where fx and fy are the tangential components of the GRF with respect to the

contact plane, which depend on the local morphology of the terrain. µx,y is the

friction coefficient, which depends on the mechanical properties of the ground and

the foot touching it.

Humanoids with flat feet can also exert a torque on the ground. This introduces

an additional condition to the non-slipping condition (12.22), which requires that

the foot does not rotate:

[−τy/fz
τx/fz

]
≤
[
CoPx

CoPy

]
(12.23)

|τz| ≤ µzfz (12.24)

where τ is the contact torque, µz is the rotational coefficient of friction, and CoPx,

CoPy denote upper limits of the components of the center of pressure, which define

the contact support polygon bounds that are functions of contact surface geometry.

Since a sufficiently-high normal force fz would guarantee that inequalities ((12.22)-

(12.24)) are satisfied regardless of the other contact wrench (force and torque)

dimensions, the most adopted approach for contact estimation is to simply thresh-

old fz. Then, the only differences from an implementation point of view are how

the force is measured/estimated (i.e., contact sensors, F/T sensors, joint sensing,

IMUs), and the specific characteristics of the robot.

12.3.1 With Contact Sensors

Contact sensors implicitly threshold fz in hardware, as they are tuned such that

the binary signale they provided is only activated when the measured force exceeds

the nominal fz. This is the simplest case, as the leg odometry can directly rely on

the binary state provided by these sensors.



344 Leg Odometry for SLAM

12.3.2 With Force/Torque Sensors

When F/T sensors are present on the foot, fz can be measured directly over time.

This permits to associate specific force patterns to events that are not just binary.

For example, a small but rising force that lasts for more than a certain time is an

indication that the foot is striking the ground but not yet in stance. Conversely, a

force that falls below a certain value (e.g., half of the expected load for one leg)

means the the foot is about to break the contact and it is therefore not reliable.

In both cases, the information coming from that leg need to be discarded or its

associated uncertainty increased [323].

12.3.3 With IMUs

As seen in Chapter 11, IMUs are inexpensive sensors that provide acceleration and

rotational velocity measurements. While we tipically use them to measure these

quantities with respect to the robot’s body, we can also use them on the legs or

feet. Since any force applied to the foot (e.g., during a touch down) would cause

a change to its acceleration, some works used them to implicitly detect the stance

legs [1225, 954, 736]. The main advantage of this approach is that the sensor is not

sustaining an impact directly, so it is less likely to break, at the cost of additional

signal processing to effectively detect such acceleration changes.

12.3.4 From Joint Torque Sensing

While it might seem straightforward to add additional sensors at the feet to detect

contact, the different robot morphologies, design, and integration challenges might

not make it always possible. In this case, the GRF can be estimated from the joint

torques by exploiting the robots’s dynamics (see (12.1.5)).

Using a quadruped platform as an example, we can exploit the block-wise struc-

ture of Jq to compute the force at the end effector from (12.5) as:

fi = −(J̄T
i,v)−1

(
τi − hq,i − F Tv̇

)
(12.25)

where: fi ∈ R3 and τi ∈ R3 are the GRF and the torque leg i; J̄i,v is the non-zero

block i-th foot Jacobian Jv (which for quadrupeds is a square matrix); F ∈ R3×3

is one of the blocks of the mass matrix; hi,q ∈ R3 is the vector of centrifugal/Cori-

olis/gravity torques for leg i.

Note that the estimate for fi can only be in base coordinates. However, to recover

the actual GRF there are two pieces of information missing:

• the local inclination of the terrain, which the orientation of the contact force

depends on. While the ankle joints of a humanoid can give a good approximation,

for quadrupeds the orientation of the contact frame cannot be determined without



12.4 Leg Odometry for Estimation Problems 345

exteroceptive sensing, but can be inferred heuristically from the other feet in

contact (e.g., by fitting a plane through them) [337]

• the friction coefficient, which the horizontal components of the force depend on.

The friction coefficient depends on the material the robot is stepping on, so it

can only be known a priori or inferred from the amount of slippage the robot is

experiencing [521].

In general, establishing the contact states from joint sensing remains an open

problem, and several techniques have been developed to detect contact in a proba-

bilistic fashion, (e.g., by combining also kinematics as well as dynamics of the robot

[505]) or by using learning methods (see Section 12.6.1).

12.4 Leg Odometry for Estimation Problems

Now that we have specified the main steps required to obtain leg odometry mea-

surements, in this section we describe how to integrate them into an estimation

framework to solve the state estimation problem. The predominant estimation so-

lutions are based on filtering approaches, which combine IMU and leg odometry at

the high frequency required for closed-loop control. The factor graph-based smooth-

ing approaches described in the previous chapters have only been adopted on legged

platforms in the last few years. However, their focus has not been on providing es-

timates for control but rather lower frequency estimates for mapping, which benefit

from slower sensors such as LiDARs or cameras.

Regardless of the method, for optimally fusing leg odometry with other sensor

modalities we need to quantify its associated uncertainties. This is the first topic

we will cover before presenting the filtering and smoothing approaches.

12.4.1 Encoder Noise Propagation

The main source of uncertainties in leg odometry are the robot’s joints encoders,

which measure the joint positions and are affected by noise. This noise can be

modeled as an additive zero-mean Gaussian term ηq ∈ N (0,Σq), such that the

true value q and the measured value q̃ are related as follows:

q̃ = q + ηq (12.26)

Since the forward and differential kinematics functions involve rotations, they

are therefore nonlinear and they will not preserve the Gaussian properties of the

encoder noise. However, as done in previous chapters, we can consider a first-order

approximation—which is locally linear and preserves Gaussianity—using the the

Jacobian function [446]:

fp(q + ηq) ≈ fp(q) + Jc(q)ηq (12.27)



346 Leg Odometry for SLAM

where Jc(q) is the body manipulator Jacobian, i.e., the same as the manipulator

Jacobian J(q) but expressed in the contact frame.

The same Gaussianity assumption can also be applied to velocity measurements

affected by encoder noise ηq and encoder velocity noise ηq̇ [1188], considering that:

J(q + ηq)(q̇ + ηq̇) ≈ J(q)q̇ +
∂

∂q
(J(q)q̇)ηq + J(q)ηq̇ (12.28)

From (12.27) and (12.28), the extra terms multiplied by the noise terms can

simply be grouped into a single term, since they are all linear combinations of a

Gaussian term for a given encoder measurement.

12.4.2 Factor Graph Smoothing

To generate locomotion behaviors while avoiding falls and other catastrophic fail-

ures, legged robots have strict real-time control and high-frequency state estimation

requirements. Historically, those requirements were met by using nonlinear variants

of the Kalman Filter, such as the Extended Kalman Filter (EKF) [94, 149], the

Unscented Kalman Filter (UKF) [95], or the Invariant-EKF [448, 1250, 676]. These

types of filter would typically fuse together high-frequency sensor data, such as in-

ertial and kinematics, to feed the controller. Exteroceptive sensor updates within

the control loop have also been demonstrated [150] but those are normally relegated

to mapping and planning purposes.

One limitation of Kalman filtering-based methods is that they are designed to

have a process model in addition to the measurement model. When such a model is

not available, it is usually replaced by a constant velocity model or, more often, IMU

propagation. This suggests that factor graph-based methods are a more general

approach, as they consider both process models and measurement models in a

general manner—as a relationship between states and measurements.

Factor graph-based methods for legged systems mainly differ in the number of

estimated states and the time horizon. When only two consecutive states are con-

sidered, a factor graph resembles a filter; the Two-State Implicit Filter (TSIF) [98]

is an instance of this case. When the window is increased, instead of estimating only

the most current state as the TSIF, the factor graph has the ability to correct a his-

tory of past states within a time window. The frequency of the states considered is

a design decision: adding more frequent states at a high frequency (e.g., IMU rate)

simplifies the design of the estimator but it requires to reduce the time window

to keep the computational requirements bounded. Conversely, longer time horizons

with a fixed number of states can be achieved by preintegrating measurements, as

showed for IMU measurements in Chapter 11.

We next present two examples from the related literature that illustrate how

preintegration theory and the leg odometry concepts previously introduced are



12.4 Leg Odometry for Estimation Problems 347

leveraged in a factor graph estimation framework. We particularly focus on the

case of contact preintegration for bipeds [447], and velocity bias preintegration

for quadrupeds [1188]. In both cases, the measurements from Section 12.2 will be

reformulated in terms of residuals and covariances for the factors of the graph.

12.4.2.1 Contact Preintegration

Contact preintegration aims to integrate the relative motion increments from the

kinematics of a humanoid robot, and add them as factors that link two humanoid

states, defined as in (12.12). This idea was presented by Hartley et al. [447], and

the proposed factor graph is shown in Figure 12.7a.

The factors are generally standard: a prior factor (in black) anchors the graph,

while a preintegrated IMU factor (orange) introduces the motion prior from the

IMU. Additionally, for humanoids we add a forward kinematics factor (in green)

that constrains the pose of the contact frames, while the contact preintegration

factor (in blue) encodes the relative motion between contact states of the two legs.

Forward Kinematics Factor The forward kinematics factor relates the pose of the

contact frame at the feet to the pose of the robot, both expressed in the inertial

frame, via the forward kinematics of the stance leg.

By plugging the encoder noise from (12.27) into the relative pose measurement

of (12.17) and (12.18), we can define the following residual and covariance for the

forward kinematics factor:

rF = Log
(
C−1

i T fk(q̃)
)

(12.29)

ΣF = Jc(q̃)Σq J
T
c (q̃) (12.30)

where the residual enforces that the difference between the contact frame and the

robot frame are close to the forward kinematics, given the uncertainty propagated

from the encoders’ noise.

Contact Preintegration Factor The contact preintegration factor adds an additional

contraint on the contact point. Ideally, if there is no slip on the stance leg and the

pose of the contact frame should remain unaltered; in practice, slip occurs and can

be modeled as Gaussian noise added to the velocities of the contact point. The

contact preintegration factor models how the contact point can change between

two time instants due to this noise.

Technically, given two consecutive states xi and xj at times ti and tj , respectively,

the following relationship holds:

∆B̃ij = BT
i BjExp (δθij) = I (12.31)

∆c̃ij = BT
i (cj − ci) + δdij = 0 (12.32)

where we have used the rotational and translational components of the contact



348 Leg Odometry for SLAM

. . .IMU

Prior Contact

Forward
Kinematics

Pose

(a) Factor graph with preintegrated contacts

. . .IMU

Prior Preint.
Velocity

Pose

(b) Factor graph with preintegrated velocity

Figure 12.7 Factor graph formulations for preintegrated contact (top) and velocity (bot-
tom). Additional measurements (e.g., from exteroceptive sensors, which constrain two
states) can be easily added as additional factors (magenta).

frames Ci and Cj as stated in (12.15). The terms δθij and δdij are preintegrated

contact noise terms, which are introduced to model the uncertainty on the contact

point velocity as a zero-mean Gaussian variable [447]. The preintegrated contact

factor is then given by the following rotation and translation residuals and covari-

ance:

rC =

[
Log

(
BT

i Bj

)

BT
i (cj − ci)

]
(12.33)

ΣC =

[
Σw 0

0 Σv

]
∆tij (12.34)

where we have rearranged and stacked (12.31) and (12.32) into a single vector

residual. The covariance ΣC is made of the time integration of the contact angular

covariance Σw and linear velocity covariance Σv over ∆tij .

As a last note, an important limitation of the contact preintegration factor is that

it is only valid for the same stance leg, during the stance phase. Henceforth, it is not

valid for the switching dynamics of a legged platform. This has been addressed in

follow up work [446], by modeling and properly handling the contact frame switches,

enabling preintegration among different legs.



12.4 Leg Odometry for Estimation Problems 349

12.4.2.2 Velocity Preintegration

As mentioned previously, the kinematics of point feet platforms—such as quadruped

robots—cannot constrain the relative 6 DoF between two states. This impedes the

use of the forward kinematic and contact preintegration factors recently introduced.

Alternatively, we can exploit the linear velocity measurements from leg odometry,

reviewed in Section 12.2.2, and preintegrate them to obtain additional factors that

constraint the relative change of the robot’s pose [1188, 586].

Velocity Preintegration Factor This factor assumes that the instant linear velocity

of the body can be determined from leg odometry using (12.28) and it is affected

by Gaussian noise terms ηv and ηω:

ṽ = −Jv(q)q̇ − ω × fp(q) + ηv (12.35)

Assuming the robot has constant body linear velocity between times ti and tj , we

can preintegrate the velocity measurements to obtain:

∆t̃ij = ∆tij + δpij =

j−1∑

k=i

[
∆R̃ikṽk∆t

]
+ δpij (12.36)

where, similarly to the preintegrated contact factors, δpij is a preintegrated veloc-

ity noise term [1187, 586]. Then, the preintegrated velocity factor and associated

covariance are given by:

rV = RT
i (tj − ti)−∆tij (12.37)

ΣV,ij =

k=i∑

j−1

ΣV,ik +AΣvA
T (12.38)

with the matrix A = ∆R̃ik∆t.

12.4.2.3 Handling of Multiple Measurements

In the previous sections we have considered only one measurement per leg, without

considering what to do when multiple legs are in contact at the same time. The

presence of multiple legs in contact potentially provides redundancy and robustness,

but increases the risk of inconsistencies (e.g., when different legs provide conflicting

information). The simplest approach adopted by some works [323] is to pick only

the leg that is deemed to be most reliable, discarding the information from the

others.

Another intuitive approach is to treat each leg (and their measurements) inde-

pendently. This is easier when the contact poses (or positions) are explicitly part

of the state [447, 586]. When this is not the case, the velocity measurements si-

multaneously acquired by all legs in stance can still be treated as independent, but

it is often preferrable to average them into one single measurement to reduce the

computational load on the filter or factor graph [1188].



350 Leg Odometry for SLAM

12.4.3 Integration with Exteroceptive Sensors for SLAM

As we have seen in the previous sections, leg odometry provides an additional way

to compute incremental motion between two consecutive states. Their main use is

to improve the odometry estimate, such that the SLAM system building on top

of it (e.g., a pose graph) can benefit from low drift edges between nodes, which

translate into less abrupt corrections during loop closures.

The integration of additional sensors, such as LiDAR and cameras, is naturally

handled by both filtering and smoothing approaches by simply adding more mea-

surements to the former and factors to the latter. There are however subtle details

to be considered while doing so. Fusing measurements from multiple independent

sources, each one operating at different frequencies, levels of noise, and failure rates,

is not trivial.

If a sensor modality breaks the zero-mean Gaussian noise assumption, or fails

completely, the status of the filter (or factor graph) can be compromised. For this

reason, also motivated by the DARPA SubT challenge, there has been a surge

in loosely coupled methods that run different subsystems in parallel (e.g., Visual-

Inertial, Legged-Inertial, and LiDAR-Inertial) while triaging their outputs and se-

lect the best estimate from each subsystem [307, 566].

The alternative to loosely coupled methods are tightly coupled ones. In [1188] a

fixed-lag smoother was used to fuse leg odometry with IMU, cameras and LiDAR

in the same factor graph. In this case, to overcome the problems related to inconsis-

tencies between the different types of factors or sensor failures, the triaging happens

directly into the factors: if a sensor modality fails, the factor is simply not added

to the graph. In addition, to handle noise that is not zero-mean Gaussian, robust

cost functions can be used within factors.

12.5 Open Challenges

In previous sections we have covered how to generally perform leg odometry and

fuse it with other sensor modalities. We made a number of assumptions that are

often not valid in practice and challenging situations that are still unaddressed. We

briefly introduce them here.

12.5.1 Leg Deformation

The leg odometry equations we have seen throughout the chapter all assumed that

the robot was a perfectly rigid body. When this assumption is not valid, leg odome-

try measurements will be biased, because the forward kinematics function computes

the ideal position of the end effector and not the real one (see Figure 12.8). Simi-

larly, when the contact point does not move, but forces are applied to it such that

the legs bend, the joint angles change. When the problem occurs for short peri-



12.5 Open Challenges 351

× ×

× ×

Figure 12.8 Example of leg deformation on a quadruped. The real transformation between
the robot base and the contact point is shown at the left. Since the forward kinematics
assumes the robot’s legs are rigid, it incorrectly estimates and upward motion, as shown
on the right.

×

×

×

×

Figure 12.9 Example of ground deformation with a quadruped. The robot initially touches
the ground which is flat. While keeping the contact state on, the ground deforms and the
foot sinks into it (left). As the joint angles change while the foot goes down, this motion
is interpreted as an upward motion from the initial touchdown point (right)

ods of time, detecting the impact by analyzing the force profile and rejecting the

measurements during those periods is a strategy adopted in the past [149].

Since bipeds tend to have longer legs, the problem of leg flexibility can be even

worse on such platforms. One way to approach it would be to exploit the correlation

between the leg load and the flexibility (intuitively, the more a leg is loaded, the

more it will flex) by carefully modelling the bending properties of the robot con-

sidering its structural geometry and properties. This approach is however complex

and cannot be generalized well.

Instead, the most adopted approach is to integrate additional IMU sensors located

on the links and estimate the link orientation compared to the joint readings [1132].

12.5.2 Non-rigid Contacts and Slippage

If the robot is walking on soft or collapsible ground, when the contact is first de-

tected before the ground starts its deformation (Figure 12.9, left). Then, the leg

stretches penetrating the terrain. Because the contact point is assumed to be sta-

tionary, this is interpreted by the forward kinematics as an upward motion (Figure

12.9, right). Even if the effect is similar to leg deformation, in this case it is the



352 Leg Odometry for SLAM

assumption of zero velocity of the contact point to be broken [322], since the contact

point moves downwards as the ground deforms. This problem is similar to slippage,

when a foot is considered in contact with the ground but the forces it exerts on the

terrain violate (12.22) and/or (12.24).

In this case, an exteroceptive sensor such as a camera is needed to make the ve-

locity of the contact point observable in non-degenerate motions and robot configu-

rations [1089]. The velocity of the contact can be explicitly tracked as an additional

state in [1188], or as the derivative of the feet positions [586].

12.6 New Trends and Paradigm Shifts

In this last section, we focus on some of the recent trends in state estimation and

legged robotics. While some of them address part of the open challenges discussed

in the previous section, such as contact estimation, others also represent significant

paradigm shifts in the current techniques—particularly those aided by learning

algorithms.

12.6.1 Learning-based Contact Estimation

We discussed how contact estimation assumes rigid contact which is easily violated

by situations such as slippage, soft terrain, or leg deformation. Given the challenges

of accurately modeling these problems, it has been proposed to use data-driven

methods for contact estimation. These approaches generally aim to learn a binary

signal that determines when contact was established. This has been demonstrated in

a supervised manner by learning contact classifiers [149] but also in an unsupervised

fashion via clustering [953], where proprioceptive sensing (joint and inertial) provide

the main signals for the models.

With the rise of deep learning methods, it has been proposed to use neural net-

work architectures to determine the contact state of the feet. This has shown better

generalization of to a wider set of structured and unstructured environments [676].

Vision-based haptic sensors, which capitalize on the progress of machine learning

and computer vision [648], are another direction that shows promise to improve

force and contact estimates [1009].

12.6.2 End-to-End Learning

While high-frequency leg odometry and proprioceptive state estimation were devel-

oped to achieve closed-loop model-based locomotion control, the current progress

in reinforcement learning (RL) has challenged their necessity. RL-based locomo-

tions controllers showed that only the body velocity and orientation are required

for locomotion, which can be provided explicitly by a standard proprioceptive state

estimators [506], or even raw data from joint and inertial sensing [645, 769].



12.6 New Trends and Paradigm Shifts 353

While the latter might question the need for state estimation, this is explained by

the manner these particular RL-based controllers are trained. The training objective

aims to track velocity commands, emulating the way in which the robot will be

controlled by a human operator or planning system. To achieve this, the locomotion

controller only needs to know the orientation of the base with respect to the gravity

vector, as well as the instantaneous body velocity. As seen in Chapter IMU, these

quantities are fully observable from inertial data, hence can be implicitly estimated

during training.

In contrast, another current trend in locomotion learning aims to achieve ad-

vanced mobility skills to navigate the world, by learning locomotion controllers

that are able to traverse different obstacles and reach goals relative to a starting

position—robot parkour being an example [1306, 472]. Achieving this navigation

behavior does require access to an odometry estimate, since the robot needs to

keep track of the progress towards the goal in an inertial frame. This suggests that

state estimation is still needed to achieve more complex locomotion and navigation

tasks.

A few works have proposed to learn state estimation as part of the locomotion

policy learning process [523], and explicitly estimate variables such as the body

velocity, feet height, and contact state. While this has only been used for locomotion

purposes, it can be a promising alternative to obtain more accurate leg odometry

estimates for proprioceptive state estimation or odometry factors in SLAM.

12.6.3 Humanoid Robots

Humanoid robots embed part of the dreams that have motivated the development of

robotics—creating artificial agents able to do the dull, dangerous, and dirty tasks

that humans prefer not to do. Having a human-like body should—in principle—

enable them to seamlessly work in human-oriented environments, using tools, de-

vices, and even vehicles designed for people’s use.

The DARPA Robotics Challenge, briefly introduced in Section 12.1.1, has been

one of the main efforts in this direction. The diverse set of tasks, involving lo-

comotion on rough terrain but also tool handling and driving vehicles, presented

several challenges towards this goal. However, after it ended in 2015, most of the ef-

forts in legged robotics focused on quadrupedal platforms instead—which presented

clear advantages in control and robustness, motivating their adoption for industrial

inspection and monitoring. It was not until 2021 when a commercial interest in hu-

manoid platforms arose again, motivated by the optimism and fast-pacing progress

in artificial intelligence (AI), as well as the success of quadrupedal robots.

Diverse companies have recently aimed to develop new humanoid platforms as a

way to embody AI systems in the real world. Humanoid robots have been targeted

to solve complex tasks in delivery, warehousing, and manufacturing—working side-

by-side with people, in highly demanding environments. This presents different



354 Leg Odometry for SLAM

challenges that push the topics covered in this chapter in directions currently un-

explored. Problems such as long-term, accurate and reliable whole-body estimation

need to be solved for humanoid robots to be able to achieve tasks in last-mile de-

livery problems. Intermittent contacts, from the feet but also the trunk, arms, and

hands are expected when handling parcels or other objects in a warehouse setting.

Similarly, compliance is required when operating close to people in order to be

safe—this also relaxes the rigid contact assumptions we made in this chapter.

Acknowledgment

The authors thank Michele Focchi (University of Trento) for his advice in preparing

parts of this chapter.



PART THREE

FROM SLAM TO SPATIAL AI





II

Prelude
Marc Pollefeys Ayoung Kim, Frank Dellaert,

Timothy Barfoot, Luca Carlone, and Daniel Cremers

This prelude will be completed after all corrections.



13

Boosting SLAM with Deep Learning
Zachary Teed, Jia Deng, Boris Chidlovskii, Jérome Revaud, Felix Wimbauer and

Daniel Cremers

13.1 Introduction

Following the introduction of large, curated datasets [616], researchers have de-

ployed deep neural networks for a multitude of challenges ranging from image seg-

mentation [697] and optical flow estimation [286] to protein prediction [396, 535].

These systems are able to leverage large, labeled datasets and use highly over-

parameterized neural networks with powerful internal representations to learn a

mapping from the set of inputs to the space of labels. A natural question is how we

can extend the success of deep learning to SLAM.

As we saw in the previous chapters, modern SLAM systems contain many in-

terconnected components including feature detection, feature matching, outlier re-

jection and relocalization. One promising line of work has investigated replacing

individual components with learned systems. For example, networks for feature de-

tection [275], descriptors [222], matching [1057, 1141, 976, 1142, 678] and outlier

rejection [976] can be trained on large datasets and can outperform their classical

counterparts. Once these components are trained, they can be plugged back into

the full SLAM pipeline to produce more accurate and robust systems. Deep neural

networks can also be trained to predict useful 3D properties directly from input

images such as single image depth [97, 1223, 310] or relative pose between pairs of

frames [1224]. Depth or relative pose can then be naturally integrated into existing

SLAM systems, both as additional factors in the factor graph and as additional

terms in the loss functions [1224].

One issue with the modular approach is that errors from individual components

can feed into each other and compound. Increasingly, deep networks have been

shown capable of combining more and more of the pipeline into end-to-end train-

able modules, including the integration of optimization problems such as bundle

adjustment as neural network layers [1086, 1072, 677]. The DUSt3R [1162] line of

works takes this idea even further by replacing the full stack with a network that

predicts point maps directly from uncalibrated images.

In this chapter, we will discuss several promising ways to bring the power of neural

networks into the SLAM pipeline. An overview of some of the works presented in



13.1 Introduction 359

(a) D3VO [1224] (©2020 IEEE) (b) MonoRec [1184] ©2021 IEEE)

(c) DROID-SLAM [1086] (d) DPVO [1088]

(e) DuSt3R [1162] (©2024 IEEE) (f) MUSt3R [141] (©2025 IEEE)

Figure 13.1 Over the last years, a multitude of efforts have been made to bring the predic-
tive power of deep networks into visual SLAM. In this chapter, we will review a number
of these approaches.

this chapter is shown in Figure 13.1. In many ways these are techniques that try to

combine the best of both worlds. Some feed depth, pose and uncertainty predictions

from neural networks into an optimization-based SLAM pipeline. Some combine



360 Boosting SLAM with Deep Learning

Figure 13.2 A neural network can be trained to predict 3D properties, such as depth or
relative pose, from an input image or collection of images. These 3D properties can used
to augment SLAM systems.

end-to-end learned components with factor graphs. And some explore novel ways

of estimating inter-frame motion and 3D structure with suitably trained networks.

The resulting methods can significantly boost visual SLAM methods, providing

higher precision and robustness and often generalize well beyond their training

domain.

13.2 Deep Learning for Depth and Camera Pose

Deep neural networks can be trained to learn a mapping from an input space Z (e.g

images) to the label space X (e.g depth). Modern neural networks consist of a large

number of differentiable layers which can be composed into end-to-end trainable

systems. The parameters of the network are optimized using variations of gradient

descent over a loss function which measures how well the prediction of the network

matches the groundtruth label.

With modern depth sensors and laser scanners, it is now possible to collect large

amounts of 3D data. For example, depth sensors or lidar can be used to collect

images paired with depth maps. In addition, rendering engines can be used to

produce large scale, synthetic 3D datasets. As shown in Fig 13.2, neural networks

can be trained on this data to predict 3D properties directly from input images,

such as depth or relative camera pose. In this section, we show how the predictions

from these networks can be used to augment SLAM systems.

13.2.1 Deep Learning for Depth Prediction

Given a large collection of image and depth pairs, neural networks can be trained

predict depth (or some parameterization of depth) directly from a single input im-

age. Eigen et al. [310] first showed that convolutional neural networks could be used

to predict depth from a single image. Over the years, single image depth networks

have continued to advance on account of both improved network architectures and



13.2 Deep Learning for Depth and Camera Pose 361

without mask module with mask module

Figure 13.3 MonoRec: The mask module in the network architecture allows to filter out
moving objects based on brightness inconsistency across time [1184] (©2021 IEEE).

the expanding collection of 3D datasets. Modern depth networks often use a pre-

trained vision transformer (ViT) backbone [288] with a convolutional decoder to

upsample the coarse resolution ViT features and produce a final depth estimate

[1160, 488]. To improve generalizability, these networks are often trained on com-

binations of over 20 datasets including both synthetic and real data.

Depth predictions have many immediate applications in SLAM, particularly in

the monocular case. Monocular SLAM systems typically only produce reconstruc-

tions up to a scale factor and are subject to scale drift. Yang et al. [1223] and Hu et

al. [488] showed that metric depth predictions could be used to combat scale drift

of a monocular SLAM system. Depth predictions can also be used to robustify sys-

tems and avoid failure cases in challenging situations such as pure camera rotation,

changing camera parameters and dynamic objects [667].

Furthermore, visual SLAM systems often only track a sparse subset of feature

points, leading to sparse reconstructions of the scene. For example, areas with

little texture are barely present in the resulting point cloud. While sparse point

clouds are already useful, many downstream applications such as robot navigation

or autonomous driving require a dense reconstruction.

MonoRec: Monocular Dense Reconstruction [1184]: One way to densify

the output of a sparse SLAM system is to predict dense depth maps for every frame

of the video. A dense reconstruction, such as the one shown in Figure 15.5, can be

obtained by lifting all the pixels into 3D and accumulating them in a global refer-

ence frame using the poses produced by a SLAM system. However, simply using

the depth maps produced by a depth network is suboptimal for a couple reasons.

First, single image depth networks tend to produce geometrically inconsistent out-

puts between adjacent frames. Second, many scenes contain dynamic objects which

would introduce trailing artifacts in a static reconstruction. MonoRec [1184] im-

proves geometric consistency by augmenting the depth network with a cost volume

and filters dynamic objects by predicting a moving object mask.

To improve geometric consistency, for each frame It, MonoRec [1184] builds a cost

volume Ct(d) aggregated over consecutive frames
{
It′1 , . . . , It′n

}
. The cost volume is



362 Boosting SLAM with Deep Learning

built by computing the photometric consistency of each pixel at a number of discrete

depth steps d aggregated into a 3D volume. MonoRec uses a depth network which

takes in both the input image It and its cost volume Ct(d) to predict depth. The cost

volume provides the network with additional context for producing geometrically

consistency depths.

Cost volumes assume a static world and provide wrong signals if an object in

the scene is moving. Therefore, MonoRec relies on an additional masking network

which predicts a moving object segmentation mask Mt from the cost volume. The

moving object segmentation mask is used to filter out dynamic points when lifting

the predicting depths into 3D. Figure 15.5 shows that the masking module can filter

out moving objects in the dense reconstruction.

MonoRec is trained using the sparse 3D point predictions of the SLAM system.

Since the Mask module can benefit from having accurate depth and the Depth mod-

ule can benefit from accurate dynamic masks, joint training of the two components

can further boost performance, yielding accurate and consistent depth maps.

Behind the Scenes (BTS) [1185]: Dense pointclouds, as produced by MonoRec [1184],

can accurately represent the 3D world observed in the video. However, regions that

were not occluded are consequently not part of the reconstructed 3D scene. Behind

the Scenes (BTS) tackles this shortcoming by predicting a volumetric reconstruc-

tion instead of a depth maps. Here, everything in the camera frustum is recon-

structed, even the areas that are occluded in the current frame. In BTS, scenes

are represented as volumetric density fields ϕ(x) : R3 → R+, which map any point

x in the camera frustum to a volumetric density σ. Through the established vol-

ume rendering technique, it is possible to synthesize any novel view from this scene

representation. Overall, a volumetric reconstruction contains useful additional in-

formation for many downstream applications, especially in the autonomous driving

and robotics domain.

13.2.2 Deep Learning for Camera Pose Prediction

Similar to how a neural network can be trained to predict depth, a neural net-

work can also be trained to predict camera pose between pairs of frames or video

sequences. Letting I1 and I2 be a pair of input images, we can design a neural net-

work fθ which takes the two images as input and predicts the relative camera pose

from I1 to I2 denoted fθ(I1, I2) = T 2
1 ∈ SE3. Given groundtruth poses T 2∗

1 ∈ SE3,

we can define a loss

Lpose =
∥∥(T 2

1

)−1 · T 2∗

1

∥∥, where T 2
1 = fθ(I1, I2) (13.1)

which measures the relative transformation between the predicted pose and the

groundtruth pose. It is also possible to define other losses such as minimizing the



13.2 Deep Learning for Depth and Camera Pose 363

rotation angle or computing distance between predicted and ground truth quater-

nion representations of relative poses.

Early works for camera pose estimation used networks which concatenated the

two frames as input and regressed camera pose parameters such as axis-angle [1118]

or Euler angles [1294]. Given the relative pose between pairs of frames, one can

recover the full trajectory of the camera by chaining the poses together by com-

position. TartanVO [1165] improved relative posed estimation by augmenting the

input images with predicted optical flow and camera intrinsics, leading to better

generalization on downstream datasets.

One issue with two view pose prediction is that relative pose errors can compound

for longer video sequences. DeepVO [1161] proposed using a recurrent neural net-

work which takes in a sequence of frames as input and predicts a sequence of camera

poses. DeepVO extracts features from the input video sequence to generate a se-

quence of feature maps. These feature maps are then processed by an LSTM to

predict a sequence of camera pose estimates.

While these works showed promising results, directly predicting camera pose is

often less accurate than more classical SfM or SLAM techniques where geometry

is more deeply embedded in the system [1086]. Furthermore, these techniques have

a tendency to overfit to their training distribution and require training on large

combinations of datasets to encourage better generalization.

13.2.3 Unsupervised Learning of Depth and Camera Pose

Supervised learning of depth and pose require groundtruth 3D data which might

not always be available or can be difficult to obtain. It turns out there are ways

to train pose and depth networks without explicit 3D supervision. One common

technique uses view synthesis as a supervision signal [395, 1294]. Given two images,

I1 and I2 with relative poses T 2
1 , we can generate a new image from the viewpoint

of I1 using pixels sampled from I2.

To see how this is done, let πc : R3 7→ R2 be the camera projection which takes

a 3D point to its 2D pixel coordinates and π−1
c : R2 × R+ 7→ R3 be the inverse

projection function which takes a 2D pixel with depth d to its 3D point. Given these

functions and relative pose T 2
1 , we can map a (x1, d1) pair in I1 to its location in

I2

x2 = πc
(
T 2
1 π

−1
c (x1, d1)

)
= ω1→2(x1, d1) (13.2)

barring occlusions and using ω1→2 used for shorthand. Given a depth map d, (13.2)

can be used to warp I2 into the viewpoint of I1 by defining the warped image

Ĩ2(x) = I1(w1→2(x,d(x))) (13.3)

where I1(·) denotes bilinear interpolation. Since bilinear interpolation is locally dif-

ferentiable with respect to pixel coordinates, it is possible to compute the deriva-



364 Boosting SLAM with Deep Learning

Figure 13.4 DVSO: By feeding monocular depth predictions from a deep neural network
into a classical SLAM method like DSO [316], the monocular method “Deep Virtual
Stereo Odometry” (DVSO) [1223] achieved highly accurate camera trajectories that were
on par with state-of-the-art stereo-based methods. The deep network was trained in a
self-supervised manner using stereo videos and lead to significant boost in precision and
the capacity to recover scaled reconstruction from a single moving camera.

tive of the synthesized image Ĩ2 with respect to depth and camera pose. Godard

et. al [395] showed that a view synthesis loss could be used to train a depth net-

work on stereo images. Following works showed that this idea can be taken even

further and jointly trained a depth and a pose network using view synthesis super-

vision [1294, 1133].

Deep Virtual Stereo Odometry (DVSO) [1223]: On limitation of monocular

SLAM systems is that they tend to be less robust and more prone to drift than stereo

systems. DVSO showed that a classical visual odometry system, namely DSO[316],

could be augmented using depth predictions from a neural network trained using

view-synthesis supervision between stereo pairs of frames [395]. DVSO works by

taking the depth predictions from the neural network and adding an additional

factor that encourages the consistency between the predicted depth maps and the

depth computed by DSO as shown in Figure 13.4.

Using the depth predicted by the neural network improved the reconstruction

quality along with the accuracy and robustness of the poses predicted by the VO

system. Additionally, since the depth predictions were in metric units, the method

was able recover scale-accurate reconstructions even from a single camera. This

work was coined ”virtual stereo odometry” since in the monocular application the

deep network essentially hallucinated the effect of a second camera.

D3VO: Deep Depth, Deep Pose and Deep Uncertainty for Monocular

Visual Odometry [1224]: Beyond predictions of monocular depth, one can go

further and also feed predictions of relative camera motion into the classical SLAM

pipeline in order to ensure consistency of the recovered trajectory with the predic-

tions of camera motion for consecutive frames. Direct visual SLAM methods like

DSO [316] rely on color consistency across frames to infer localization and map-

ping. In the real world, this color consistency is not always guaranteed–in particular

for non-Lambertian structures like shiny, metallic or glass structures corresponding

points will likely not have the same color. While it is conceivable to explicitly model



13.3 Deep Learning for Feature Matching and Optical Flow 365

the reflection properties of the world, this is computationally demanding and likely

infeasible in a real-time setting.

Figure 13.5 D3VO [1224] combines self-supervised neural networks for pose, depth, and
uncertainty prediction with a direct SLAM system [316]. The pose and depth predictions
from the networks are integrated into the SLAM system as additional factors in the factor
graph, encouraging the state variables to the SLAM system to align with the predictions
of the neural networks. By combining deep learning with factor graphs, D3VO benefits
from the robustness of neural networks with the accuracy of direct SLAM. Image from
[1224] (©2020 IEEE).

It turns out that one can train a neural network to predict locations where color

is likely preserved across frames. Such predictions can also be fed into a direct

SLAM pipeline, essentially down-weighting the residuals where color consistency

is not expected. In this manner, D3VO[1224] feeds deep network predictions of

monocular depth, relative inter-frame camera motion and uncertainty into a SLAM

pipeline. As shown in Figure 13.5, D3VO use a depth and a pose network trained

using view synthesis losses in a self-supervised manner. The predictions enter on

the frontend in form of respective factor graph terms, but also in the backend in

the form of respective loss terms. By combining depth and pose predictions from a

neural network with direct visual odometry [316], D3VO is able to achieve highly

accurate camera trajectories and is robust to failure cases common for monocular

VO.

13.3 Deep Learning for Feature Matching and Optical Flow

The previous sections showed how neural networks can be used to predict 3D infor-

mation such as depth and camera pose directly from input images. This feed-forward

approach contrasts with the typical SLAM pipeline, where inference typically takes



366 Boosting SLAM with Deep Learning

MatMul

SoftMax

MatMul

C
ro

ss
-A

tte
nt

io
n

Se
lf-

A
tte

nt
io

n

Figure 13.6 Illustration of Multi-Head self and cross attention commonly used in feature
matching networks such as SuperGlue[976], LightGlue[678] and LoFTR[1057]. SuperGlue
and LightGlue perform self and cross attention over feature vectors associated with image
keypoints. LoFTR does not rely on keypoint detection and performs self and cross atten-
tion over dense feature grids.

the form of an optimization problem: solving for xMAP given the noisy measure-

ments z such as feature matches.

Predicting camera pose or depth is not an easy problem. To do so, the network

essentially needs to learn multi-view geometry from scratch, such as the relation-

ships between depth, camera pose and camera intrinsics. An alternative to this

approach is to predict the measurements z, such as feature matches, instead of the

state variables directly.

13.3.1 Learning Feature Detectors and Descriptors

Indirect SLAM approaches rely on feature detectors and descriptors to extract a

sparse set of visual measurements from the input images. First, salient regions of

the images are identified, commonly refered to as keypoints. Then the local neigh-

borhood of each keypoint is used to compute a vector descriptor which can be used

to match keypoints between images.

Neural networks can be trained to replace the hand designed feature detectors

and descriptors commonly used in SLAM and SfM pipelines. On such method,

SuperPoint [275], proposed using a convolutional neural network to both (1) detect

salient image regions and (2) assign feature descriptors to the detected keypoints.

Similiarly, Universal Correspondence Network [222], showed that feature descriptors

produced by a neural network can improve downstream feature matching accracy.

Such networks are typically trained using a contrastive loss, which encourages the

feature descriptors for matching points to be similar and encourages the distance

between the feature descriptors for non-matching keypoints to be large.



13.3 Deep Learning for Feature Matching and Optical Flow 367

13.3.2 Feature Matching

Given a set of keypoints produced by a pair of images, neural networks can also

be used to improve the matching of keypoints between images. SuperGlue[976] in-

troduced the idea of using a neural network to guide feature matching. SuperGlue

operated over keypoints extracted from a pair of input images. SuperGlue itera-

tively updated feature vectors associated with each keypoint with self and cross

attention layers as shown in Figure 13.6. The network outputs an assignment ma-

trix, providing the likelihood of each keypoint in the first image with each keypoint

in the second image (with an additional column for unmatched keypoints). Super-

Glue showed that the predicted keypoint matches could improve accuracy on several

downstream tasks such pose estimation. LightGlue[678] improved the accuracy and

speed of SuperGlue with a collection of architecture and training improvements.

One potential limitation of SuperGlue and LightGlue is that they operate over

a sparse set of image keypoints. While this has the advantage of reducing com-

putation, it cannot use the full image which can limit the number of high quality

matches on difficult examples such as images with limited texture. LoFTR [1057]

proposed a network for dense pixel matching. Similar to SuperGlue and LightGlue,

LoFTR leveraged self attention and cross attention (Figure 13.6). In order to reduce

compute, LoFTR performed dense matching over coarse resolution feature grids,

then refined the predictions at higher resolution.

The feature matches produced these systems can be directly integrated into indi-

rection SLAM systems in the form of visual measurements and their corresponding

factors. Deep feature matching can improve the robustness of SLAM systems in

cases where traditional feature descriptors are not reliable.

13.3.3 Optical Flow and RAFT

Optical flow is closely related to the problem of feature matching. It is the task of

estimating per-pixel motion between a pair of frames. This per-pixel motion–or flow

field–can be used as measurements in a factor graph-based visual SLAM system.

Originally, optical flow was formulated as an optimization problem with a cost

function that balanced two terms: a data term and a regularization term. The

data term encourages the alignment of visually similar image regions while the

regularization term encourages physically plausible motion fields. In more recent

years, deep learning has emerged as a promising alternative [286, 1056, 510, 914].

In this section, we describe one such approach, RAFT [1085] (Figure 13.7), in more

detail as it serves as the basis for DROID-SLAM [1086]. More recent optical flow

networks have improved upon RAFT with the addition of multi-head attention and

transformer blocks [501] such as those illustrated in Figure 13.6.

Figure 13.7 illustrates the overall design of RAFT. RAFT combines elements of

both deep learning and traditional first order optimization. Features are first ex-



368 Boosting SLAM with Deep Learning

Feature Encoders

Context Encoder

C
onv-G

R
U

C
onv-G

R
U

C
onv-G

R
U

C
onv-G

R
U

Correlation Pyramid

12+ iterations

Initial Hidden State

Context Features

Flow Field

Figure 13.7 RAFT: Recurrent All Pairs Field Transforms for Optical Flow architecture.
Features are extracted from the input images using a pair of residual networks. RAFT then
builds a correlation volume by taking an all-pairs inner product between the features from
I1 and the features from I2. Starting from a flow field initialized at 0, RAFT iteratively
using the current estimate of optical flow to perform lookups from the correlation pyramid
and applies a recurrent convolutional GRU to update the flow estimate.

tracted from the input images then used to build a 4D correlation volume. Starting

with a flow field initialized at zero, the flow field is used to perform lookups from

the correlation pyramid. The correlation features, alongside the current estimate of

the flow field, are plugged into a Convolutional-GRU which produces an update to

the flow field in addition to an updated hidden state. RAFT is trained on a com-

bination of synthetic datasets with groundtruth optical flow [750, 286] but shows

good generalization to real data [764].

Feature Extractor: The feature extractor is used to encode the input images into

dense feature maps at lower resolution. RAFT uses a pair of feature extractors:

(1) a appearance encoder gθ and (2) a context encoder cθ which map the input

image with dimensions (hin, win, 3) to a lower resolution feature map with shape

(h, w, c) where c is the number of feature channels. By default, RAFT extracts

features as 1/8 resolution so (h, w) = (hin/8, win/8) but some other networks use

higher resolution.

Correlation Pyramid: The appearance features are used to build a multi-resolution

correlation pyramid. The correlation volume is 4-dimensional tensor which has

shape h × w × h × w where h and w are the dimensions of the appearence fea-

ture map as defined above. The correlation volume C is constructed by taking the

inner product between all pixels in gθ(I1) with all pixels in gθ(I2)

Cijkl(I1, I2) = ⟨gθ(I1)ij , gθ(I2)kl⟩ =
∑

m

gθ(I1)ijm · gθ(I2)klm. (13.4)



13.3 Deep Learning for Feature Matching and Optical Flow 369

Current Flow Estimate

Concat Correlation
Features

Figure 13.8 RAFT correlation lookup operator. This figure illustrates a 1D slice of the
lookup operation. For the current flow estimate, RAFT constructs a local neighborhood
and retrieves features from each level of the correlation pyramid which are then flattened
and concatenated.

This operation can be implemented as a single matrix multiplication (by flatten-

ing the spatial dimensions and taking the transpose of the first argument) which is

highly optimized on the GPU. RAFT doesn’t just use a single correlation volume

but constructs a multi-resolution correlation pyramid. The pyramid is constructed

by iteratively performing average pooling on the last two dimensions of the corre-

lation volume to produce a 4 level pyramid {C0,C1,C2,C3} where the lth level

volume Cl has shape h× w × h/2l × w/2l.

Correlation Lookup RAFT defines a lookup operator which uses uses the current

estimate of the flow f to index from the correlation pyramid (Figure 13.8). For

a given pixel (u, v) in gθ(I1), the flow field f is used to compute its estimated

correspondence in I2 by following the flow vector (u′, v′) = f(u, v) + (u, v).

RAFT then constructs a (2r + 1)× (2r + 1) neighborhood grid around (u′, v′)

N(u′, v′) = {(u′ + ∆u, v′ + ∆v) | ∆u,∆v ∈ {−r, ..., r}} (13.5)

where r is a hyper-parameter which defines the lookup radius. The neighborhood

grid is used to index from C0 via bilinear interpolation. Features are sampled from

the lower resolutions Cl by using neighboorhood grids centered around the rescaled

correspondence coordinates N(u′/2l, v′/2l). The final feature vector is formed by

concatenating the features from each level as shown in Figure 13.8 and contains both

fine resolution features about small displacements and coarse resolution information

about large displacements.

Update Operator: The RAFT weight-tied update operator estimates of flow fields

(f1, ...,fN ) starting from the zero field. With each iteration of the update operator,

it produces an update direction which is applied to the current estimate to produce

the next estimate fk+1 = δfk + fk.

The update operator uses gated activation unit based on the GRU [225] where the

linear layers are replaced with convolutions. The convolutions allow information to

be spatially propagated over the image and weight tying and bounded activations



370 Boosting SLAM with Deep Learning

encourage convergence to a fixed point. Each iteration takes the following four

inputs (each in the form of a 2D feature map): (1) the hidden state from the previous

iteration, (2) the context features, (3) the current flow estimate and (4) correlation

features from the lookup operator. These features are taken as input to the Conv-

GRU which produces an update hidden state and the flow update δfk.

13.3.4 Optical Flow as Visual Measurements

In a static scene the optical flow between a pair of frames is a function of depth

and camera pose. To see this, let Ii and Ij be two images with known camera poses

Tw
i and Tw

j (as camera to world transformations). Given a pixel (u, v) with depth

d, we can compute the induced optical flow by first unprojecting the point (u, v) to

depth d, then transforming the 3D point from frame i to j, followed by projecting

onto camera j

f̂(u, v) = π
(
T j
i · π−1(u, v, d)

)
− (u, v) T j

i = (Tw
j )−1 · Tw

i . (13.6)

where π : R3 7→ R2 which takes a 3d point in pixel coordinates and projects it to

pixel coordinates, and the inverse projection function π−1 : R × R2 7→ R3 which

backprojects pixel coordinates (u, v) with depth d to its 3D coordinate.

Here we assume pinhole cameras but complicated camera models with radial or

tangential distortion can also be used if they are undistorted as a preprocessing

step which is possible assuming the distortion model is known. For notational con-

venience, we overload π and π−1 with vectorized versions of these operators that

act on dense h×w grids of pixels (u,v), such that the flow field can be represented

in the form

hij(T
w
i ,T

w
j ,di) = π

(
T j
i · π−1(u,v,di)

)
−
[
u

v

]
(13.7)

where d is taken to be a h× w dense depth map.

13.3.5 Estimating Pose and Depth from Optical Flow

We can use factor graphs to go in the reverse direction: using estimates of optical

flow to solve for depth and camera pose. Consider a set of images {I1, ..., In} and let

G be a graph with edges connecting images with flow estimates (Figure 13.9a), such

that (i, j) ∈ G means that we have an estimate of optical flow between images Ii
and Ij . Let’s denote the flow estimate between frames Ii and Ij as the measurement

zij (because each edge in the frame graph gives rise to a single factor, we index the

factors with the tuple (i, j) for notional convenience) and let the state variables x

be the poses (Tw
1 , ...,T

w
n ) and dense depth maps (d1, ...,dn). We can construct a

cost function over the states describing the flow that we should observe given the



13.4 Differentiable Bundle Adjustment and DROID-SLAM 371

(a) Flow Frame Graph (b) Flow Factor Graph

Figure 13.9 Flow frame graph and flow factor graph.

state variables

J(x)
∆
=

∑

(i,j)∈G

∥∥zij − hij(T
w
i ,T

w
j ,di)

∥∥2
Σij

(13.8)

where the measurement prediction function hij was defined in (13.7).

This cost function gives rise to the factor graph in Figure 13.9b where each

factor involves 3 state variables: the source pose, the destination pose and the

the source depth. A couple notes on parameterization: in practice, it is better to

parameterize the depth variables using inverse depth because this leads to better

local approximations of the cost function. Since poses are manifold state variables,

we also want to use the local parameterization exp (ξ∧i )Tw
i .

13.4 Differentiable Bundle Adjustment and DROID-SLAM

We can use RAFT (or another off-the-shelf method) to compute optical flow, then

minimize a least-squares optimization problem to solve for pose and depth. Alone,

this doesn’t work particularly well. Optical flow networks are trained on the task

of optical flow, not 3D reconstruction or pose estimation. The loss function doesn’t

necessarily do a good job modeling what we care about in SLAM, particularly

the accuracy of the camera poses. The second issue is that the output of our flow

network is subject to outliers and all pixels are weighted equally in the cost function.

One solution is to use intermediate representations, such as optical flow, as inputs

to a differentiable optimization layer. Using the techniques outlined in Chapter 4,

we can perform backpropagation through the optimization layer to supervised this

intermediate representation and, by extension, train the weights of our network.

Furthermore, we can use the network to output corresponding confidence weights



372 Boosting SLAM with Deep Learning

to further shape the optimization landscape. To make this idea more concrete, recall

in Chapter 1 that a factor graph gives rise to a cost function in the form

J(x)
∆
=
∑

i

∥ei(xi)∥2Σi
= ∥e(x)∥2Σ ei(x) = zi − hi(xi) (13.9)

where ei is the error vector representing the difference between the model of the

world and the observed measurements. The error vector ei typically represents

reprojection error (indirect methods) or photometric error (direct methods).

Instead of modeling the error directly, we can instead use a neural network to

produce the error and corresponding confidence. We can define a neural network as

a function eθ which maps the current state x (e.g poses) and measurements z (e.g

images) to an error vector e ∈ Rm and parametrize covariance in a similar way. We

can rewrite the cost function plugging in the learned functions eθ and Σθ

J(x)
∆
= ∥eθ(z,x)∥2Σθ(z,x)

(13.10)

allowing the neural networks to shape the cost function.

BANet [1072] was among the first works to integrate bundle adjustment into an

end-to-end trainable architecture by defining a photometric error over feature maps

extracted by a neural network. Lindenberger et. al [677] used a similar feature-

metric error to improve the outputs of SfM systems. In this section, we outline

DROID-SLAM [1086] and DPVO [1088] which build SLAM and VO systems using

optical flow as an intermediate representation for differentiable BA.

13.4.1 DROID-SLAM Architecture

The architecture of DROID-SLAM (Figure 13.10) reuses many of the components

of RAFT. It takes in two inputs: the sequence of input images (I1, ..., In) and a

frame graph G with edges between co-visible pairs of images. It outputs a sequence

of pose and depth estimates.

Feature Extraction and Visual Similarity: The input to the network is a

sequence of frames (I1, ..., In) and a frame graph G. Just like RAFT, DROID-SLAM

uses a two feature extractors: a context encoder cθ and an appearance encoder

gθ–both residual networks which output features at 1/8 the input resolution. The

appearance features are used to build a set of correlation pyramids following RAFT.

A correlation pyramid is constructed for each edge (i, j) in the frame graph using

the correlation between appearance features of Ii and Ij . In total, if there are E

edges in the frame graph, E correlation pyramids will be constructed.

Update Operator: The update operator acts on the frame graph G to produce

global pose and depth updates. Each edge (i, j) in the frame graph has an associated



13.4 Differentiable Bundle Adjustment and DROID-SLAM 373

U
pdate

O
perator

Corrlation Pyramid x E

U
pdate

O
perator

Hidden State x E

Feature
Extractors

Figure 13.10 DROID-SLAM architecture: Features are extracted from the set of N input
images and used to construct E correlation volumes (one for each edge in the frame graph).
The update operator acts symmetrically on each edge in the frame graph. In each iteration,
it uses the current estimate of the poses T1, ...,Tn and depths d1, ...,dn to index from
the correlation pyramid. The correlation features and hidden state are used to produce a
flow revision δf and confidence weights w which parametrize the cost function. A couple
Gauss-Newton updates are applied to generate pose and depth updates.

correlation pyramidCij and hidden state qij . The hidden state qij is initialized from

the context features of the source frame Ii.

Each iteration of the update operator uses the current estimate of poses and

depth to compute the induced flow for each edge in the frame graph, using the

measurement function defined in (13.7). Like RAFT, the update operator is a con-

volutional GRU, but here it is replicated for each edge in the frame graph. During

each iteration, the update operator uses (1) the hidden state (2) correlation features

(3) flow features and (4) the residual from the previous iteration to produce an up-

dated hidden state. The updated hidden state is used to predict the measurement

errors δfij (e.g. flow field updates) and an associated confidence map wij .

Differentiable Bundle Adjustment: The error estimate and the confidence map

are used to construct a NLS cost function of the form

J(x)
∆
=

∑

(i,j)∈G

∥∥δfij −
[
hij(xij)− hij(x

0
ij)
]∥∥2

Σij
(13.11)

where the covariance is constructed by turning wij into a block diagonal matrix

Σij = diag wij and x0
ij are the initial pose and depth estimates at the start of the

iteration. This cost function is saying that we want to update are states to drive

the change in the measurement function hij(xij)−hij(x
0
ij) to match the error δfij

as predicted by the network. The weights wij give the network additional control

of the optimization landscape by allowing it to place more weight on regions of the



374 Boosting SLAM with Deep Learning

image where it is confident. The depth and camera pose are updated by unrolling

Gauss Newton iterations. The techniques outlined in Chapter 4 are used to perform

backpropagation through each individual Gauss Newton step allowing the network

to be trained end-to-end.

Training: DROID-SLAM is trained on the synthetic TartanAir dataset [1164]

which includes groundtruth depth and camera pose. Training involves a weighted

combination of a pose and a flow loss. The pose loss penalizes the difference between

the predicted poses of the network and the ground truth poses. Likewise, the flow

loss penalizes the difference between the optical flow induced by the predicted pose

and depth (13.6) and the optical flow induced by the groundtruth pose and depth.

13.4.2 DROID-SLAM Inference

The network is trained in an in-place setting, where it receives a fixed number of

frames as input. There are several modifications that need to be made to operate

in the online setting where the frame graph is dynamic and new frames are being

constantly added and removed.

Motion Filtering: For initialization, it is important to select frames where there

is sufficient motion. DROID-SLAM uses a simple probe to filter frames based on

relative motion from the last keyframe. If It−1 is the last keyframe and It is the

incoming frame, it constructs a frame graph with one edge: It → It+1, then runs

the update operator to compute the flow revisions δf . If the magnitude of δf is

below a threshold, the frame is discarded, otherwise it is kept.

Initialization: Once a sufficient number of frames have been accumulated, DROID-

SLAM attempts to initialize. It constructs a frame graph where each frame is con-

nected to its temporal neighbors, then runs several iterations of the update opera-

tor. Despite the simplicity of this initialization strategy, it works quite well on all

benchmark datasets. Of course, this would fail in cases of pure rotation.

Frontend: Once a new frame is added, edges are added to the frame graph to

include the new frame. Temporal edges are always added bidirectionally between

the keyframe and the previous two frames. Induced optical flow is also used to

compute the distance between all pairs of keyframes and new edges are added

between frames with high co-visibility. DROID-SLAM takes steps to avoid adding

too many edges such as applying non-maximal suppression to neighboring edges.

Global Optimization: DROID-SLAM also uses a backend process to optimize the

full frame graph jointly. It first adds edges between temporally adjacent frames then

uses the current estimate of poses and depths to compute optical flow between all

pairs of frames. Long distance edges are added to the graph if the optical flow is



13.4 Differentiable Bundle Adjustment and DROID-SLAM 375

3 2 1 0 1 2
x (m)

2

1

0

1

2

3

y 
(m

)

Ground Truth
Ours

(a) Frontend Only

3 2 1 0 1 2
x (m)

2

1

0

1

2

3

y 
(m

)

Ground Truth
Ours

(b) After Global Optimization

Figure 13.11 Estimated trajectory compared to ground truth on the V1 02 medium scene
in the EuRoC benchmark. Global optimization reduces the rmse ATE from 16.5cm to
1.2cm.

below a certain threshold. The long distance edges enable min-range loop closure

assuming the drift isn’t too severe but DROID-SLAM doesn’t include any relocal-

ization module, so large loops with lots of drift cannot be closed. As Figure 13.11

shows, global optimization with mid-range loop closure can significantly improve

the accuracy of the estimated trajectory.

13.4.3 Generalizing to Other Modalities

The factor graph formulation makes it easy to generalize DROID-SLAM to RGB-D

and stereo video without needing to retrain the network. In addition to RGB-D

and stereo, this approach has also been generalized to visual-inertial SLAM [871]

and event cameras [767].

RGB-D Video: With depth video, it is sufficient to simply add another factor

encouraging the predicted depth to be close to the sensor depth. Sensor depth

estimates are typically sparse, so this is only applied on pixels which have a valid

sensor reading, producing the updated cost function

J(x)
∆
=

∑

(i,j)∈G
∥zij − hij(x)∥2 +

∑

i

∥∥d̄i − di
∥∥2
Σd

(13.12)

where d̄i is the sensor depth observation and Σd is the sensor-covariance which is

represented as a diagonal matrix with zeros on the missing sensor values.



376 Boosting SLAM with Deep Learning

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
ATE[m]

0

20

40

60

80

100

%
 o

f s
ce

ne
s

TartanAir Validation Split

Monocular (local)
Monocular (full)
Stereo (local)
Stereo (full)

Figure 13.12 Comparison of monocular and stereo versions of DROID-SLAM with and
without global optimization. DROID-SLAM is run all combinations on the 32 TartanAir
validation sequences and plot the percentage of trajectories with absolute trajectory error
(ATE) less than each threshold. Having stereo frames significantly helps–partially because
it solves the problem of scale drift. Both the monocular and stereo system benefit from
global optimization.

Stereo Video: Generalizing to stereo videos is not much harder. In the stereo

case, each input consists of a time-synchronized left and right frame taken from a

stereo rig. It is assumed that the relative pose between the left and the right frame

is known. DROID-SLAM simply adds both the left and right frames to the frame

graph and, for every left frame, and edge is added connecting it to its right pair. The

relative pose between the left and right frame is fixed during optimization. In Figure

13.12, DROID-SLAM shows that stereo pairs of frames an improve performance in

addition to the performance benefit of using global optimization.

13.4.4 Deep Patch Visual Odometry (DPVO)

Deep Patch Visual Odometry [1088] is closely related to DROID-SLAM but instead

operates on sparse patches instead of dense frames. This turns out to have several

advantages, not just for computational efficiency, but also accuracy.

Patch Graph: DPVO operates on patches instead of full frames and uses a patch

graph data structure to store the association between patches and images. The

patch graph is a bipartite graph representing the patch lifetimes; edges in the graph

connect patches with frames.

Each patch is represented as a fronto-parallel plane in the image from which it



13.4 Differentiable Bundle Adjustment and DROID-SLAM 377

Patch 1

Patch K

Figure 13.13 DPVO patch graph: each patch is tracked through time. The update operator
outputs flow revisions δf for each edge in the graph, denoted by the error vector in the
figure.

was extracted. Thus, each patch is parameterized by a single (inverse) depth. To

reproject patches between frames, we update the measurement function

hij(T
w
s(i),T

w
j , di) = π

(
T j
s(i) · π−1(u,v, di)

)
−
[
u

v

]
(13.13)

where i is the patch index and s(i) is the source index, or the index of the frame

from which patch i was extracted. u and v are the pixel coordinates of the patch

and di is a single scalar depth, shared over the full patch.

Patch Extraction: Each incoming image is processed by a feature encoder and

a context encoder which outputs features at 1/4 resolution. Patch centroids are

randomly sampled and used to construct a 3× 3 patch with one pixel offsets (1px

in the resolution of the extracted feature maps so actually this corresponded to

4px in the original image). DPVO uses a very simple method for constructing

the patch graph. Each patch is connected to all the frames within a radius of r

timesteps. Computation can be traded off for accuracy by selecting more patches

and increasing their lifetime.

Update Operator: The update operator acts on edges in the patch graph. Like

RAFT and DROID-SLAM, the update operator used by DPVO is a recurrent

weight-tied unit but incorporates several new components. It performs temporal

convolutions across the patch lifetime in addition to aggregation layers which pool

features across frames and patches. The update operator produces a per-edge flow

update δf and accompanying confidence weights w. These are used to construct

a cost function using (13.7) as the measurement function and the pose and depth

updates are produced by unrolling two GN iteration.

Inference: DPVO starts by accumulating frames for initialization. Once a set num-



378 Boosting SLAM with Deep Learning

ber of frames is accumulated, DPVO initializes by running several iterations of the

update operator. Subsequently, when each new frame is added, patches are ex-

tracted from the new frame and edges are added to the patch graph–both forward

edges connecting previous patches with the new frame and backward edges con-

necting the new patches with previous frames. Next, the update operator is run to

refine the depth and pose estimates. Like DROID-SLAM, DPVO also implements

keyframing to ensure that the optimization window is sufficiently large.

Loop Closure and Global Optimization: DPVO is purely a visual odometry

system and cannot perform loop closures outside the optimization window. Deep

Patch Visual SLAM (DPVS) [679] expands on DPVO by adding global optimization

and loop closure. DPVS can perform long-range loop closures using a relocalization

module and short-range loop closures based on proximity detection. Unlike DROID-

SLAM, DPVS can maintain real-time performance on a single GPU.

13.5 DuSt3R

As shown in the previous sections, modern SLAM systems can be described from

a high level point of view as pipelines involving a series of steps: first, obtaining

pixel correspondences between frames, being as keypoints, patches or dense optical

flow; then, modeling the factor graph associated between the state variable x (e.g.,

camera parameters and depth maps) and the observed correspondences; and finally

solving for the state variable update that would minimize the overall cost function

J(x). Note that, in the larger context of SfM, camera parameters to be estimated

would also include the intrinsic calibration of each camera – those are generally

assumed to be given in the context of SLAM. In previous chapters, we have seen

how learning-based approach can be inserted within each of these steps (e.g., neural

network for estimating the optical flow), but the SLAM pipeline remains heavily

handcrafted and rather complex overall.

Recently, a novel type of learning-based approach has emerged. Instead of break-

ing down the simultaneous-localization-and-mapping problem as a series of atomic

steps, DUSt3R [1162] proposes instead to let a neural network solve all steps at

once: solely given images, it directly outputs camera poses, dense depth maps, and

even intrinsic parameters, without requiring any explicit solvers nor iterative algo-

rithms. Note that applications for this type of network go well beyond SLAM, as

it additionally makes no assumption on the temporal relation between the input

images, and therefore more generally applies to SfM and dense 3D reconstruction

in general.

In reality, however, tasking a network with reconstructing a large scene from

possibly thousands of frames still seems out of reach, and in practice, DUSt3R only

solves a local version of the 3D reconstruction problem involving just two input

images. As we will see later, in the end, a form of factor graph is still necessary



13.5 DuSt3R 379

ViT
encoder

Transformer
Decoder1

Head1

ViT
encoder

Transformer
Decoder2

Head2

Shared 
weights

Patchify

Cross-attention

Confidence 
𝐶1 ∈ ℝ𝑊×𝐻

Pointmap 
𝑋1,1 ∈ ℝ𝑊×𝐻×3

Confidence 
𝐶2 ∈ ℝ𝑊×𝐻

Pointmap 
𝑋2,1 ∈ ℝ𝑊×𝐻×3

Common coordinate frame 
of camera 1 (image  𝐼1)

Image 𝐼2 ∈ ℝ𝑊×𝐻×3

Image 𝐼1 ∈ ℝ𝑊×𝐻×3
Camera1
(at origin)

Camera2
(unknown position)

𝐹1

𝐹2

Patchify

Figure 13.14 Architecture of the network. Two views of a scene (I1, I2) are first en-
coded in a Siamese manner with a shared ViT encoder. The resulting token representations
F 1 and F 2 are then passed to two transformer decoders that constantly exchange infor-
mation via cross-attention. Finally, two regression heads output the two corresponding
pointmaps and associated confidence maps. Importantly, the two pointmaps are expressed
in the same coordinate frame of the first image I1. The network is trained using a simple
regression loss (Eq. (13.17)). Image from [1162] (©2024 IEEE).

for performing SLAM (or large-scale 3D reconstruction) given a set of local 3D

reconstructions. The difference with previous methods is that, due to the richness

of its output, DUSt3R simplifies and expands the possibilities of SLAM systems,

making them far more robust and enabling new features like handling varying

camera intrinsics (e.g., dynamic zoom-in / zoom-out).

Overview. In a nutshell, it is able to perform Dense Unconstrained Stereo 3D

Reconstruction from un-calibrated and un-posed cameras. Its main component is

a network that can regress a dense and accurate scene representation solely from

a pair of images, without prior information regarding the scene nor the cameras

(not even the intrinsic parameters). The resulting scene representation is based on

3D pointmaps with rich properties that simultaneously encapsulate (a) the scene

geometry, (b) the relation between pixels and scene points and (c) the relation be-

tween the two viewpoints. From this output alone, practically all scene parameters

(i.e., cameras and scene geometry) can be straightforwardly extracted. This is pos-

sible because the network jointly processes the input images and the resulting 3D

pointmaps, thus learning strong geometric and shape priors which are reminiscent

of those commonly leveraged in multi-view stereo, like shape from texture, shading

or contours [1003].

Pointmap. We denote a dense 2D field of 3D points as a pointmap X ∈ RW×H×3.

In association with its corresponding RGB image I of resolution W ×H, X forms

a one-to-one mapping between image pixels and 3D scene points, i.e., Ii,j ↔ Xi,j ,

for all pixel coordinates (i, j) ∈ {1 . . .W} × {1 . . . H}. We assume here that each

camera ray hits a single 3D point, i.e., ignoring the case of translucent surfaces.

Given camera intrinsics K ∈ R3×3, the pointmap X of the observed scene can

be straightforwardly obtained from the ground-truth depthmap D ∈ RW×H as

Xi,j = K−1Di,j [i, j, 1]
⊤

. Here, X is expressed in the camera coordinate frame. In



380 Boosting SLAM with Deep Learning

the following, we denote as Xn,m the pointmap Xn from camera n expressed in

camera m’s coordinate frame:

Xn,m = PmP
−1
n h (Xn) (13.14)

where Pm, Pn ∈ R3×4 are the world-to-camera poses for images m and n, and

h : (x, y, z)→ (x, y, z, 1) is the homogeneous mapping.

13.5.1 A Network for Generalized Stereo Reconstruction

Problem definition. We build a network that solves the 3D reconstruction task

for the generalized stereo case through direct regression. The network f takes as in-

put two RGB images I1, I2 ∈ RW×H×3 and outputs two corresponding pointmaps

X1,1, X2,1 ∈ RW×H×3 with associated confidence maps C1,1, C2,1 ∈ RW×H . Note

that both pointmaps are expressed in the same coordinate frame of I1, which radi-

cally differs from existing approaches but offers multiple key advantages (see 13.5.3).

Network architecture. As shown in Fig. 13.14, the architecture of the network is

composed of two identical branches (one for each image) comprising each an image

encoder, a decoder and a regression head. The two input images are first encoded

in a Siamese manner by the same weight-sharing ViT encoder [288], yielding two

token representations F 1 and F 2:

F 1 = Encoder(I1), F 2 = Encoder(I2).

The network then reasons over both of them jointly in the decoder, a generic trans-

former network equipped with cross attention. Each decoder block thus sequentially

performs self-attention (each token of a view attends to tokens of the same view),

then cross-attention (each token of a view attends to all other tokens of the other

view), and finally feeds tokens to a MLP. Importantly, information is constantly

shared between the two branches during the decoder pass. This is crucial in order to

output properly aligned pointmaps. Namely, each decoder block attends to tokens

from the other branch:

G1
i = DecoderBlock1

i

(
G1

i−1, G
2
i−1

)
,

G2
i = DecoderBlock2

i

(
G2

i−1, G
1
i−1

)
,

for i = 1, . . . , B for a decoder with B blocks and initialized with encoder tokens

G1
0 := F 1 and G2

0 := F 2. Here, DecoderBlockv
i (G1, G2) denotes the i-th block in

branch v ∈ {1, 2}, G1 and G2 are the input tokens, with G2 the tokens from the

other branch. Finally, in each branch a separate regression head takes the set of

decoder tokens and outputs a pointmap and an associated confidence map:

X1,1, C1,1 = Head1
(
G1

0, . . . , G
1
B

)
,

X2,1, C2,1 = Head2
(
G2

0, . . . , G
2
B

)
.



13.5 DuSt3R 381

It should be noted that this generic architecture never explicitly enforces any

geometrical constraints. Hence, pointmaps do not necessarily correspond to any

physically plausible camera model (but they closely fit in practice). Rather, we

let the network learn all relevant priors present from the train set, which only

contains geometrically consistent pointmaps. Using a generic architecture allows to

leverage strong pretraining techniques, ultimately surpassing what existing task-

specific architectures can achieve.

13.5.2 Regression Loss and Confidence-Aware Loss

3D Regression loss. The sole training objective is based on regression in the 3D

space. Let us denote the ground-truth pointmaps as X̂1,1 and X̂2,1, obtained from

Eq. (13.14) along with two corresponding sets of valid pixels D1,D2 ⊆ {1 . . .W} ×
{1 . . . H} for which the ground-truth is defined. The regression loss for a valid pixel

i ∈ Dv in view v ∈ {1, 2} is simply defined as the Euclidean distance:

ℓregr(v, i) =

∥∥∥∥
1

z
Xv,1

i − 1

z̄
X̂v,1

i

∥∥∥∥ . (13.15)

To handle the scale ambiguity between prediction and ground-truth, we normalize

the predicted and ground-truth pointmaps by scaling factors z = norm(X1,1, X2,1)

and z̄ = norm(X̂1,1, X̂2,1), respectively, which simply represent the average distance

of all valid points to the origin:

norm(X1, X2) =
1

|D1|+ |D2|
∑

v∈{1,2}

∑

i∈Dv

∥Xv
i ∥ . (13.16)

Confidence-aware loss. In reality, there are ill-defined 3D points, e.g., in the sky

or on translucent objects. More generally, some parts in the image are typically

harder to predict than others. We thus jointly learn to predict a score for each

pixel which represents the confidence that the network has about this particular

pixel. The final training objective is the confidence-weighted regression loss from

Eq. (13.15) over all valid pixels:

Lconf =
∑

v∈{1,2}

∑

i∈Dv

Cv,1
i ℓregr(v, i)− α logCv,1

i , (13.17)

where Cv,1
i is the confidence score for pixel i, and α is a hyper-parameter controlling

the regularization term [229]. To ensure a strictly positive confidence, we typically

define Cv,1
i = 1 + exp cv,1i ≫ 0, with cv,1i ∈ R. This has the effect of forcing the

network to extrapolate in harder areas, e.g., those ones covered by a single view.

Training network f with this objective allows to estimate confidence scores without

an explicit supervision. Examples of input image pairs with their corresponding

outputs are shown in Fig. 13.15.



382 Boosting SLAM with Deep Learning

Figure 13.15 Reconstruction examples on two scenes never seen during training. From
left to right: RGB, depth map, confidence map, reconstruction. The top scene shows the
raw result output from f(I1, I2). The both scene shows the outcome of global alignment
(Sec. 13.5.4) Image from [1162] (©2024 IEEE).

13.5.3 Downstream Applications

Rich properties of the output pointmaps allows us to recover all scene parameters

as described below.

Recovering intrinsics. By definition, the pointmap X1,1 is expressed in I1’s

coordinate frame. It is therefore possible to estimate the camera intrinsic parameters

by solving a simple optimization problem. We assume that the principal point

is approximately centered and pixels are squares, hence only the focal length f∗1
remains to be estimated:

f∗1 = arg min
f1

W∑

i=0

H∑

j=0

C1,1
i,j

∥∥∥∥∥(i′, j′)− f1
(X1,1

i,j,0, X
1,1
i,j,1)

X1,1
i,j,2

∥∥∥∥∥ ,

with i′ = i− W
2 and j′ = j − H

2 . Fast iterative solvers, e.g., based on the Weiszfeld

algorithm [885], can find the optimal f∗1 in a few iterations. For the focal f∗2 of the

second camera, the simplest option is to perform the inference for the pair (I2, I1)

and use above formula with X2,2 instead of X1,1.

Relative pose estimation. One way is to perform 2D matching and recover intrin-

sics as described above, then estimate the Epipolar matrix and recover the relative



13.5 DuSt3R 383

pose [444]. Another, more direct way is to compare the pointmaps X1,1 ↔ X1,2

(or, equivalently, X2,2 ↔ X1,2) using Procrustes alignment [716] to get the scaled

relative pose P ∗ = σ∗[R∗|t∗]:

P ∗ = arg min
σ,R,t

∑

i

C1,1
i C1,2

i

∥∥∥σ(RX1,1
i + t)−X1,2

i

∥∥∥
2

,

which can be achieved in closed-form. Procrustes alignment is, unfortunately, sen-

sitive to noise and outliers. A more robust solution is to rely on RANSAC [336]

with PnP [444, 647].

13.5.4 Global Alignment

The network f presented in the previous section can only handle a pair of im-

ages. DUSt3R [1162] also proposed a simple post-processing optimization for larger

scenes. It enables the alignment of pointmaps predicted from multiple images into a

joint 3D space. This is possible thanks to the rich content of the pointmaps, which

encompasses by design two aligned point-clouds and their corresponding pixel-to-3D

mapping.

Pairwise graph. Given a set of images {I1, I2, . . . , IN} for a given scene, we first

construct a connectivity graph G = (V, E) where N images form vertices V and each

edge e = (n,m) ∈ E indicates that images In and Im share some visual content.

To that aim, we either use existing off-the-shelf image retrieval methods, or we

pass all pairs through network f (inference takes NEW ≈25ms on a H100 GPU)

to measure their overlap from the average confidence in both pairs, and then filter

out low-confidence pairs.

Global optimization. We use the connectivity graph G to recover globally aligned

pointmaps {χn ∈ RW×H×3} for all cameras n = 1 . . . N . To that aim, we first

predict, for each image pair e = (n,m) ∈ E , the pairwise pointmaps Xn,n, Xm,n

and their associated confidence maps Cn,n, Cm,n. For the sake of clarity, let us

define Xn,e := Xn,n and Xm,e := Xm,n. Since the goal involves to express all

pairwise predictions in a common coordinate frame, we introduce a pairwise pose

Pe ∈ R3×4 and scaling σe > 0 associated to each pair e ∈ E . We then formulate the

following optimization problem:

χ∗ = arg min
χ,P,σ

∑

e∈E

∑

v∈e

HW∑

i=1

Cv,e
i ∥χv

i − σePeX
v,e
i ∥ . (13.18)

Here, with some abuse of notation, we write v ∈ e for v ∈ {n,m} if e = (n,m). The

idea is that, for a given pair e, the same rigid transformation Pe should align both

pointmaps Xn,e and Xm,e with the world-coordinate pointmaps χn and χm, since

Xn,e and Xm,e are by definition both expressed in the same coordinate frame. To

avoid the trivial optimum where σe = 0, ∀e ∈ E , we enforce that
∏

e σe = 1.



384 Boosting SLAM with Deep Learning

Recovering camera parameters. A straightforward extension to this framework

enables to recover all cameras parameters. By simply replacing

χn
i,j := P−1

n h(K−1
n Dn

i,j [i, j, 1]⊤)

(i.e., enforcing a standard camera pinhole model as in Eq. (13.14)), we can thus

estimate all camera poses {Pn}, associated intrinsics {Kn} and depthmaps {Dn}
for n = 1 . . . N .

13.6 MASt3R

Two-view 3D reconstruction priors, pioneered by DUSt3R [1162] has created a

paradigm shift in structure-from-motion (SfM) by capitalizing on curated 3D datasets.

Beyond intrinsics and relative poses, DUSt3R can also obtain reliable pixel corre-

spondences from pointmaps, by looking for reciprocal matches in some invariant

feature space [1162, 303, 995, 1190]. While such a scheme works well even in pres-

ence of extreme viewpoint changes, the resulting correspondences are rather impre-

cise, yielding suboptimal accuracy. This is a rather natural result as (i) regression is

inherently affected by noise, and (ii) because DUSt3R was never explicitly trained

for matching.

13.6.1 Matching Head

For these reasons, MASt3R proposed to extend DUSt3R by adding a second head

that outputs two dense feature maps D1 and D2 ∈ RH×W×d of dimensionality d:

D1 = Head1
desc([H

1, H ′1]), (13.19)

D2 = Head2
desc([H

2, H ′2]). (13.20)

The head is implemented as a simple 2-layers MLP interleaved with a non-linear

GELU activation function [455]. Each local feature is normalized to the unit norm.

13.6.2 Matching Objective

MASt3R’s matching objective is to encourage each local descriptor from one image

to match with at most a single descriptor from the other image that represents the

same 3D point in the scene. To that aim, MASt3R leverages the infoNCE [1124]

loss over the set of ground-truth correspondences M̂ = {(i, j)|X̂1,1
i = X̂2,1

j }:

Lmatch = −
∑

(i,j)∈M̂

log
sτ (i, j)∑

k∈P1 sτ (k, j)
+ log

sτ (i, j)∑
k∈P2 sτ (i, k)

, (13.21)

with sτ (i, j) = exp
[
−τD1⊤

i D2
j

]
. (13.22)



13.7 Extending MASt3R to SfM and SLAM 385

Here, P1 = {i|(i, j) ∈ M̂} and P2 = {j|(i, j) ∈ M̂} denote the subset of consid-

ered pixels in each image and τ is a temperature hyper-parameter. Note that this

matching objective is essentially a cross-entropy classification loss: contrary to the

regression loss in DUSt3R the network is only rewarded if it gets the correct pixel

right, not a nearby pixel. This strongly encourages the network to achieve high-

precision matching. Finally, both regression and matching losses are combined to

get the final training objective:

Ltotal = Lconf + βLmatch (13.23)

13.7 Extending MASt3R to SfM and SLAM

DUSt3R and MASt3R are designed to estimate pointmaps between pairs of images.

As we saw, global optimization can extend MASt3R and DUSt3R to produce multi-

frame reconstructions. In this section, we explore works which integrate MASt3R

into full SfM and SLAM systems which are capable of reconstruction full video

sequences and large collections of frames.

13.7.1 MASt3R-SfM

As MASt3R [649] is able to perform local 3D reconstruction and matching in a

single forward pass, MASt3R-SfM [297] proposed to extended it to a fully-integrated

SfM pipeline that can handle completely unconstrained input image collections,

i.e., ranging from a single view to large-scale scenes, possibly without any camera

motion. Since MASt3R is fundamentally limited to processing image pairs, it scales

poorly to large image collections. To address this issue, MASt3R-SfM modified

its frozen encoder to perform fast image retrieval with negligible computational

overhead, resulting in a scalable SfM method with quasi-linear complexity in the

number of images. Thanks to the robustness of MASt3R to outliers, the proposed

method is able to completely get rid of RANSAC. The SfM optimization is carried

out in two successive gradient descents based on frozen local reconstructions output

by MASt3R: first, using a matching loss in 3D space; then with a 2D reprojection

loss to refine the previous estimate.

13.7.2 MUSt3R

MASt3R-SfM works seamlessly with dozens of images, but when feeding even many

images, the pairwise nature of DUSt3R and MASt3R becomes a drawback rather

than a strength. Since the predicted pointmaps are expressed in a local coordinate

system defined by the first image of each pair, all predictions live in different co-

ordinate systems. This design hence requires a global post-processing step to align

all predictions into one global coordinate frame, which quickly becomes intractable



386 Boosting SLAM with Deep Learning

Figure 13.16 Qualitative example of MUSt3R reconstructions of Aachen Day-Night [1279]
nexus4 sequence 5 (offline, top) and TUM-RGBD [1050] room sequence (online, bottom).
Images from [141] (©2025 IEEE).

for large collections when done naively. This raises the problem of the quadratic

complexity of a pairwise approach and a robust and quick optimization in the real-

time scenario. While these concerns are partially addressed in MASt3R-SfM [297],

MUSt3R [141] takes a different stance and designs a new architecture that is scal-

able to large image collections of arbitrary scale, and that can infer the correspond-

ing pointmaps in the same coordinate system at high frame-rates. To achieve this,

MUSt3R extends the DUSt3R architecture through several crucial modifications –

i.e., making it symmetric and adding a working memory mechanism – with limited

added complexity. The model, beyond handling offline reconstruction of unordered

image collections in a Structure-from-Motion (SfM) scenario, can also tackle the

task of dense Visual Odometry (VO) and SLAM, which aims to predict online the

camera pose and 3D structure of a video stream recorded by a moving camera.

MUSt3R can seamlessly leverage the memory mechanism to cover both scenarios

such that no architecture change is required and the same network can operate

either task in an agnostic manner (see Fig. 13.16).

13.7.3 MASt3R-SLAM

We compete this chapter by presenting an alternative approach to make MASt3R

scalable. MASt3R-SLAM [795] is a real-time SLAM framework to leverage MASt3R’s

two-view 3D reconstruction priors as a unifying foundation for tracking, mapping,

and relocalisation, as shown in Fig. 13.17. While MASt3R-SfM as applied these

priors to SfM in an offline setting with unordered image collections [297], SLAM

receives data incrementally and must maintain real-time operation that requires

solutions on low-latency matching, careful map maintenance, and efficient meth-

ods for large-scale optimisation. On one side, MASt3R-SLAM adopts filtering and

optimisation techniques in SLAM systems [1084, 1085], and performs local filter-

ing of pointmaps in the frontend to enable large-scale global optimisation in the

backend. On the other hand, like in MASt3R, it makes no assumption on each

image’s camera model beyond having a unique camera center that all rays pass



13.7 Extending MASt3R to SfM and SLAM 387

Two-View Pointmap 
Prediction Using MASt3R

Real-Time Monocular Dense SLAM Without a 
Known Camera Model

Figure 13.17 Reconstruction from the dense monocular SLAM system on the Burghers
sequence [1291]. Using the two-view predictions from MASt3R shown on the left, the
system achieves globally reconstructions in real-time without a known camera model.
TODO: Reuse permission

through. This results in a real-time dense monocular SLAM system capable of re-

constructing scenes with generic, time-varying camera models. Given calibration,

MASt3R-SLAM demonstrated state-of-the-art performance in trajectory accuracy

and dense geometry estimation.



14

Map Representations with Differentiable Volume
Rendering

Hidenobu Matsuki and Andrew J. Davison

The choice of underlying scene representation significantly impacts the capability

and efficiency of SLAM systems. As discussed in Chapter 5, each scene or map

representation in SLAM has its own advantages and disadvantages, depending on

the specific downstream task, such as camera ego-motion tracking, dense scene

reconstruction, or object-level decomposition. Recently, 3D scene representations

that can be optimized via differentiable rendering, such as Neural Radiance Field

(NeRF) [770] or 3D Gaussian Splatting (3DGS) [560], have emerged as prominent

choices for high-quality inverse rendering and novel view synthesis within the com-

puter graphics research community, driven by advances in graphics hardware and

automatic differentiation frameworks. Initially focused on offline novel view synthe-

sis with known camera poses, these representations have gradually been applied to

various other tasks in 3D reconstruction and scene understanding [1199], such as

accurate and dense geometry reconstruction of large-scale scenes [825, 1236, 1157],

semantic fusion [1286, 1287, 594], and more. Early implementations required days

of optimization, but by leveraging explicit data structures (e.g., voxels or point

clouds) to enable fast data access, optimization times have fallen to near real time.

More recently, 3D Gaussian Splatting has been introduced, offering super-fast and

high-quality rendering capabilities, effectively replacing Neural Radiance Fields in

many applications. These novel graphics primitives are now also being integrated

into SLAM research. Although the idea of combining differentiable rendering with

3D occupancy maps dates back to Thrun et al.’s “forward sensor model” in the early

2000s [1093], modern hardware and algorithms are opening entirely new possibili-

ties. This chapter provides an overview of NeRF and 3DGS as scene representations

for SLAM, discussing their advantages and disadvantages, and suggesting future re-

search directions. We begin with a historical survey of 3D scene representations in

Section 14.1, explore NeRF (Section 14.2) and 3DGS (Section 14.3) in detail, in-

cluding their integration into SLAM. We further discuss potential future directions

in Section 14.4, and conclude this chapter in Section 14.5.



14.1 Introduction 389

14.1 Introduction

14.1.1 Learnable 3D Representations

With the success of deep learning in the 2D image domain [268, 450, 451], the

research community gradually started to explore learning-based approaches for 3D

tasks. Early works directly utilized 3D data represented by classical data structures

such as points [897] and occupancy grids [935], processing them for downstream

tasks. However, these classical representations are discrete and often not amenable

for deep learning; they often struggle to represent watertight and continuous sur-

faces with flexible topology in a compact manner, which limits the gradient-based

optimization essential for neural network training. To create more optimization-

friendly 3D representations, some early works introduced 3D representations using

neural networks as scalar function approximators to define occupancy or signed

distance functions [766, 853, 199], which can be trained through direct 3D super-

vision. DeepSDF [853], for example, directly regresses a signed distance function

(SDF) from a 3D coordinate and optionally a latent code using 8-layer Multi-Layer

Perceptron (MLP) as shown in Figure 14.1. These methods demonstrated continu-

ous and compact 3D shape reconstruction without being constrained by topology

and discretization errors. However, supervised training on 3D data requires costly

ground truth data annotations, making dataset collection non-scalable. This limi-

tation has motivated research efforts toward leveraging easier-to-obtain 2D image

information and varying levels of supervision for 3D scene understanding, which

has led to 3D reconstruction via differentiable rendering.

(a) Occupancy Networks [766] (b) DeepSDF [853]

Figure 14.1 Learnable 3D Representations. Both ONet [766] and DeepSDF [853] regress
continuous implicit surface functions modelled by neural network. TODO: Reuse permis-
sion



390 Map Representations with Differentiable Volume Rendering

14.1.2 Differentiable Rendering

Supervised learning on 3D data poses challenges due to the difficulty and expense of

obtaining large-scale ground truth annotations. To overcome these issues, a graphics

rendering pipeline has been integrated into neural network training, leading to

the advancement of Differentiable Rendering (DR). DR provides this capability

by allowing gradients to flow from 2D images back into the 3D scene parameters

(Figure 14.2). In a graphics pipeline, a 3D model may be represented in one of two

ways:

• Surface data, which explicitly encodes object boundaries (e.g., polygons or

implicit surfaces).

• Volume data, which describes continuous fields such as density or color, repre-

senting an object’s internal properties and material distribution.

The rendering processes for these representations are called surface rendering

and volume rendering, respectively. Accordingly, different rendering methods

are used for each representation (Figure 14.3):

• Surface rendering often employs a method called rasterization, which projects

surface geometry onto a 2D plane. It leverages hardware acceleration, making it

highly efficient for explicit surfaces.

• Volume rendering is typically implemented via ray marching, which casts rays

through a volume, sampling values along each ray’s path. While well-suited for

continuous fields, it requires higher computational cost.

Although early DR approaches used softened rasterization for meshes [702, 549,

687], volume rendering has gradually adopted as a more powerful approach for

gradient-based optimization. By providing gradients over 3D space —–even be-

fore identifying exact surface positions–— volume rendering makes neural network

training easier and thus is widely adopted as a DR backbone. Following NeuralVol-

ume [695], works like differentiable volumetric rendering [813] and Scene Represen-

tation Networks [1021] use differentiable ray marching to represent implicit surfaces.

Although initially limited to simple shapes, these methods laid the groundwork for

more complex and realistic 3D reconstructions.

14.1.3 3D Scene Representation with Differentiable Rendering

A major breakthrough occurred in 2020 when Mildenhall et al. [770] introduced

NeRF, a technique for scene reconstruction that optimizes a MLP using volumet-

ric ray-marching from posed color images. NeRF employs a single MLP as the

scene representation, performing volume rendering by marching along pixel rays and

querying the MLP for opacity and color. Given that volume rendering is naturally



14.1 Introduction 391

Color

Density

Semantics

etc…

RGB Image

Depth Map

Semantic
label map

etc…

Loss Functions

GT image

Forward

Backward

Scene Parameters Rendering Outputs Optimization

Volume 
Rendering

etc…

Camera Poses

Sphere Tracing

Rasterization Normal Map

Figure 14.2 Overview of differentiable rendering pipeline. DR allows to optimize 3D scene
parameters from multi-view 2D images in a end-to-end manner thanks to its consistent
gradient propagation.

(a) Ray marching (NeRF) (b) Rasterization/Splatting (3DGS)

Figure 14.3 Comparison of the rendering methods in NeRF and 3D Gaussian Splatting. In
ray-marching based approaches, the inference results of points sampled at fixed intervals
along a ray are blended, whereas in rasterization, each primitive along the ray is projected
onto the image plane and then blended.

differentiable, the MLP is optimized to minimize rendering loss using multiview in-

formation, achieving high-quality novel view synthesis. NeRF’s MLP inputs include

spatial location and viewing direction, combined with positional encoding to capture

high-frequency scene details. Despite achieving high-quality novel view synthesis,

NeRF’s primary bottleneck is its training speed. To address this, recent develop-

ments have introduced explicit volume structures, such as voxel grids [1055, 349]

or hash functions [790], to enhance performance. These advances have shown that

the key to high-quality novel view synthesis lies in differentiable volumetric ren-

dering rather than the neural network itself. They have demonstrated that it is

possible to achieve rendering quality comparable to NeRF without relying on an

MLP. However, even in these improved systems, per-pixel ray marching continues

to be a significant bottleneck for rendering speed.



392 Map Representations with Differentiable Volume Rendering

In parallel to the explosion of NeRF and volume rendering, differentiable point-

based rendering techniques have also been researched [605, 959, 564]. These methods

use point-based representation such as a point cloud [605, 959] or metaball [564],

and define a differentiable rendering pipeline using a CNN based rasterizer or ap-

proximated renderer. In 2023, Kerbl et al. [1314] proposed a radically different

point-based rendering approach for radiance field capture based on 3D Gaussian

Splatting [560] (3DGS). 3DGS represents a scene using numerous semi-transparent

Gaussian blobs that are rendered via alpha-blending. Unlike NeRF, 3DGS employs

differentiable rasterization (Figure 14.3). Similar to traditional graphics rasteriza-

tion, 3DGS iterates over the primitives to be rasterized rather than marching along

rays. This method leverages the natural sparsity of a 3D scene, resulting in a repre-

sentation that is expressive enough to capture high-fidelity 3D scenes while offering

significantly faster rendering with similar training speed to the most efficient volu-

metric NeRF.

In the following sections, we explore the technical details of NeRF and 3DGS

(Figure 14.4). Despite their shared goal of radiance field capture, these methods

differ significantly in scene representation and rendering pipeline. We begin with

an overview of NeRF, focusing on its ray-marching-based differentiable rendering

formulation and its various extensions, which utilize diverse data structures and

evolve into generalized field representations known as Neural Fields. Following this,

we examine 3DGS and its rasterization-based rendering pipeline, highlighting the

key differences from NeRF.

Figure 14.4 Novel View Synthesis Examples of MipNeRF360 [65] (left [TODO: Reuse per-
mission]) and 3DGS [560] (right). Both methods can capture high fidelity radiance field
from posed RGB images taken in real-world. The images are from [65, 560]

14.2 Neural Radiance Fields (NeRF)

In this section, we explain the technical details of NeRF, its derivative methods, and

its application to visual SLAM. This technical background provides the fundamental



14.2 Neural Radiance Fields (NeRF) 393

knowledge needed to understand the motivations and differences with respect to

3D Gaussian Splatting in the next section.

14.2.1 Method Overview

Figure 14.5 Overview of NeRF optimization pipeline. Radiance Field is represented by
MLP and 2D images are rendered via differentiable volume rendering. MLP parameters
are optimized to minimize the photometric error between rendered color image and ground
truth color image. The image is from [770]. [TODO: Reuse permission]

The NeRF model is expressed as a function fΘ(x,d)→ (c, σ), with MLP weights

Θ , in-scene 3D coordinates x = (x, y, z), viewing direction d = (θ, ϕ), color c =

(r, g, b) and volume density σ . To synthesize novel views, the NeRF workflow

involves casting camera rays through the scene, generating sampling points for each

pixel. The local color and density at each sampling point are computed using the

NeRF MLP(s), and volume rendering is used to synthesize the 2D image (Figure

14.5). The expected color C(r) of camera ray r(t) = o + td is calculated using the

following integral formulation:

C(r) =

∫ tf

tn

T (t)σ(r(t))c(r(t),d)dt (14.1)

Here, dt denotes the differential distance traveled by the ray at each integration

step and tn and tf denote near and far bounds. The terms σ(r(t)) and c(r(t),d)

represent the volume density and color at point r(t) along the camera ray with view-

ing direction d, respectively. The accumulated transmittance from tn to t is given

by T (t) = exp
(
−
∫ t

tn
σ(r(s)),ds

)
. The continuous integral is estimated numerically

with quadrature by dividing the ray into N evenly-spaced bins and sampling uni-

formly between bins and randomly within each bin. The volume rendering equation

using the quadrature rule is formulated as:

Ĉ(r) =
N∑

i=1

αiTici, where Ti = exp
(
−

i−1∑

j=1

σjδj

)
. (14.2)



394 Map Representations with Differentiable Volume Rendering

δi = ti and ti+1 denote the interval between consecutive samples ti and ti+1, while

σi and ci indicate the density and color evaluated at sample point i along the ray,

respectively. Additionally, αi = (1−exp(−σiδi)) denotes the opacity resulting from

alpha compositing at sample point i.

To optimize the model, a quadratic photometric error between the rendered image

and the ground truth color image is used:

L =
∑

r∈R

∥Ĉ(r)− Cgt(r)∥22 . (14.3)

where Cgt(r) denotes the ground truth color for the pixel associated with r in the

training image, and R denotes the batch of rays used for synthesizing the target

image. In the context of SLAM, depth rendering through alpha-blending of opacity

is often employed, to additionally minimize discrepancies between the expected

depth and sensor or predicted depth.

14.2.2 Data Structures in NeRF

The original NeRF paper [770] uses a single MLP to represent the entire radiance

field and requires a forward inference to evaluate the color and density at specific 3D

location. This means all the network parameters are involved with the evaluation

and the forward inference and backward training is significantly slow. To achieve

faster inference and training, several approaches introduced explicit data structure

either partially or completely, and achieved fast data access.

Voxel/Hash Grid. Early works introduced a voxel grid to speed up the for-

ward inference. Later on, Plenoxel [349] and DirectVoxGo [1055] introduced voxel

feature-grid as trainable properties and encode radiance field into it. Compared to

MLP based NeRF, color and density at specific location is queried by simple index

lookup and trilinear interpolation, which makes the whole pipeline significantlly

faster (from days to 10mins). Instant-NGP [790](Figure 14.6) further introduced

multi-resolution hash encoding, efficiently encodes volumetric features in a hash ta-

ble, and together with highly optimized CUDA implementation, it achieves NeRF

training in a few seconds.

Points and Surfels. Point-based representations have also been used in con-

junction with NeR (Figure 14.7). Point-NeRF [1205] optimizes point-clouds with

features and tiny MLP decoder, and render the image via a volume rendering frame-

work. It demonstrated that the point-based representation has a flexibility of spatial

allocation compared to regular voxel grids, which allows the model to skip empty

spaces, resulting in a speed-up of a factor of 3 over vanilla NeRF. Similar to point

clouds, surfels can also be used to represent radiance field [374].



14.2 Neural Radiance Fields (NeRF) 395

Figure 14.6 An example of grid-based NeRF (Instant-NGP [790]). The radiance field is
modelled by a combination of multi-resolution hash grid and tiny MLP decoder. The image
is from [790]

Figure 14.7 An example of point-based NeRF representation (Point-NeRF [1205]). The
radiance field is modeled by a combination of points with trainable features and tiny MLP
decoder. The image is from [1205]. [TODO: Reuse permission]

14.2.3 Neural Fields

While initial NeRF work primarily focuses on representing a radiance field —–

mapping 3D positions to color and density for photo-realistic scene capture–— the

underlying concept can be extended to various other outputs, depending on the

downstream task. Such generalized field representations are termed Neural Fields.

Here, we introduce a few major examples.

Surface Representations (SDF and Occupancy). To achieve more geomet-

rically accurate 3D reconstructions from RGB images, Neural Fields can utilize rep-

resentations like Signed Distance Functions (SDF) and Occupancy Fields (Figure

14.8). Techniques such as NeuS [1157] and VolSDF [1236] leverage SDF to represent

surfaces. SDF encodes the distance of a point from the nearest surface, with the

sign indicating whether the point is inside or outside the object. By integrating

SDF into NeRF, it is possible to achieve precise surface modeling. Techniques like

UNISURF [825] employ occupancy fields to represent the presence or absence of



396 Map Representations with Differentiable Volume Rendering

surfaces in the 3D space. Occupancy fields divide the space into a grid, where each

cell indicates whether it is occupied by a surface. This method can be combined

with NeRF to handle complex scenes effectively. To extract meshes from these

representations, techniques such as marching cubes can be applied to convert the

continuous surface representation into a discrete mesh format.

(a) UNISURF [825].[TODO: Reuse
permission] (b) NeuS [1157].

Figure 14.8 Neural Field for surface reconstruction. UNISURF represents occupancy field
and NeuS represents continuous Signed Distance Functions via MLP which can be rendered
via volume rendering. The images are from [825, 1157]

Semantics. Incorporating semantic information into Neural Fields enables the

decomposition of scenes into meaningful components, enhancing scene understand-

ing and interaction (Figure 14.9). Early works such as [1286, 1287] extend NeRF

by outputting semantic labels in addition to color and density. This is achieved

by training the model with multi-view semantic images, enabling it to predict the

semantic category of each part of the scene. These fields fuse high-dimensional fea-

tures from multiple views to produce a 3D consistent semantic feature field. More

generally, NeRF can fuse 2D features from pre-trained foundation networks and

perform more advanced semantic tasks such as scene decomposition and interactive

editing via language prompt or clicking [594, 1115, 752].

14.2.4 NeRF/Neural Fields for Visual SLAM

Neural Fields were initially designed for offline novel view synthesis using posed

color images. However, their ability to produce high-fidelity reconstructions has

driven interest in applying them to Visual SLAM, which requires the real-time

joint estimation of camera pose and scene representation.

Neural Field-based 3D representations offer several advantages over classical

dense SLAM methods. First, end-to-end optimization via differentiable rendering

simplifies 2D-to-3D data fusion, eliminating the need for multiple hand-designed

fusion steps as in TSDF-based SLAM, where consistency is not always guaranteed.



14.2 Neural Radiance Fields (NeRF) 397

(a) SemanticNeRF [1286] (b) Distilled Feature Field [594]

Figure 14.9 Neural Field for semantic scene reconstruction. By using additional semantic
head for MLP, NeRF can output multi-view consistent semantic label/features which can
be trained by per-view semantic prediction. The images are from [1286, 594]

Second, Neural Fields can model complex light fields, handling transparent objects

and reflections more flexibly for photometric error minimization. Third, depending

on the data structure, they enable scene completion and compression, leveraging

priors inherent in the neural representation.

iMAP [1052](Figure 14.10 ) was the first work in this area, utilizing a purely

MLP-based map representation similar to the original NeRF. The key insight of

iMAP is that an MLP-based approach benefits from map compression and scene

completion due to the inherent smoothness prior in MLPs. Similar to the develop-

ment of NeRF research, the integration of classical and neural representations has

also been investigated in the SLAM context. NICE-SLAM [1304] was the first to

introduce a hybrid representation combining a multi-resolution voxel feature grid

with a tiny MLP. Similar grid-type representations have been adopted by other

works [1227, 532, 1153]. More recently, PointNeRF-style point primitives have also

been applied to SLAM [973]. Among the various technical components, the choice

of underlying data structure has the greatest influence on reconstruction quality,

computational efficiency, and real-time performance in SLAM. Given this, we next

examine the various data structures used in Neural-Field SLAM methods and detail

their key characteristics and trade-offs.

14.2.4.1 Data Structure Characteristics and Trade-Offs in Neural Field SLAM

The choice of underlying data structure significantly impacts the properties of Neu-

ral Field–based SLAM. Table 14.1 provides an overview of various Neural-Field

SLAM methods. Below, we detail the major characteristics and trade-offs associ-

ated with these representations.

Trade off between Compression and Inference speed. While the initial

Neural Field SLAM work uses a single-MLP, more recent methods use (partially

or entirely) more explicit data structures similar to the classical graphic primitives.

MLP approximates the entire radiance field function via a network’s parameters



398 Map Representations with Differentiable Volume Rendering

Figure 14.10 Qualitative results of iMAP [1052]. The method firstly demonstrated that
MLP and differentiable rendering framework can be used for real-time joint estimation of
camera pose and scene geometry from RGB-D video stream.

MLP Voxel/Hash Point/Surfel
Compression Good Moderate Moderate
Inference speed Limited Good Moderate
Scene Completion Good Good Moderate
Dynamic Allocation Limited Limited Good
Forgetting Problem Limited Moderate Moderate

Table 14.1 A comparison of underlying data structure for Neural Field.

and has huge benefits in terms of compression, but the physical meaning of the

parameters is hard to interpret. On the other hand, explicit data structures like

voxel grids are more interpretable and allow fast data access and local update of

the map, but they require more memory. To that end, the map representation

exhibits a typical time-space complexity trade-off. For SLAM tasks in particular,

real-time operation is paramount and therefore explicit data structures are often

preferable in practice.

Scene Completion. iMAP demonstrated that MLP-based 3D reconstruction

has hole-filling capability of the unobseved region, thanks to the continuous nature

of the function. Multi-resolution grid also has similar property (Figure 14.11). This

is because the positional encoding or multi-resolution grid resolution smooths the

signal within the frequency or grid resolution. This is not not observed by point-type

representation where the primitive is discrete and does not have global smoothing.

Dynamic Allocation of Graphic Primitives. Unlike offline scene reconstruc-

tion tasks, SLAM requires the online update of state variables based on run-time

observations to adjust for dynamic changes, such as scene boundaries and loop clo-

sures. In Neural Fields, MLP and voxel-type representations are difficult to adjust

for these updates due to their fixed boundaries and positional encoding/voxel res-

olution, which requires dynamic allocation of multiple local NeRF models [1074]



14.2 Neural Radiance Fields (NeRF) 399

(a) iMAP [1052] (b) NICE-SLAM [1304]

Figure 14.11 Hole-filling effect of NeRF-based SLAM. Thanks to the use of multi-
resolution frequency or grid encoding and continuous MLP function, the representation
has a capability to smooth local geometry and provides plausible hole-filling effect of
small unobserved regions. The images are from [1052, 1304]. [TODO: Reuse permission
for NICE SLAM (by Marc)]

(Figure 14.12). On the other hand, point representations offer more flexibility in

primitive allocation and can handle loop closures more effectively [680].

(a) Loopy-SLAM [680] (b) MIPS-Fusion [1074]

Figure 14.12 Loop Closure on NeRF-based SLAMmethods. While voxel-based approaches
require multiple local submap of Neural Field to handle camera pose update by loop
closure, discritized point-based representation can more seamlessly change the primitive
allocation. Images are from [680, 1074]. [TODO: Reuse permission]

Forgetting Problem. In both purely MLP-based and hybrid representations,

the existence of a global function implies that any local parameter update impacts

the overall results. Consequently, the map must retain past information as a training

signal within the optimization window and requires an explicit keyframe database.

This issue, often referred to as the “forgetting problem,” can be mitigated by reduc-

ing reliance on or completely removing the global function, typically represented

by an MLP.



400 Map Representations with Differentiable Volume Rendering

14.3 3D Gaussian Splatting

Figure 14.13 Novel view rendering results of 3DGS. (Left:) RGB rendering. (Right:)
Shaded Gaussians. 3DGS represents the scene by allocating a large number of semi-
transparent 3D Gaussians.

While NeRF performs differentiable ray-marching, 3DGS performs differentiable

rasterization for volume data. Similar to regular graphics rasterization, by iterating

over the primitives to be rasterized rather than marching along rays, 3DGS leverages

the natural sparsity of a 3D scene and achieves a representation which is expressive

enough to capture high-fidelity 3D scenes while offering significantly faster rendering

(Figure 14.13). The input consists of a set of color images with corresponding poses

estimated by structure from motion (SFM). In addition, 3DGS takes the sparse

point cloud generated during the SFM process, which is used for constructing a set

of initial 3D Gaussians as graphical primitives.

14.3.1 Method Overview

Each 3D Gaussian is parameterized by its 3D mean position µ ∈ R3, covariance ma-

trix Σ ∈ R3×3, opacity o, and direction-dependent color c represented by spherical

harmonics (SH). Given a scaling matrix S ∈ R3×3 and rotation matrix R ∈ R3×3,

the covariance matrix Σ is represented as :

Σ = RSS⊤R⊤ (14.4)

These 3D Gaussians are projected onto the image plane (z = 1 plane) via an ap-



14.3 3D Gaussian Splatting 401

Figure 14.14 Overview diagram of the 3DGS optimization process [560].

proximated projection function for differentiable rasterization. The projected Gaus-

sian’s covariance matrix in 2D image space Σ′ is formulated as:

Σ′ = JWΣW⊤J⊤ (14.5)

where J denote Jacobian of the projective transformation and W is viewing trans-

formation matrix. The upper left 2×2 block of Σ′ is used as a 2D covariance matrix.

We obtain the value of the 2D Gaussian function by querying a pixel x2D =
[
u, v
]⊤

.

The final color C of the pixel x2D is determined through alpha blending of the

3D Gaussians:

C =
∑

i∈N
ciαi

i−1∏

j=1

(1− αj) (14.6)

where N is the set of Gaussians along the pixel’s ray, and αi is the product of the

opacity oi the pixel-space Gaussian function:

αi = oiG2D (x2D) (14.7)

In alpha-blending, the 3D Gaussians are sorted in depth order relative to the ren-

dering viewpoint. This sorting process is performed for each tile of the input image,

which is divided into 16×16 tiles, using a GPU-optimized radix sort. Moreover, for

efficiency, only the Gaussians that fall within the current view frustum are con-

sidered (Frustum Culling). The parameters of the 3D Gaussians are estimated by

minimizing a weighted sum of the L1 loss and the SSIM loss between the rendered

image and the ground truth image, with a weight λ

L = (1− λ)L1 + λLSSIM (14.8)

Furthermore, during the optimization process, adaptive densification and pruning

are performed to flexibly adjust the number of Gaussians based on their gradients

and opacities (Figure 14.14).



402 Map Representations with Differentiable Volume Rendering

14.3.2 Applications of 3D Gaussian Splatting

Similar to NeRF’s evolution into a generic Neural Field, 3DGS has been applied

to various 3D vision tasks. Given the large volume of research, we highlight a few

early papers in this area.

Surface Reconstruction. 3DGS is primarily designed for photorealistic novel

view synthesis and does not inherently ensure geometric accuracy. Several works

address this limitation (Figure 14.15). SuGAR [419] introduces geometric regular-

ization to 3DGS, enabling geometrically accurate 3D mesh extraction. It defines

surface normals for each 3D Gaussian and enforces local surface smoothness by

encouraging neighboring Gaussians to be as flat as possible. 2D Gaussian Splatting

(2DGS) [491] replaces 3D Gaussians with 2D disks, explicitly defining surface nor-

mals within the graphic primitives. By incorporating normal and depth consistency

losses, 2DGS further improves surface reconstruction accuracy.

(a) SuGAR [419]. [TODO: Reuse permis-
sion] (b) 2DGS [491].

Figure 14.15 Examples of surface-oriented Gaussian Splatting methods. By defining sur-
face normal directions and enforcing smoothness between neighboring Gaussians, these
methods achieve accurate surface reconstruction. Images are from [419] [491].

Semantic Scene Understanding. 3DGS can also be extended to semantic

scene understanding. Like NeRF, the most common approach propagates 2D seman-

tic segmentation to 3D Gaussians with semantic features via end-to-end training

enabled by differentiable rendering. For instance, LangSplat [902] and FMGS [1311]

integrate 2D foundation models such as CLIP and DINO into multi-view consis-

tent 3D Gaussians during the 3DGS training process, enabling open-vocabulary

semantic segmentation (Figure 14.16). Since 3D Gaussians are explicit discrete rep-

resentations, editing the reconstructed scene (e.g., manipulation or removal) is more

straightforward than with the continuous NeRF representation.

14.3.3 3D Gaussian Splatting for SLAM

3DGS has achieved remarkable success in real-time novel view synthesis, and its

potential for SLAM is currently under active exploration. Similar to NeRF, 3DGS

leverages end-to-end optimization via differentiable rendering to seamlessly unify lo-



14.3 3D Gaussian Splatting 403

Figure 14.16 An example of Gaussian Splatting method for semantic scene reconstruction.
Multi-view 2D image features are fused into 3D Gaussians via differentiable rendering. The
image is from [1311]. [TODO: Reuse permission]

Figure 14.17 Examples of 3D Gaussian Splatting-based visual SLAM methods [1210, 556,
747]. [TODO: Reuse permission for [1210]; [556] is by Krishna]

calization and mapping. This integration eliminates the need for multi-stage, hand-

designed algorithms and enables the modeling of complex light fields –—including

those produced by transparent objects–— that are challenging to capture with

classical 3D representations.

Beyond these similarities, 3DGS offers several unique advantages over NeRF.

First, its efficient, rasterization-based pipeline enables significantly faster image

rendering, directly benefiting downstream applications that require real-time map

interaction (e.g., robot navigation). Second, its representation as discrete, point-like

Gaussian primitives allows for flexible allocation and updates of scene elements.

This flexibility is particularly well-suited for SLAM tasks where state estimates



404 Map Representations with Differentiable Volume Rendering

must dynamically adapt to runtime observations, such as scene boundary updates

and loop closures.

Leveraging these properties, 3DGS can serve as a core scene representation in vi-

sual SLAM systems (Figure 14.17). Several early works have explored its inherent

capabilities for simultaneous localization and mapping [1210, 556, 747]. A straight-

forward application is RGB-D SLAM, where an external structured sensor —such

as a Time-of-Flight (ToF) depth camera— provides accurate, dense depth data

that can be used as a prior or ground-truth signal for the positions of Gaussians.

By incorporating this depth information, the positions of the 3D Gaussians can be

accurately initialized and further regularized by minimizing a depth rendering loss,

leading to accurate camera tracking as well as high-fidelity and fast map rendering.

However, these approaches require additional hardware to reconstruct 3D Gaus-

sians, even though the original 3DGS method only needs a commodity camera to

capture RGB images. Ideally, the method should operate solely in a vision-based

monocular SLAM setting by fully leveraging the flexible and optimizable nature of

3D Gaussians. In this context, work such as MonoGS [747] has demonstrated that

purely color image-based monocular SLAM is indeed possible (Figure 14.18). In

MonoGS, even though the initial locations of the 3D Gaussians are unknown, they

can be incrementally estimated by randomly initializing the Gaussians and refining

their positions through multi-view optimization.

Figure 14.18 Monocular Reconstruction result of MonoGS [747]. Thanks to 3D Gaussian’s
flexibility of its spatial allocation, the method can perform joint estimation of camera pose
and scene reconstruction only from color images without any depth supervision.

The discrete nature of 3D Gaussians provides significant advantages for global

map updates, particularly in the context of loop closure. Because these representa-

tions consist of a collection of individual, well-defined primitives, it becomes easier

to match and align various segments of a scene, even as the environment evolves over

time. For instance, LoopSplat [1303] demonstrates a practical application of this

concept. In their approach, the discrete 3D Gaussian elements serve as robust fea-

tures that can be reliably registered across different time instances and viewpoints.

Another notable advantage of 3DGS as a SLAM representation is its ability to cap-



14.3 3D Gaussian Splatting 405

ture complex light fields. By effectively capturing the intricate distribution of light

within an environment, 3DGS not only enhances visual fidelity but also provides

additional cues that can improve both mapping and localization performance. I2-

SLAM [49] fully exploits this property by integrating a more precise physics-based

rendering process, such as motion blur and tone mapping, into the existing 3DGS

framework. This integration enables simultaneous HDR map reconstruction and

accurate camera pose tracking (Figure 14.19).

Figure 14.19 The system over view of I2-SLAM [49]. The method integrates physical
imaging process into SLAM to capture HDR radiance field. [TODO: Reuse permission]

While the full potential of 3D Gaussian Splatting (3DGS) as a unified SLAM

representation is still under active investigation, another promising research di-

rection involves integrating 3DGS into existing point-cloud processing methods.

Since 3DGS can be treated as a point cloud by simply omitting its additional fea-

tures, it becomes straightforward to combine with well-established point-based al-

gorithms that are known for their stability and practical performance in real-world

applications (Figure 14.20). For example, Photo-SLAM [496] combines a sparse

tracking system (ORB-SLAM) with 3DGS, while both GS-ICP SLAM [431] and

RTG-SLAM [875] leverage ICP for tracking. In the case of RTG-SLAM, the system

further incorporates ORB keypoint-based backend optimization, resulting in fast

and accurate performance with high practical applicability.

Furthermore, this inherent versatility of 3DGS extends to its fusion with LiDAR

measurements. Several recent approaches have proposed hybrid LiDAR+3DGS

frameworks [479, 1059, 631], demonstrating that 3DGS can serve as a unifying

map representation across multiple sensor modalities. This wide range of applica-

tions, from RGB-based SLAM to LiDAR-enhanced reconstructions, demonstrates

key advantages of 3DGS: its flexibility and adaptability, which make it an attractive

choice for diverse SLAM scenarios.



406 Map Representations with Differentiable Volume Rendering

(a) PhotoSLAM [496] (b) RTG-SLAM [875]

Figure 14.20 Example of the methods which combine 3DGS with keypoint-based SLAM.
[TODO: Reuse permission]

14.4 Challenges and Future Directions

NeRF/3DGS-based SLAM offers several advantages, including end-to-end optimiza-

tion, complex light-field capture, real-time rendering, and dynamic primitive allo-

cation, making it a promising research direction. However, significant technical

challenges remain. This section discusses these limitations and outlines potential

future research directions.

Real-time performance. One major challenge of NeRF/3DGS-based end-to-

end SLAM is its extremely slow processing speed. While classical dense SLAM

methods like ElasticFusion [1181] achieved real-time performance including track-

ing, mapping, and rendering, on a GTX 780Ti in 2015, most NeRF/3DGS-based

SLAM methods struggle to exceed 5 fps even on modern GPUs with significantly

higher FLOPs and VRAM (e.g., NVIDIA RTX 4090). This limitation makes cur-

rent NeRF/3DGS-based SLAM impractical for real-time robotics applications, re-

stricting its use to offline server GPUs. Since 3DGS enables real-time rendering,

optimizing it efficiently remains a key challenge. One potential direction for im-

proving efficiency is adopting a compact representation that reduces the number

of Gaussians, thereby lowering computational overhead. Another approach is em-

ploying a higher-order optimizer instead of standard first-order gradient descent to

accelerate convergence. Alternatively, a learned network could predict both camera

poses and 3D Gaussians in a single forward pass, eliminating the need for iterative

optimization. In support of this approach, PixelSplat [175] and MVSplat [198] have

demonstrated that a feed-forward network can predict 3D Gaussian parameters

from posed images without any test-time optimization. Although these early works

required camera poses estimated from an external module, pose-free 3D reconstruc-

tion methods based on feed-forward networks have begun to gain traction following

the success of DUSt3R [1162] (see Chapter 13 for more details), which robustly

predicts pointmap without relying on pose input. Building on this progress, No-

PoSplat [1237] (Figure 14.21) has extended the concept to achieve pose-free 3DGS

prediction, showing promising results. Exploring these techniques for multi-view,

incremental SLAM settings is an interesting future direction.



14.5 Conclusion 407

Figure 14.21 System overview of NoPoSplat [1237]. The method directly predicts 3D Gaus-
sians from 2 input views, which can be used for pose estimation and novel view synthesis.
The image is from [1237].

Camera Tracking Accuracy. Camera tracking accuracy in NeRF/3DGS-based

SLAM often falls behind classical sparse SLAM methods. These approaches rely

on photometric consistency across multiple frames, performing well on synthetic

datasets like Replica [1045], where ground-truth depth and color images are avail-

able. However, in real-world scenarios, this assumption often breaks down due to

unmodeled effects such as sensor noise and rolling shutter. Improving accuracy

may require more precise modeling of the scene’s light field and rendering process

or exploring alternative matching paradigms beyond the color image domain. This

challenge might also be addressed by incorporating a more robust feed-forward

prediction model, as mentioned in the previous paragraph.

4D Scene Reconstruction. Currently, most NeRF/3DGS SLAM methods as-

sume a static environment, while real-world scenes often exhibit significant dynamic

changes. One common approach involves masking out potentially dynamic objects

to focus solely on static background reconstruction for robust odometry estimation.

However, considering the notable success of 3DGS in non-rigid/4D scene reconstruc-

tion and point-tracking, exploring a comprehensive 4D-SLAM framework appears

to be a promising direction [144, 991, 1284, 748].

Large-scale/Outdoor Scene Reconstruction. Most NeRF/3DGS-based SLAM

methods are currently limited to room-scale sequences, making large-scale and out-

door scene reconstruction a major challenge. Scaling up requires efficient map up-

dates, such as adaptive resolution to manage computational load, and drift correc-

tion to maintain accuracy over extended areas. Outdoor environments introduce

additional complexities, including illumination changes due to varying weather and

time of day, which complicate light field modeling.

14.5 Conclusion

In this chapter, we provided a comprehensive overview of 3D scene representations

using differentiable rendering, with a particular focus on NeRF and 3D Gaussian



408 Map Representations with Differentiable Volume Rendering

Splatting. We reviewed the historical background that led to the development of

NeRF, detailed the underlying principles of NeRF and its derivative techniques, and

elaborated on the scene representation, rendering, and optimization methods em-

ployed by 3DGS. Finally, we discussed the application of these techniques to SLAM,

current research trends, and potential future directions. Due to its high expressive

capability and flexibility, 3DGS in particular is expected to be increasingly utilized

across a wide range of practical applications. Moreover, 3DGS holds promise for

further developments, including handling dynamic scenes, large-scale and outdoor

environments, integrating semantic information, and learning from limited input

data.



15

Dynamic and Deformable SLAM
Lukas Schmid, Jose Maria Martinez Montiel, Shoudong Huang,

Daniel Cremers, Jose Neira, and Javier Civera

Historically, SLAM systems have always faced the challenge of environments where

not only the sensor but also the scene is in motion. To address this challenge

(probably the first challenge that SLAM faced), data association tries to identify

which sensor data correspond to entities that present a coherent change of pose

with respect to the sensor location and which appear to independently change their

pose. This is much in the same way that stars apparently move in unison in the

sky, while planets wander, thus leading to their name1.

Similarly, the methods described in this book so far have addressed the problem

of estimating the robot pose and a representation of the environment based on

observations during an exploratory trajectory. However, an important assumption

was that the environment is static, meaning that the scene remains unchanged and

only the robot is moving. This assumption has several important implications. For

example, Chapter 1 showed that if detected features remain in the same place, re-

detecting them can directly be used to better constrain the robot pose. Conversely,

Chapter 5 demonstrated how dense scene models can efficiently be reconstructed by

fusing several posed observations if the underlying environment remains the same.

Nevertheless, real-world scenarios are often highly dynamic, thus violating the

rigidity assumption. For example, imagine what information an autonomous vehi-

cle requires to drive safely through a city, where the environment includes not only

a static background but also a variety of moving elements such as other vehicles,

cyclists, and pedestrians. Or consider a home or service robot, mapping an envir-

onment where humans are frequently moving around the robot and impart changes

on the scene, such as modifying objects or re-arranging a room. Or the even more

extreme case of a surgical robot navigating through the human body with no static

background at all and the entire scene is constantly deforming. Such factors make

both state estimation of the robot and representation of the environment challeng-

ing problems in dynamic and deformable scenes.

To address these limitations, this chapter analyses the challenges of dynamic and

deformable SLAM. We first define and categorize different kinds of dynamic effects

1 The Greek term πλανητης (planētēs) means wanderer.



410 Dynamic and Deformable SLAM

1. Observation Characteristics

2. Level of Reconstruction

3. Time Criticality

Short-term Dynamics

Long-term Dynamics

Scene Geometry

Online

Offline

Temporal Scene Understanding

Pose

Pose Graph SLAM

Multi-Session / Multi-Robot
Change Detection

Figure 15.1 Overview of main considerations for dynamic SLAM: 1) which dynamic effects
are present in the observation of the robot, 2) at which level of detail is the robot is rquired
to understand the environment to accomplish its tasks, and 3) when and how fast does the
robot need process this information. For example, typical pose graph SLAM can estimate
the robot pose in real-time by rejecting dynamic parts as outliers. On the other hand,
multi-session change detection aims to build a detailed understanding of the evolution of
a scene from irregular observations (sessions). Note that while some solution approaches
can be well characterized in the space spanned by these axes, others may fill in an ‘area’
or ‘volume’ by addressing several aspects, such as both short and long-term dynamics,
simultaneous state-estimation and scene representation, some components running online
and some offline, as well as combinations across axes.

and objectives of dynamic SLAM in Section 15.1. We then introduce prevalent

problems and current solution approaches for short and long-term dynamic SLAM

in Section 15.2 and Section 15.3, respectively. We address the deformable SLAM

case in Section 15.4. Finally, Section 15.5 revisits remaining challenges and out-

lines directions for future research in the rapidly expanding field of dynamic and

deformable SLAM.

15.1 Characterizing the Dynamic SLAM Problem

Central considerations when modeling dynamic environments are 1) which dynamic

effects are present in the observation of the robot, 2) at which level of detail the

robot is rquired to understand the environment to accomplish its tasks, and 3) when

and how fast the robot needs process this information. While, ideally, a generalist

robot will be able to build a rich description of any dynamic scene in real-time,

oftentimes, it may be sufficient and more efficient to address only the subset of



15.1 Characterizing the Dynamic SLAM Problem 411

problems that is relevant to a given application. An overview of these directions is

shown in Figure 15.1, and each axis is further detailed below.

15.1.1 Characterizing Dynamics

Our approach to characterizing dynamics is based on how they manifest in the

observations of the robot. We follow the definition of [700] and distinguish between

short-term and long-term dynamics, referring to more transient and more abrupt

characteristics in the observations of the robot, respectively. The key idea is that,

fundamentally, almost all physical processes are continuous at short enough time

scales. How different the observations of the robot are, and therefore whether the

change characteristics are those of short or long-term dynamics, thus does not

depend on the absolute duration of a phenomenon, but on the relation between the

rate of change in the scene and the rate of observation by the robot. This relation

is demonstrated in Figure 15.2, including several examples to illustrate how this

applies to a broad range of time scales.

While the above definition is general and applies to vast time scales, it is im-

portant to point out that in most robotic applications, the relevant rate of change

(humans or objects move typically at speeds ∼ 10−1 to 102m/s) is of the same

order of magnitude as the rate of observation (most robotics sensors have a rate

of ∼ 100 to 103Hz). In this case, the distinction often simplifies to whether the

robot is currently observing the motion or not. Then, short-term dynamics refer to

all motion that is happening within view of the robot, where continuous observa-

tion of dynamic entities will result in transient change characteristics. For example,

consider the smooth trajectory of a continuously observed rolling ball or the co-

herent motion of a human walking around. We will discuss techniques to address

short-term dynamics in Section 15.2.

On the other hand, long-term dynamics refer to dynamics happening outside the

view of the robot. While the motion is still continuous locally, the robot will only

observe the result of this motion that accumulated in between measurements, which

is therefore typically of a more abrupt nature. For example, consider the case where

a person picks up a bottle and places it again next to its initial position. If the robot

only observes the table with the bottle before and after the person interacts with

it, although the true motion was continuous, from the perspective of the robot, it

will look like the bottle teleported between observations. An extreme example of

this is the case of multi-session or multi-robot mapping, where the scene may be

static during individual visits, but changes tend to accumulate between visits when

the robot is not observing the scene.

As a result, an important implication of this view is that the difference between

short and long-term dynamics depends on the observation of the robot and is not

an inherent property of the environment or moving object, illustrated in Figure

15.3. However, the probability of long-term dynamics occurring is oftentimes corre-



412 Dynamic and Deformable SLAM

Rate of Change (Dynamics)

Ra
te

 o
f O

bs
er

va
tio

n
Long-term

(Dyn >> Obs)

Short-term
(Dyn << Obs)

A
B

C

D

Figure 15.2 Definition of short vs. long-term dynamics: the dynamic characteristics ap-
parent to a robot are given by the relation between rate of change in the scene and the
rate of observation by the robot, not by absolute time spans. Note that in most robotics
domains, where the sensing rate is sufficient to capture continuous motion when in view,
this simplifies to objects moving within view of the robot (short-term) vs. changing out-
side the view of the robot (long-term). Examples: A) Daily measurements of plant growth.
Although the rate of observation is very low, the plants also only grow a small amount.
As a result, appropriate methodologies to track the plants are similar to those for tracking
people [181]. B) Daily patroling of a building. Although the rate of observation is com-
parable, parts of the scene will have changed completely and long-term methods such as
mutli-session change detection are appropriate [573]. C) Object rearrangement behind the
back of the robot. Although the robot may only be gone for a minute, the object con-
figuration may have changed substantially between observations [981]. D) The Hawk-Eye
System can track Tennis balls moving at up to 250 km/h by observing them at 340Hz,
leading to short-term dynamic observations and milimeter tracking accuracy [682].

lated with the time between observations. We will overview methods for long-term

dynamics in section 15.3.

Finally, the cases discussed above typically assume that there is some static

background, with various dynamic entities in the scene. However, in some relevant

use cases like endoscopic surgery and medical robotics, all of the scene is deforming

and moving around the robot, typically within the category described above as

short-term dynamics. This setting where there is no static part of the scene is

commonly referred to as deformable SLAM, which we discuss in Section 15.4.

15.1.2 Terminology

It is important to point out that in the community, a variety of further terms are

used to describe related concepts to the ones introduced above. Instead of short-



15.1 Characterizing the Dynamic SLAM Problem 413

Robot1

Observation Characteristics

Robot2

Short-term Dynamics
(Transient Characteristics)

𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝑡𝑡𝑒𝑒𝑒𝑒𝑒𝑒
Robot1

Robot Observations

Robot2

Long-term Dynamics
(Abrupt Characteristics)

Figure 15.3 Role of the robot as observer. The same physical motion of an object (dotted
line) can reflect as short-term dynamic for Robot1 and long-term dynamic for Robot2.
Similarly, multi-session or multi-robot mapping can include cases where objects are moving
while being observed (short-term dynamics), or changed outside of the view of the robot,
most typically in between sessions or visits (long-term dynamics).

term dynamics, used terms include dynamic and high-dynamic, typically referring

to objects that are currently moving (potentially within view of the robot).

On the other hand, to refer to long-term dynamic effects, terms including semi-

static, quasi-static, or low-dynamic are used. These typically refer to objects that

could move but are static while being observed, or changes that occur between

multiple visits, which is a special case of long-term dynamics.

Beyond dealing with dynamic effects in 3D SLAM, certain methods aim to re-

construct a history, evolution, or higher-level understanding of the scene and its

dynamics. This is often referred to as spatio-temporal or 4D (being 3D space +

time2) scene models.

In addition, the terms lifelong, persistent, and continuous are sometimes used

to refer to SLAM, mapping or localization systems that can address variable en-

vironments, often through operation over long time spans. Finally, note that not

only geometric dynamics affect sensor readings, but also texture, illumination, and

other changes (such as day/night or seasonal changes), in particular from visual

sensors [1167, 1014].

15.1.3 Degrees of Dynamism

While the above characterization may seem to imply a clear classification into

three cases, it is important to note that in practice the boundaries can be fuzzy,

2 Note that this is different from the 4D or 3+1D used in radar SLAM (Chapter 9), where the fourth
dimension refers to velocity measurements by the radar.



414 Dynamic and Deformable SLAM

numerous different effects can combine, and each effect can be present in different

intensities. For example, a scene may contain a single rigid moving object (e.g., a

car or box [698]), a single moving and deforming object (e.g., a person [457]), only

long-term changes (e.g., regular patrolling of a building [329]), up to many moving

and changing entities at the same time (e.g., robots with humans in a home [981]),

or even no static entities at all (e.g., endoscopic surgery [900]). While, ideally, a

generalist robot will be able to estimate all of these effects jointly, the problem

becomes exponentially more complex the more effects are considered. Thus, prior

knowledge about which dynamic effects can be expected or are relevant for the task

at hand can enable the design of more specialized and thus better performing and

more tractable solutions for a given scenario.

15.1.4 State Estimation vs. Scene Representation

As introduced in Chapter 5, SLAM is the dual process of estimating the robot pose

as well as a representation of the environment. The same considerations apply to

SLAM in dynamic environments. If only estimating the robot state is sufficient for

an application, it is oftentimes adequate to treat dynamic observations as outliers or

noise. In this case, similar to SLAM in static scenes, accurate results can be achieved

by ignoring or rejecting the corresponding features or measurements and tracking

or localizing with respect to the static background. We will discuss considerations

to this effect, tailored to short-term and long-term dynamics, in Section 15.2.1 and

Section 15.3.1, respectively. A special case is the setting of deformable SLAM, where

there are no static parts to localize against. We will address this setting in Section

15.4.

Conversely, if a dense map is desired, reconstructing a moving and changing scene

requires that the robot can detect and represent some or all motion and changes in

the scene. We will discuss representations and techniques for short-term dynamics

in Section 15.2.3, long-term dynamics in Section 15.3.2, and first unified dynamic

SLAM methods in 15.3.3. Beyond reconstruction, we will briefly introduce methods

for higher-level understanding of dynamic and changing scenes in Section 15.3.4.

15.1.5 Online vs. Offline Methods

The final axis we consider is the time criticality of a perception system, meaning

whether dynamics must be handled in real-time or whether it suffices to process

the data offline. Since most robotic applications require that robots can interact

with their environment immediately, especially if the scene is dynamic, this chap-

ter primarily focuses on real-time methods. However, in certain applications such

as regular monitoring of a building, it may suffice to collect the sensor data and

then process it offline. Similar to (offline) global bundle adjustment vs. (online)



15.2 Dynamic SLAM 415

SLAM, this has the advantage of additional computational resources, which fa-

cilitates processing at higher resolutions and generally can achieve more accurate

results. An additional notable difference to online methods is the fact that all data

is already available. Specifically, to detect moving or changed objects in frame Ft

at time t, all future measurements Ft+1,...,T are already available which can pro-

vide essential information not available to online methods. While this chapter focus

primarily on online methods, we briefly introduce the relevant offline problems of

map cleaning and change detection in Section 15.3.2 and Non-Rigid Structure from

Motion (NRSfM) in Section 15.4.1.

Finally, while part two of the book was structured by sensing modality, the impli-

cations of dynamic scenes for SLAM are often similar for many sensing modalities.

We therefore structure this chapter according to different dynamics characteristics.

Nonetheless, each section will discuss considerations for different sensing modali-

ties, where so far predominantly visual, LiDAR, and proprioceptive sensors have

found notable use for dynamic and deformable SLAM.

15.2 Dynamic SLAM

In the following sections we further discuss the implications of individual short-term

dynamic objects for SLAM. Historically, first approaches used data association to

identify measurments that can be explained by the sensor moving and which ones

appear to independently change their pose. Initial techniques included statistical

tests [803], as well as classical algorithms such as RANSAC [230] and the Hough

transform [1077]. These methods allowed simply discarding measurements of dy-

namic objects as outliers. Later, efforts turned to not simply ignoring dynamic

objects, but also trying to reconstruct the environment regions occluded by them,

either by interpolating missing data [1075], recovering data from alternative sen-

sor poses where no occlusion occurred [82], or by image ‘inpainting’ using machine

learning [84]. The result is much more useful for localization because there are no

‘holes’ in the rendered map. We will address dynamic objects as outliers in Section

15.2.1.

An alternative also pursued is to track the dynamic objects as part of the SLAM

framework. In computer vision, this problem is known as multi-body structure

from motion, an extension to classical SFM. The mathematical foundations for the

solution, as well as practical algorithms have much in common with the SLAM

pespective [841]. This was initially deemed unfeasible due to high computational

cost [1149]. Recently, this has become feasible [83], and it might be necessary in

order for the robot to avoid collisions with dynamic objects. We discuss dynamic

object tracking in Section 15.2.2.

To provide an even more detailed understanding of dynamic scenes, one can

further aim to reconstruct the scene in a dense manner, including the dynamic



416 Dynamic and Deformable SLAM

Figure 15.4 In [517] a method is introduced that jointly estimates the camera motion
and the 3D scene flow for moving objects from an RGB-D video sequence. Initial robust
odometry is used to segment the clustered frame into dynamic and static (background)
based on the residuals of each cluster. The segmentation can then be used to further refine
the odometry. (©2017 IEEE)

objects. Having access to detailed movin object models can be useful for applications

such as manipulation, where the robot needs to understand the object shape and

motion in order to interact with it. We discuss dense dynamic SLAM in Section

15.2.3.

15.2.1 Dynamic Object Removal

One of the simplest, but still reasonable approaches to SLAM in partially dynamic

scenes consists in discarding sensor measurements of the dynamic parts of the scene

and removing such parts from the map states. The rationale is twofold. First, per-

sistent objects and landmarks are oftentimes the main focus of mapping, dynamic

entities being in many occasions of limited interest (such as pedestrians passing

by). Second, scene rigidity is assumed by most geometric estimation techniques,

and hence dynamic parts can be detected and classified as spurious measurements

to rigid models. To this end, a large variety of approaches has been proposed. We

summarize the main families of methods below. Note that modern dynamic SLAM

methods oftentimes employ combinations of these principles for best performance.

Proprioceptive Sensing. An essential property of proprioceptive sensing is

that, by definition, it does not rely on observations external to the robot. For this

reason, it can also not be influenced by external effects, such as motion in the scene.

Since inertial and internal odometric measurements carry information of the robot

states they help disambiguating the motion corresponding to the robot and that

corresponding to dynamic parts of the scene from relative measurements [1030]. We

refer the reader to Chapter 11 and Chapter 12 for details on how to fuse inertial or

kinematic measurements with exteroceptive ones, respectively.

Robust Estimation. Most scenes and most sensors provide a set of measure-

ments that is significantly larger than the minimal set for geometric estimation.



15.2 Dynamic SLAM 417

without mask module

with mask module

Figure 15.5 In MonoRec [1184] a deep network is trained to recover a dense reconstruction
from a single moving camera. Moving objects are filtered out by a mask module that taps
into a brightness consistency cost volume to identify structures (colors across subsequent
frames) that are not compatible with the dominant ego motion. (©2021 IEEE)

In these cases, and for low rates of dynamic content, redundancy can be used to

identify measurements of dynamic objects as outliers to rigid geometric models.

Two methods are mainly used for that. First, RANSAC [336] is commonly used

to initialize the state estimates by selecting a minimal sample set with the largest

consensus among the whole measurement set. However, this may fail in cases of

large occlusions where the largest consensus set may be that of a moving object.

Second, after initialization and during iterative optimization, an alternative to the

typical L2 norm is to use robust cost functions. These have sub-quadratic growth

for large residuals, which are assumed to be outliers, and hence their influence on

the states is reduced. For further details on RANSAC and robust losses, we refer

the reader to Chapter 3.

Multi-View Motion Cues. In addition to discarding dynamic content at ini-

tialization and reducing or even canceling its influence by robust cost functions,

another common approach is removing dynamic states once there is sufficient evi-

dence of non-rigidity from its measurements. Evidence is typically implemented as

a threshold on the accumulated number of high-residual measurements. Figure 15.4

shows an example of this where RGB-D images are clustered into regions and each

region is classified between dynamic and static (background) based on the residuals

for that region.

Semantic Information. Deep neural networks for semantic segmentation can

be used to pre-segment image areas that correspond to potentially dynamic ob-



418 Dynamic and Deformable SLAM

jects. While this may certainly help, closed-set vocabularies may be unable to seg-

ment all the objects in an image. Additionally, objects being potentially dynamic

does not imply that they are moving in a particular moment, such as parked cars.

For this reason, combining semantic segmentation of potentially dynamic objects

with multi-view geometric checks may be convenient [51]. For example, the method

MonoRec [1184] advocates a deep network for dense reconstruction from a single

moving camera that combines a brightness cost volume computed from a set of

consecutive warped frames with a mask module that is trained to filter out moving

objects. These objects are determined from training data, but also from the color

inconsistency across the warped frames, shown in Figure 15.5.

Domain Knowledge. Where available, additional prior and domain knowledge

can be integrated to disambiguate features of the static scene and dynamic outliers.

A common example of this is a no-side-slip constraint for autonomous vehicles. Since

we know that a car cannot move sideways, all features that suggest a side-ways

motion can be removed as dynamic outliers.

Motion-aware Sensors. Visual and LiDAR sensors typically provide a capture

of the scene at a given time, and thus do not provide direct measurements of the

motion of dynamic objects. Other sensors, such as event cameras provide a con-

tinuous stream of measurements at high temporal resolution. Furthermore, radars

and certain LiDARs use the Doppler effect to directly measure the velocity of each

observed point. While dynamic SLAM methods using these sensors are actively be-

ing investigated, access to such information could be an important cue to identify

dynamic objects and their motion. For more details on event cameras and radars,

we refer the reader to Chapter 10 and Chapter 9, respectively.

15.2.2 Dynamic Object Tracking

Dynamic object removal, as detailed in the previous section, might be convenient

if the goal is only to estimate the robot state. However, in many other cases, it

may be necessary to track the 3D motion of these dynamic entities, for example

in order to navigate without collisions. Note that this problem is highly related

or sometimes also referred to as Multi-Object Tracking (MOT) or Multi-Instance

Dynamic SLAM (MID). The problem of 2D and 3D object tracking has accrued

large interest in the computer vision and robotics communities [1241]. As a result,

the body of literature is vast and cannot be exhaustively covered in this chapter.

We here thus focus on selected techniques most relevant to SLAM.

The joint problem of simultaneous localization, mapping and dynamic object

tracking can be formulated as follows. The central idea is that each dynamic object

in the scene can be modeled as a rigid moving body. The factor-graph representation

of the static SLAM problem presented in Chapter 7 can therefore be extended to

account for individually moving objects, shown in Figure 15.6. As before, most

approaches follow a parallel-tracking-and-mapping approach. For each incoming



15.2 Dynamic SLAM 419

o

wo wo

w w

o

o

o

w

wo

o

wo wo

w w w

w

reproj

reproj

Figure 15.6 Overview of SLAM with dynamic object tracking [83]. Left: rigid body motion
assumption. The camera pose T i

w is estimated with respect to a static background, while
the dynamic object k is modeled as a rigid body with respect to the world frame Fw. Note
that all feature points xj,k

o on each object k adhere to its rigid body motion ∆T k
i,i+1. Right:

resulting factor graph representation of the problem. The camera poses are connected
through odometry factors, while the dynamic object poses are connected through constant
velocity factors. (©2021 IEEE)

frame, the tracking thread extracts salient features (typically ORB [958]). To assign

points to individual objects, oftentimes semantic segmentation masks are extracted.

Let T i
w ∈ SE(3) be the rigid transformation representing the pose of the camera

at time ti in a world reference frame Fw and xw
j ∈ R3 the coordinates corresponding

to rigid map points j. Each dynamic object k is represented, at time ti, by its six

DoF transformation T k,i
wo ∈ SE(3) of its object frame Fo with respect to the world,

and linear and angular velocities vwk,i,ω
w
k,i ∈ R3 in the object frame Fo. Map points

on dynamic objects are represented in the local object frame as xo
j,k ∈ R3. This

results in the modified reprojection error corresponding to xo
j,k

ei,j,kreproj = zij − π
(
T i
w

−1
T k,i
wo x̄

o
j,k

)
, (15.1)

where we used x̄o
j,k ∈ R4 as the homogeneous coordinates of point xw

j , and over-

loaded the projection function π (·) for points in homogeneous coordinates.

To further constrain the motion of each dynamic object k through time, a con-

stant velocity model for linear and angular veolicty is frequently assumed between

consecutive observations of dynamic objects. This can be formalized as the following

error term to minimize

ei,j,kvcte =

[
vwk,i+1 − vwk,i
ωw

k,i+1 − ωw
k,i

]
(15.2)

In order to couple object velocities and poses, the following error term is added

ei,j,kvcte,x =
(
T k,i+1
wo − T k,i

wo ∆T k
i,i+1

)
x̄o
j,k (15.3)



420 Dynamic and Deformable SLAM

where the increment in the pose from ti to ti+1 is computed from the constant

velocity model as

∆T k
i,i+1 =

[
Exp

(
ωw

k,i (ti+1 − ti)
)

vwk,i (ti+1 − ti)
0 1

]
(15.4)

Figure 15.6 illustrates these modeling assumptions (left) and the resulting factor

graph (right) to optimize.

This general formulation has found notable success in a number of works. For

example, earlier methods such as Multimotion Visual Odometry (MVO) [534] de-

tect tracklets and segment them into clusters such that the rigid-body-motion con-

straint is satisfied for each cluster. Visual Dynamic Object-aware SLAM (VDO-

SLAM) [1265], Dynamic SLAM [456], and DynaSLAM II [83] introduce the factor-

graph-based approach and add motion consistency factors between observations.

This has been further generalized in AirDOS [904] to capture articulated objects

consisting of several connected rigid bodies such as human skeletons.

15.2.3 Dense Dynamic SLAM

Similar to static dense SLAM, discussed in Chapter 5, dynamic dense SLAM aims to

additionally estimate a dense reconstruction of the scene, however, now including

dynamic entities. To achieve this, most approaches separate the process into a

localization and a mapping step.

The localization step aims to track the robot pose with respect to the static back-

ground, which can be achieved using any of the sparse dynamic SLAM methods

discussed in dynamic object removal (Section 15.2.1) and MOT (Section 15.2.2). Al-

ternatively, also other techniques such as dense tracking applied to the background

once dynamic points in the input have been removed can be employed.

In the mapping step, the goal is to build a representation of both the static

background and the dynamic entities. An essential design decision is the choice of

representation, as this defines which quantities need to be estimated to perform

continuous updates of the representation through time. Naturally, reconstructing

the background is identical to static dense mapping, however, the same or similar

representations can also be used to model dynamic entities. Notice that the rep-

resentation of the background and dynamic entities do not have to be the same,

although in practice this is oftentimes the case for ease of interpretation and pro-

cessing of the robot map. In this section, we discuss common groups of approaches,

starting from Moving Object Segmentation (MOS) and sensor-level representations

in Section 15.2.3.1, to parametric representations if the target object or category

is known in Section 15.2.3.2, to reconstructing arbitrary moving objects in Section

15.2.3.3.



15.2 Dynamic SLAM 421

15.2.3.1 Moving Object Segmentation

A minimal solution to address dense dynamic SLAM is to detect all dynamic parts,

oftentimes all points or pixels, in the input data. This problem is often called Moving

Object Segmentation (MOS). Similar to dynamic object removal (Section 15.2.1),

once these points are detected, they can be ignored to avoid inconsistency and arti-

facts in the static background reconstruction, or alternatively, be stored as low-level

representation of dynamic entities in the scene. To detect dynamic or inconsistent

points, similar ideas as before can be applied. However, a central difference is that

for dense SLAM methods, also the dynamic point detection needs to be dense,

meaning one needs to classify each point in the sensor data and not just selected

features, as illustrated in Figure 15.7. Therefore, the majority of approaches rely

on using geometric consistency and/or semantic information as main motion cues

for dense segmentation. In the former, registration residuals can be densely com-

puted during camera-to-model tracking to classify areas of the input image with

high residuals as dynamic [989], or one can use the consistency between individual

measurements [1249] or measurements fused in the map [980] to identify inconsis-

tent and thus dynamic points. Oftentimes, these detections are complemented with

additional clustering steps to deal with noise in the sensing data [989, 1249, 980].

In the latter case, dense semantic segmentation can provide useful information on

which parts of the input data reflect classes or instances that are potentially dy-

namic, such as people, that can be masked out [946]. While semantic segmentation

of camera images and LiDAR point clouds has been widely studied and can easily

be re-purposed to mask out dynamic classes, classifying dynamic pixels or points

directly using deep learning methods on individual or sequences of measurements

has become a growing field of research [878, 765, 670]. The learning-based approach

has the advantage of being able to incorporate priors about typical moving object

shapes, motion patterns, and sensor characteristics which can improve performance

in the target domain, but may not generalize to out-of-domain settings.

15.2.3.2 Parametric Models

While discarding dynamic measurements and reconstructing the static background

may suffice for certain applications, others, such as manipulation or human-robot-

interaction, may require robots to also estimate detailed representations of the

dynamic entities in the scene. In these cases, the tracking-by-detection methods of

Section 15.2.3.1 have limited expressiveness since they operate on the level of noisy

and partial measurements of dynamic regions in each frame.

If the type of objects of interest is known, their shape can oftentimes be repre-

sented using a parametric model. Given this structure, each measurement can be

treated as an observation of the true underlying parameters to optimize for them.

Similar to MOT (Section 15.2.2), these parameters can be added as variables to a

factor graph with model-specific observation factors and estimated jointly with the



422 Dynamic and Deformable SLAM

Figure 15.7 Dense moving object segmentation (MOS). Left: StaticFusion [989] recon-
structs the static background (top) from RGB-D images by segmenting each frame (bot-
tom) into dynamic (red) and static (blue) parts based on tracking residuals. Right: Dyn-
ablox [980] densely segments LiDAR scans into dynamic (color) and static (black) points
using volumetric map consistency. ([989] ©2018 IEEE, [980] ©2023 IEEE)

sensor motion and background. This approach has found particular interest in cap-

turing and tracking human motion, where humans can be represented as skeleton

models [904] or dense SMPL [701] meshes [948, 457, 458], among many others.

15.2.3.3 Simultaneous Tracking and Reconstruction

Alternatively, the area of simultaneous tracking and reconstruction aims to re-

construct arbitrary moving objects. In most cases, one can make the simplifying

assumption that each moving object is a rigid body. The goal is then to track and

reconstruct a single or multiple rigid moving objects. The central idea is to create a

separate dense representation of each object as well as the background. To achieve

this, most approaches follow four main steps [967, 963, 1203, 933]. First, object de-

tection is performed in the input images, typically combining semantic or instance

segmentation with geometric refinement and/or geometric motion cues. Second,

the camera motion is tracked with respect to the background. Third, each mov-

ing object is tracked with respect to the current image. For steps two and three,

several techniques are admissible, where typically direct methods that minimize

the projected depth and photometric residuals of each object are used, since these

tracking methods can directly operate on the dense representations of each object or

the background. Finally, the measurements of each object and the background are

fused into the respective models to incrementally estimate a dense reconstruction

of each object. Most prominently, objects are represented as TSDF volumes (for

more details on TSDF see Section 5.2.2) for their capacity to fuse measurements

with sensing noise [967, 963, 1203, 933]. An example of this is shown in Figure 15.8.



15.2 Dynamic SLAM 423

Figure 15.8 Simultaneous tracking and reconstruction with Co-Fusion [967]. Three objects
were sequentially placed on a table: First a small bin (blue label), a flask (yellow) and a
teddy bear (green). The results show that all objects were successfully segmented, tracked
and modeled. (©2017 IEEE) TODO: Reuse permission

Alternatively, DirectTracker [394] uses a sparser point-cloud-based reconstruction

to jointly estimating the object grouping and respective rigid body motions for each

object.

The simultaneous tracking and reconstruction approach has the large advantage

of being more general as no prior object models are needed. However, the many

steps required can be computationally expensive, especially for large scenes and in

the presence of many dynamic objects. A further limitation is the fact that errors

in object tracking can lead to misaligned measurements being fused into the object

representations, which can degrade the reconstruction and further inhibit accurate

tracking in the future, where, for example, key-point-based tracking methods such

as BundleTrack [1176] can be more robust.

The assumption of objects being rigid can further be relaxed to articulated ob-

jects by estimating transforms for each rigid part connected to a complete ob-

ject [982], or to general deformable objects. Examples of the latter include Dy-

namicFusion [808] and KillingFusion[1022], which will be covered in more detail in

Section 15.4. An example of a learning-based approach is AnyCam [1186] shown

in Figure 15.9, which makes use of a transformer-based neural network in order to

jointly estimate the camera motion and a 4D reconstruction of a dynamic scene

with non-rigidly moving objects from a casual monocular video.

Finally, the additional reconstructed objects could also be used to improve the

tracking of the robot’s ego-motion. However, this only appears to improve the robot

state estimates in corner cases, where tracking against the background is insufficient,

for example when large parts of the robot’s view are occluded (>70%) and good

motion models for the moving objects are available [698].



424 Dynamic and Deformable SLAM

Figure 15.9 AnyCam [1186] is a transformer-based neural network that jointly estimates
the camera motion and a 4D non-rigid reconstruction from a casual input video. (©2025
IEEE)

15.3 Long-term and Changing SLAM

The previous section addressed considerations to handle short-term dynamic obser-

vations. In this section, we will address the challenges and implications of long-term

dynamics on SLAM.

In general, there are several notable challenges for long-term dynamic SLAM.

First, in contrast to short-term dynamics, the observed changes patterns are more

abrupt, and can in principle grow arbitrarily large (especially the longer a robot does

not observe a space the more likely it is to be ever more different from when the

robot last observed it). This makes data association significantly more difficult. For

example, whereas short-term motion is, by definition, small between observations

and data association can be addressed through tracking, data association across

long-term dynamics may require solving a potentially global re-identification and

matching problem. Furthermore perceptual aliasing is exacerbated, as, for example,

a unique landmark (or several if they are feature points on a single object) can be

observed in several positions because it has moved.

Second, because the magnitude of changes is larger, many effects that can po-

tentially be neglected in the short-term case become significant in the long-term

case. This includes geometric changes, from motion (such as objects being added,

moved, or removed from the scene [979]) to structural changes (for example, con-

sider a construction site that will look fundamentally different at each visit [1062]),

as well as appearance changes from illumination (such as from different weather,

time of day, or seasons [1167]) to changes in texture or reflectivity of surfaces.

Finally, because long-term dynamic observations typically coincide with longer

elapsed times and farther robot motion, large changes in view point as well as

potential sensor degradation or change between observations can occur.

To address these challenges, we will first briefly consider implications for state

estimation in Section 15.3.1, followed by offline approaches for persistent scene

representation in Section 15.3.2. Extensions thereof for online SLAM and unified

short and long-term dynamic SLAM will be covered in Section 15.3.3. Finally, we



15.3 Long-term and Changing SLAM 425

will introduce temporal scene understanding models in 15.3.4, which aim to go

beyond capturing spatial variations to reconstructing temporal patterns.

15.3.1 Lifelong SLAM

A central capacity of lifelong SLAM systems is the ability to accurately localize the

robot in spite of the challenges pointed out above. This problem is conceptually very

similar to the place recognition and loop closure detection problems, which addresses

the related problem of identifying whether two views are of the same place in spite

of long-term changes. In this section, we expand these ideas for continuous long-

term localization. While a range of approaches exist, we will summarize only a few

of the most relevant ones.

15.3.1.1 Parallel and Summary Maps

A first group of approaches to this problem, similar to the case of dynamic ob-

ject removal in Section 15.2.1, leverages the fact that the robot pose can often be

estimated from a subset of inlier points that are matched. However, instead of re-

moving points as outliers, the idea here is to keep adding additional feature points

to the map if their appearance has changed to the extent that they can no longer

be matched to their previous observations. Typically, individual visits to a scene

are referred to as experiences or sessions, where the changes within each experience

are small enough to enable tracking of the robot pose [227, 858]. If the current

experience can be localized with respect to previous ones, this implies that the map

is expressive enough to localize the robot, and no further data needs to be added.

If localization is weak or fails, the new data is added to the map. This has the

advantage that new points are only added when needed and the complexity of the

map thus reflects the variation of appearance in the scene [227]. The localization

performance with respect to a single reference frame can further be improved by

adding cross-experience constraints. For example, experience EA may not be able to

sufficiently localize w.r.t. EC , but if both can localize to an intermediate experience

EB , the constraints EC −→ EB −→ EA can refine the map coherence and localization

accuracy [304, 786, 858]. To address the problems of many experiences leading to

a possibly large map and potentially misleading features (such as from moved ob-

jects) remaining in the map, maps are sometimes optimized and summarized offline,

running complete bundle adjustment between all experiences and retaining only the

features most likely to aid future localization [786, 304].

15.3.1.2 Appearance Invariant Representations

Instead of mapping features for each appearance, recent work focuses on feature

detection, description, and matching algorithms that allow a single feature to be

matched across varying appearances. This has primarily been made possible through

advances in deep learning, that allow i) training such methods on large datasets



426 Dynamic and Deformable SLAM

covering a range of different conditions and ii) taking much more context into

account (e.g., up to entire images compared to pixel neighborhoods for classical

methods) [976, 42, 275].

A special kind of appearance invariant feature to highlight is semantic informa-

tion. For example, if one can identify that an object is a chair in different visual

settings, the fact that it is a chair is not going to change over time. Therefore,

the presence of specific objects and their configuration can be used for localization

across large visual changes, such as aerial and ground viewpoints [377].

Once such appearance invariant features and descriptors are extracted, they can

be integrated into the SLAM pipeline as landmarks to facilitate map optimiza-

tion and long-term localization. While deep learning-based approaches have shown

strong performance, they typically require a GPU which may not be available on all

robots and may be computationally more expensive than classical features. Finally,

while this can address some challenges related to appearance, outlier matches such

as objects that have moved or changed still need to be identified and rejected.

15.3.1.3 Memory, Scaling, and Marginalization

A fundamental problem for robots that operate over long times, and potentially

indefinitely, is that ever more information is collected by the robot and added to

the map, eventually resulting in computer memory and processing time limitations.

Forgetting. One strategy to partially mitigate this is to incorporate mechanisms

for forgetting. Typically, this is implemented with a weight or probability of persis-

tence of map points that diminishes over time, such that points that have not been

observed for a long time have a lower probability of corrupting current localization

as outliers and eventually are pruned from the map [942, 270]. Alternatively, map

summarization [304, 786] can be run, oftentimes as an offline process, to retain only

the features most likely to support future localization. One advantage of this ap-

proach is that it provides an ordering of importance such that only the top-N points

can be kept subject to a memory budget constraint. This allows a robot to keep

as much information around as it can fit in its memory and only start forgetting

afterwards.

Memory Management. Instead of forgetting, another option is to dynamically

save and load map features in and out of the memory of the robot. An example

of this is shown in RTAB-Map [624], where nodes can be moved from short-term

to working to long-term memory and back, ensuring that the number of nodes

currently being processed is small enough for real-time computation. This prevents

the need to completely remove nodes, but incurs additional computational cost for

memory management and may eventually run out of capacity.

Marginalization. In addition to the number of points in the map, pose-graph-

based SLAM methods optimize over the history of robot poses, which usually grows

linearly with elapsed time. To avoid infinite growth in the number of nodes and

factors, the process of marginalization aims to remove old nodes without losing



15.3 Long-term and Changing SLAM 427

information. The central idea is to replace a set of nodes (or other information,

more generally) with a single node whose properties reflects or summarizes the in-

formation previously stored in the replaced nodes. In probabilistic models, this is

the marginal distribution over the removed nodes (see e.g., [263], Sec. 5.3 for more

details). This allows effective compression of the graph and reducing the size of

the problem without discarding nodes completely. Nonetheless, in practice, some

information is lost when marginalizing nodes. Most importantly, the topology of

the marginalized nodes can no longer be changed. For example, if there is un-

certainty whether certain factors, such as observations or more importantly loop

closure detections, are inliers or noise, marginalizing them will freeze their current

assignment into a single node which cannot be undone, even if future measurements

arise that would contradict or disambiguate this assignment. In summary, marginal-

izing previous measurements provides an effective strategy to reduce the size of the

problem while retaining information, but reduces the flexibility of the optimization

by “baking in” errors that can not easily be corrected afterwards. Thus, when to

marginalize is an important open question.

15.3.2 Map Cleaning and Change Detection

Even with eventual forgetting of points or objects, detection-based methods such as

the ones introduced in Section 15.3.1 tend to accumulate outdated measurements

(for example of objects that have since moved). Specifically, when a detector fires it

is evidence that an object or feature is present and can be added to the map. How-

ever, the inverse is not necessarily true. This manifests in the absence of evidence vs.

evidence of absence problem. For example, consider a robot that visits a room and

observes a chair in a corner (positive detection). If the robot later revisits the room

and does not observe the chair, this might be the result of the robot not looking

into the same corner and the chair might still be there (absence of evidence), or of

the robot looking into the corner and establishing that the chair has disappeared

(evidence of absence, or negative detection). In addition, since detectors are imper-

fect, it is also possible that the robot looked into the corner but did not recognize

the chair, e.g., due to illumination changes, in which case the conclusion that the

chair is now absent would also be incorrect.

The establishment of such negative observations, or changes, is the goal of change

detection. Historically, this has mostly been addressed in an offline or post-processing

setting, since the goal is oftentimes to retain a static map after data collection by a

robot. We will further detail this setting in this section and discuss recent extensions

to online SLAM in Section 15.3.3.

15.3.2.1 Map Cleaning

The goal of map cleaning is the removal of dynamic and spurious measurements

from a map in order to only retain the high-quality, static, and persistent features of



428 Dynamic and Deformable SLAM

Figure 15.10 Example of map cleaning by ERASOR [669]. Path artifacts from measure-
ments on dynamic objects (red) are largely detected and removed from the static map.
(©2021 IEEE) TODO: Reuse permission

a scene. The most common use case is to filter out spurious points and observations

of short-term dynamic objects from a mapping session [572, 669], but the same

techniques can also be applied to long-term and multi-session mapping [889].

Conceptually, the underlying detection mechanisms and principles are very sim-

ilar to dense dynamic point detection discussed in Section 15.2.3.1. However, for

offline processing, additional resources are available. In a first step, globally consis-

tent robot poses are estimated through robust bundle adjustment, where dynamic

and spurious points are ignored as outliers [572, 669]. Once the sensor poses are

fixed, all measurements are revisited to ensure consistency and remove spurious

data. Similar to Section 15.2.3.1, prominent methods include fusing all measure-

ments in a volumetric map of the scene (typically through ray-casting into an occu-

pancy or TSDF voxel grid), where the consistency of measurements can be checked

in each map cell [978]. While this considers all data, it can also lead to large mem-

ory consumption and possibly long processing times. To avoid this, visibility-based

methods, instead of a globally fused map, select a subset of nearby measurements

to compute the consistency of points across them, oftentimes directly on the sensing

data [572, 669, 889].

A notable advantage of offline processing is that all measurements are available

to use in map cleaning, and that a variety of additional steps, such as ground plane

segmentation [669] or iterative algorithms to incrementally add high-confidence

detection [572], can be performed. An example of this is shown in Figure 15.10.

15.3.2.2 Change Detection

Historically, change detection is a term that has been used in a variety of com-

munities. Most prominently, 2D or image-based change detection has been widely

studied in computer vision. In this setting, the goal is to identify differences between



15.3 Long-term and Changing SLAM 429

two images of the same scene or even from the same view-point, with applications

in background subtraction, surveillance, medical imaging, and many others [907].

Additionally, image-based change detection from satellite data is an active area of

research in remote sensing [46].

In robotics, the ability to detect changes between images is also highly useful.

However, in the context of mapping, where the goal is to estimate the underlying

3D structure of the scene from all observations, change detection can directly be

performed in 3D on the level of submaps or sessions. This is especially useful if

measurements are eventually marginalized or fused in the map and may no longer

be available. Although interest in image-based change detection for robotics has re-

cently re-surfaced with advances in high quality novel view synthesis methods [714],

we will primarily discuss 3D and mapping-based change detection approaches in this

section.

It is important to note that the distinction between map cleaning and change

detection can be fuzzy, since they address related problems. In the most typical

case, change detection is posed in a multi-session mapping scenario (for example,

consider a robot that scans a room in the morning and again in the evening),

where each session allows the reconstruction of an internally consistent (possibly

cleaned) map. The goal is then to identify and capture changes between the two

visits on the scene level. To achieve this, oftentimes detailed scene representations

are required and dense reconstruction methods are used. In addition, meaningful

change representation frequently requires object-level reasoning, where an object

can be considered a unit of coherent change. Most prominently, this includes objects

(such as mugs or chairs) being added to, removed from, or moved around the scene,

which will be the focus of this section. However, this could in principle also include

many different and non-geometric changes, such a cushion being deformed, a wall

being painted differently, or button being switched on or off.

Geometric Change Detection. As in earlier sections in this chapter, a number

of cues can be used to contrast measurements, which can also be applied for change

detection [573]. To contrast maps directly, however, volumetric representations such

as occupancy or TSDF maps have proven most useful for change detection [329,

956]. This is primarily due to the fact that, in contrast to solely dense surface

representations, they explicitly differentiate between unobserved and observed to

be free space, which is essential to disambiguate the absence of evidence problem.

During change detection, the two volumetric maps can be compared against each

other in a process called volumetric, map, or scene differencing, where surfaces

previously observed to be free must have newly appeared, and old surfaces now

observed to be free must have disappeared. Finally, areas only observed in one of

the sessions can be included to complete the map, and surfaces observed twice can

be fused to increase the accuracy of the reconstruction.

To create consistent maps and avoid false positive detections, one first needs to

accurately register all submaps or sessions into a common reference frame. Since



430 Dynamic and Deformable SLAM

there may be odometry drift or inaccurate state estimates within each session, it

is often not sufficient to just rigidly align the individual sessions, but best results

are achieved by jointly optimizing for alignment between sessions, typically through

inter-session constraints and bundle adjustment [329, 956, 573]

Semantic Information. In addition to geometric checks, semantic information

is frequently incorporated for change detection for a number of reasons. First, since

the semantic label of an object is appearance invariant, this can provide a powerful

abstraction to compare submaps created under different conditions. Note that the

use of semantics does not eliminate the problem of appearance changes, but sim-

ply offloads them to a detection network which can be trained on large datasets,

or specialized detectors for different sensors and conditions can be used. Second,

semantics can provide valuable non-geometric information, for example a sheet of

paper being removed from a table will not change the geometric surface, but may

be easy to detect semantically. Finally, the goal of change detection is often to iden-

tify objects as a unit of coherent change. Since coherent motion is also an essential

aspect of human scene understanding, there is large overlap between this definition

of an object and most closed-set semantic labels (for example mugs, chairs, and

similar objects often tend to move as a unit). To achieve best performance, many

systems combine geometric and sematic information [632, 979].

Semantic Consistency. The problem of semantic consistency arises from the

combination of the facts that scenes typically change in coherent units, but robots

can generally only obtain partial measurements of the scene. For example, consider

the case where a robot observes a table. Later that day, it returns and sees that

the table has disappeared, but half of the view is occluded. If change detection is

carried out on the observations or maps of that scenario, only the observed half of

the table will be removed leaving half a table floating around, whereas for a human

this outcome would seem rather implausible (i.e., we have a strong prior that tables

tend to move as a unit). This problem is illustrated in Figure 15.11. To avoid such

artifacts, one can forget previous maps and map every time from scratch, which

will ensure semantic consistency but also prevent the robot from ever building more

complete models of the scene. More commonly, change detection can be performed

on the level of objects or semantic classes to try to prevent such artifacts from

forming. Finally, future observations may also remove artifcats as changes once

they are observed, but the presence of artifacts in the map may reduce the overall

map fidelity and limit its use for planning and autonomy.

15.3.2.3 Object Understanding through Changes

Object Detection from Changes. The inherent relation between changes and

semantic objects can be used to make deductions in both directions. While we have

seen above how semantic information can be used improve change detection, the fact

that something has changed can also be used as a cue for object detection. To this

end, typically, changes in a dense reconstruction are detected to identify all moving



15.3 Long-term and Changing SLAM 431

Figure 15.11 Illustration of the semantic consistency problem. In this scene, the sofa and
lamp were switched and objects on the table were changed between two robot observations.
The left image shows the reconstruction when all measurements are fused, whereas on the
right semantic-aware change detection is performed [979]. Since the sofa was only partially
observed on the second visit, we see parts of it remain on the left whereas the entire sofa
is removed on the right (shaded red). Furthermore, conflicting measurements of free space
and the sofa are fused on the left, leading to only partial reconstruction of the sofa in the
new place. Finally, objects with small geometric changes such as the journal on the table
are not recognized and merged with other observations. (©2022 IEEE)

surfaces. These can then be spatially clustered to identify likely objects [329, 35,

335]. This complementarity between geometry and semantics is particularly useful if

no semantic object detector is present, or to complement semantic segmentation by

detecting objects that were not correctly segmented. However, as before, geometric

object segmentation alone is susceptible to partial observations. For example, if

two touching objects were both removed they will likely be under-segmented into a

single object. Similarly, an object partially observed through occlusions will likely

be over-segmented into several parts.

Object Instance Re-localization. In order to build an object-centric under-

standing of the scene through time and not only an estimate of the current or

static state, the goal of object instance re-localization is to track objects through

long-term dynamic observations. Conceptually, this problem and most solution ap-

proaches are again similar to the ones for place recognition and loop closure detec-

tion. However, there are a number of additional considerations that make this a

challenging problem.

First, by the abrupt nature of long-term dynamics, objects can, in principle,

change arbitrarily much and move arbitrarily far between observations. Of course,

based on the time elapsed and the motion model assumed for an object, the last

observed state of an object may be an informative cue to associate it to current

observations [956, 102], but this may in general not always be the case.

Second, since an individual object is much smaller than a scene, there is of-

tentimes less variety in geometry and texture, and thus many fewer features that



432 Dynamic and Deformable SLAM

uniquely describe it. This challenge is exacerbated for small objects by the fact that

if they are not observed up closely, fewer and lower resolution measurements are

available to extract features from.

Third, since there may be several instances of identical or similar object types in

a given environment, perceptual aliasing is a major challenge. This further raises a

more philosophical question of what it means for an object to be a unique instance

and whether they should be individually tracked. For example, consider a meeting

or seminar room with tens or hundreds of identical chairs. In this case, it may

be hard to tell which chair is which and how each of them was moved over time.

However, this might also not be relevant information for most tasks, and it might be

preferable to fuse all observations of any chair into a single representative model that

is replicated many times. On the other hand, if you consider the case of a coffee

mug, there may be numerous identical mugs in an office or building, but people

might care a great deal to keep track of their own mug. One option to address the

challenge of perceptual aliasing is to take the uniqueness of solutions into account,

i.e., unique matches of a highly distinct object can directly be accepted, whereas

for objects with several similar match candidates, a multi-hypothesis approach or

adequate uncertainty measure can be employed.

Finally, one can consider the object instance re-localization problem in a closed

set or open set setting. In the former, one assumes that the set of objects in a space

is fixed, and re-localization essentially becomes an optimal matching problem. In

the latter and more general case, objects can also be added or removed from the

scene, which raises the additional question of “when are object observations similar

enough to be the same”, reflecting the fact that there is always the alternative

explanation of a new but similar object having appeared in the scene.

To work towards these challenges, prevalent solution approaches primarily fo-

cus on descriptor extraction and matching. One family of methods focuses on ex-

tracting a set of keypoints on each object and descriptors for each object, which

can be directly used to identify correspondences and solve for 6DoF transforms.

As a natural first step, such keypoints could directly be visual features from the

SLAM frontend [755]. Alternatively, 3D keypoints and descriptors such as Fast

Point Feature Histograms (FPFH) [965] and Signature of Histograms of OrienTa-

tions (SHOT) [970] have found significant use for changed object re-localization.

These have the advantage that they can be extracted from the dense 3D recon-

struction of a session and are insensitive to variations in appearance. However,

since they only represent a local patch of geometry, they tend to be less descriptive

and often require further geometric verification [359]. Recently, deep-learning-based

local shape (and sometimes appearance) descriptors achieve the best performance

since they can be trained to emphasize the most informative aspects of a shape or

object [1144]. An example of this is shown in Figure 15.12.

This has also given rise to a second family of approaches that compute a sin-

gle descriptor per object instead of several keypoints [956, 1302]. This method is



15.3 Long-term and Changing SLAM 433

Figure 15.12 Object instance re-localization task in the RIO dataset [1144]. The goal is to
identify which object instances correspond between an initial scan (left) and later re-scan
(right), and estimate the 6-DoF poses T1, T2, and T3 between each object and its new
location. (©2019 IEEE) TODO: Reuse permission

advantageous as keeping track of a large database of keypoints and exhaustively

matching them can be computationally expensive. An important aspect of these

methods is to construct or train the networks such that they are SE(3)-invariant

or SE(3)-equivariant to allow matching across different viewpoints and registration

of the matched objects, respectively.

Finally, once the many partial observations of changed objects can be re-localized

and registered, this not only provides valuable insights about the history of each

object, but also allows the reconstruction of ever more complete object models and

richer scene descriptions over time [359, 1302].

15.3.3 Change-aware SLAM

While multi-session mapping provides an exemplary case of long-term dynamic

observations, it is by far not the only setting where they can occur. In practice,

such changes may occur over much shorter time scales. For example, consider a

robot that moves from a living room to the kitchen to fetch something. If the living

room changes in between, it does not matter whether the robot returns a week

or only few minutes later. At its limit, this can be as fast as a robot or sensor

just looking away and finding the scene changed when looking back. The goal of

change-aware SLAM is to be able to detect and represent such long-term changes

during online operation of the robot or system.

Challenges. Compared to multi-session mapping, where all changes are assumed

to occur between sessions, changes can now occur at any point between observations.

As a consequence, assumptions about stationarity can only be made within a short

window, and less data is available to fuse and disambiguate noisy observations.

Furthermore, the perceptual similarity between inaccurate relative localization and

changes in the observed scene can make it difficult to disentangle the two problems.

As an example, if the robot’s pose estimate is offset by a meter, the surfaces of

previously mapped objects may appear to be absent in the current, offset view,



434 Dynamic and Deformable SLAM

even though that is not the case. This interplay between change detection and

localization, i.e., the classification into inliers and outliers for each localization

constraint, is further exacerbated through the influence of one’s solution on the

other’s. This potential problem is well illustrated if we consider the two extremal

solutions; if all measurements are considered unchanged inliers in spite of possibly

large changes in the scene, the resulting registration solution may be inaccurate

and represent an “average” of true and false measurements. On the other hand,

if the entire previous scene is considered changed and now absent, the current

open-loop estimate is trivially optimal and the resulting pose estimates and scene

reconstruction may not be complete and consistent. Finally, change detection has

to operate continuously and is based on the partial data collected by the robot so

far. This requires that change detection can run at higher rates in order for the

robot to have an up-to-date understanding of the environment, and ideally that

false inlier/outlier change decisions can be corrected as more data is collected.

Object-level Change-aware SLAM. Since global reasoning about changing

scenes on low-level sensor data quickly becomes intractable, the vast majority of

change-aware SLAM methods first locally summarize measurements. Due to the

nature of most considered changes happening at the level of rigid semantic objects,

object-level representations are an intuitive choice [979, 898, 353, 899, 981]. In

this setup, an object-level scene representation is extracted, where localization and

reasoning about changes happens also on the level of each object, presenting a much

more manageable problem than reasoning about individual sensor measurements,

and, by construction, enforcing semantic consistency of the scene representation.

Local Consistency. An important consideration in change-aware SLAM is how

to disambiguate noisy measurements from actual changes in the scene, and con-

sequently, how these measurements are integrated into the map. For example, if

change detection is run on the raw data of every frame, some noisy points may

penetrate into existing objects and falsely mark them as changed. On the other

hand, if more conservative change detection rules are employed, it is easy to get

false negatives and fuse together data that are not observations of the same ob-

ject, leading to corrupted and inconsistent reconstruction (see Figure 15.11). To

overcome this, the central idea is to use local consistency to establish sequences of

measurements that can be guaranteed to be change-free. At a minimum, this is the

case when measurements are tracked frame-to-frame [979, 1134]. Intuitively, this

corresponds to the fact the scene cannot change unobservedly while the robot is

observing it. In practice, through adequate assumptions on the rate of change in

the scene and the odometry error being low over short times, this can be extended

to a sliding [353] or active [981] window.

Change-aware Mapping. Combining these ideas, a first real-time change-aware

mapping system is presented in Panoptic Multi-TSDFs [979]. Assuming globally

consistent poses are given, the Panoptic Multi-TSDF frontend estimates a set of

semantically and locally consistent submaps by only updating submaps that can



15.3 Long-term and Changing SLAM 435

be tracked frame to frame, called the active submaps, and for which the seman-

tics of the measurements match the target submap. By differencing the active to

overlapping inactive submaps, changes can be efficiently detected on this higher-

level abstraction of submaps, and previous submaps can be discarded or merged if

they disagree or agree with the current submaps, respectively. This allows retain-

ing information from previous submaps where they match, and by removing entire

submaps enforces semantic consistency by construction. An alternative approach is

presented only shortly after in POCD [898], where incoming frames are also seg-

mented into objects, but then are tracked and registered against the current map.

This has the advantage that some level of odometry noise can be tolerated and

corrected. To handle noisy change observations, a probabilistic persistence model

for each object is created that is updated when an object is observed, or an object

that should have been observed is not registered, respectively.

Globally Consistent Change-aware SLAM. In large-scale scenes and when

no global poses are available, these have to be jointly estimated with the scene

changes. For object-level representations, this can directly be done using a factor-

graph-based approach with the partial, locally consistent object observations acting

as landmarks. To deal with the problems of data association in change detection,

NeuSE [353] presents an approach to learn highly descriptive and SE(3)-equivariant

neural object representations. These latent descriptors capture the complete shape

from partial observations and allow for a direct association and registration of object

instances. As a result, such associations can be used as loop closure constraints and

spatially-inconsistent or missing associations used as a change signal. Alternatively,

POV-SLAM [899] presents an approach using the expectation minimization (EM)

algorithm to iterate between optimizing the poses of the robot and objects given the

associations between object observations, and optimizing the object observations

and persistence probabilities given the spatial layout of the scene. This allows it

to continuously refine both localization and change detection, especially when new

observations are made in the future. Instead, Khronos [981] creates candidate asso-

ciation factors between nearby objects and uses robust factor graph optimization via

graduated non-convexity [1218] to determine the inlier associations. Furthermore,

the (assumed static) background deformation is incorporated as extra factors to

aid spatial optimization, and a deformable geometric change detection step is per-

formed after loop closure to resolve the evidence of absence vs absence of evidence

problem.

Unified Short and Long-term Dynamic SLAM. Finally, the notion of lo-

cal consistency can be used to combine short-term dynamic object tracking with

change-aware methods in order to capture various dynamics patterns at the same

time, shown in Figure 15.13. A first formulation of this is presented in Changing-

SLAM [1134]. Changing-SLAM utilizes a sparse SLAM formulation building on top

of ORB-SLAM [793], where in each frame feature points are grouped into objects

by semantic masks. These points are then tracked frame-to-frame using a Kalman



436 Dynamic and Deformable SLAM

Figure 15.13 Unifying short and long-term dynamic SLAM. Changing-SLAM [1134] (left,
©2023 Springer) TODO: Reuse permission [OA] tracks keypoints for short-term dynamic
objects (red), the background (green), and associates potential long-term dynamic objects
(yellow). Alternatively, Khronos [981] (right) densely detects and reconstructs short-term
motion (purple) and long-term changes (removal and addition shown in red/green) during
online operation.

filter to capture short-term motion. Object points that are not tracked (long-term

changes) are associated globally to nearby objects of the same semantic class. Fi-

nally, a persistence score is estimated for each object such that objects that have

not been detected are forgotten and removed from the map.

A first method for dense spatio-temporal metric-semantic SLAM is presented in

Khronos [981]. Following similar ideas, Khronos uses a volumetric local map to

extract reconstructions of the background and and tracked static and moving ob-

jects. After optimizing for globally consistent poses after loop closure, an additional

change detection step estimates when each object change occurred to estimate the

history and evolution of the state of the scene.

15.3.4 Temporal Scene Understanding

When mapping an environment, the goal is to build a digital representation and

understanding of the scene. As discussed before, when mapping dynamic environ-

ments, the desired level of understanding can vary from building a model of the

persistent parts of the scene, excluding motion and changes, to building a detailed

4D reconstruction and understanding of what moved and changed, when, and how.

However, such an understanding can go beyond capturing the individual moving

and changing entities to estimating the underlying temporal variation patterns and

predict the future evolution of the scene. In this section, we briefly overview three

key families of temporal models.



15.4 Deformable SLAM 437

Maps of Dynamics. Where dynamic maps focus on detecting and tracking

moving objects, Maps of Dynamics (MoD) take these trajectories or other motion

information as input to estimate the typical motion patterns in the scene [618].

Such patterns can be constant (such as the dominant motion direction in a one-

way road), or also time dependent (for example, people tend to move into the office

in the morning and move out again in the evening). Understanding these patterns

can provide valuable information for navigating dynamic scenes or human motion

prediction.

Periodic Events. A special but commonly found kind of dynamics pattern are

periodic or cyclical events, such as for example daily or yearly variations of a scene.

If one assumes that the state of a scene is governed by an underlying hidden pro-

cess that is periodic, observations of the scene can be treated as observations of the

periodic process and used to estimate its properties. This idea has been pioneered

by Krajnik et al. [611], who propose frequency maps to analyze the different peri-

odic processes of observations in the time domain through spectral analysis in the

frequency domain by means of the Fourier transform. By only storing the dominant

modes of the frequency spectrum, a compact map representation is achieved that

can capture periodic events of different (and arbitrarily long) frequencies. Since the

complete 4D model of the scene is defined by these modes, once they are estimated

from past observations, all future states of the scene can be predicted, which can

improve future localization and path planning [610].

Learning-based Methods. Beyond structured or manually designed statisti-

cal models of dynamics, learning-based methods can also be used to predict future

variations in the scene. Typically, object-level changes or motion are predicted us-

ing scene graphs as compact representations of objects and their relations to their

surroundings [857, 700, 402]. The learning-based approach has several advantages,

including higher flexibility to represent complex dynamics patterns and the ability

to combine semantic priors (e.g., that dining tables tend to change around noon

due to lunch) with observations from a given environment. This can lead to bet-

ter prediction performance compared to more static co-occurrence priors or pure

frequency-based models [857, 402], and improve active and pro-active robot behav-

ior in the future [857, 700]. As a disadvantage, more data may be necessary to

train more complex models, where change data may be scarce and imbalanced with

respect to static observations of the scene.

15.4 Deformable SLAM

Deformable SLAM, or SLAM in deformable environments, refers to SLAM in envi-

ronments without a static background, i.e., in which there is not any static part. A

particularly relevant case is in robotic minimally invasive surgery scenarios, where

the only available sensor is a monocular camera that can only observe the de-

formable organs inside the human body [900]. Since the lack of any static parts



438 Dynamic and Deformable SLAM

makes the deformable SLAM problem severly underconstrained, it is a more chal-

lenging problem than static and dynamic SLAM.

In the following, we start by discussing the differences between deformable SLAM

and Non-Rigid Structure from Motion (NRSfM) in Section 15.4.1. We then first

present the simpler case where depth information, for example from an RGB-D

camera or stereo cameras, is available for deformable SLAM in Section 15.4.2. Sec-

ond, we will then introduce the pipeline for deformable SLAM for the challenging

case of monocular cameras in Section 15.4.3, followed by details about map initial-

ization and map extension in Section 15.4.4.

15.4.1 NRSfM vs. Deformable SLAM

Similarly as rigid visual SLAM is connected with SFM, non-rigid SLAM has a

strong connection with its non-rigid counterpart NRSfM.

15.4.1.1 Non-Rigid Structure from Motion (NRSfM)

NRSfM is a classical topic in computer vision which addresses the monocular 3D

modeling in deforming environments, and provides the theoretical foundations for

understanding the 3D modeling of a deforming scene from a video sequence. Each

3D point in the scene has a distinct 3D position in every frame, therefore, the

map does not represent a single position but rather a 3D trajectory for each map

point. As a consequence, the monocular problem is severely under-constrained and

additional priors are compulsory to constrain the solution. Popular options are

temporal smoothing priors, which assume that the trajectory of a 3D point is smooth

over time, and spatial priors that assume that the deformation of a 3D point is

similar to that of its neighbors.

The classical formulation of NRSfM assumes a static monocular camera observing

a moving object without any static background. Most of the video frames observe

the full object extent, i.e., most of the images overlap while observing the same

deforming object. Typical cases are a moving hand, a waving flag, or a jumping

person, all in front of a camera. It is important to note that despite the camera

being fixed, the object motion includes a significant rigid motion which is never

explicitly computed, but included in the non-rigid scene motion with respect to the

fixed camera (see Figure 15.14(a)). Although the rigid motion is not computed, it

implies a significant parallax that makes the estimation problem well conditioned.

Shape from Template. A first family of NRSfM are Shape from Template (SfT)

methods. They assume that the textured 3D shape-at-rest of the observed object is

available as a prior, which is then used to recover the deformation, thus significantly

simplifying the problem. This textured 3D shape-at-rest of the object is called the

template. These methods depend on the deformation model of the template. On

one hand, there is the analytic isometric deformation model which assumes that

the geodesic distance between points in the surface is preserved. This has proven



15.4 Deformable SLAM 439

(a) (b) (c)

Figure 15.14 Sketch of NRSfM vs. Deformable SLAM in 3 frames. The scene does not
include any static background. (a) The classical NRSfM assumes a fixed monocular camera
while the 3D object undergoes a non-rigid motion which includes also a rigid motion. (b)
Deformable SLAM assumes that the scene object mainly undergoes a non-rigid motion
while the moving camera focuses on the rigid motion despite the absence of a static
background. (c) Deformable SLAM also often assumes that the camera is in a close-
up, where the deforming scene is only partially observed, i.e., the camera undergoes an
exploratory trajectory.

to be well-posed and quickly evolved to stable and real-time SfT solutions [235, 66,

206]. On the other hand, there are energy-based methods [971, 28, 810, 627, 429],

which jointly minimize the deformation energy w.r.t. the shape-at-rest and the

reprojection error for the image correspondences. These methods have further been

embedded within sequential data association with robust kernels to detect and

reject outliers [627, 628, 429].

Non-Rigid Structure from Motion (NRSfM). Early approaches to deal

with the fully-fledged NRSfM problem without the strong prior of SfT assumed an

orthographic camera, which is only valid for a moving object far from the camera.

These earliest methods were proposed in [119]. This seminal work gave rise to

methods based on a low dimensional basis to compute the 3D trajectories from

the frames of a sequence [843, 781, 248]. They include regularizers either spatial

in [248, 376], temporal in [30], spatio-temporal in [27, 403, 404], or more recently,

topological priors [994].

A perspective camera model is a must for the close-up sequences that are typi-

cal in deformable SLAM, such as in medical endoscopy. The isometry assumption,

first proposed in SfT methods, has also produced excellent results in NRSfM [1080,

1131, 204, 205, 849, 850]. Particularly useful for SLAM is the isometric [849], a

local method that is able to naturally handle occlusions and missing data preva-



440 Dynamic and Deformable SLAM

Figure 15.15 Typical exploratory trajectory in Deformable SLAM [628]. The camera pose
(green frustum) is estimated together with a local deformable template (mesh) of the
derforming scene. Global map points are shown in black. (©2021 IEEE)

lent in deformable SLAM applications. In the transition between SfT and NRSfM,

Agudo et al. [29] propose a deformation model based on Navier’s equations and a

FEM model processing the video frames in a EKF-SLAM sequential manner.

15.4.1.2 Deformable SLAM

In contrast, deformable SLAM targets a variation of the above-mentioned problems,

where the scene is deforming and the camera is moving. The goal is then to estimate

both the history of deformations of the observed scene and the camera trajectory.

The hypothesis is that all rigid components of the deformation are included in

the camera trajectory (see Figure 15.14(b)). The disentanglement of the rigid and

non-rigid components of the motion is an ill-posed problem, as highlighted by the

so-called ‘Floating Map Ambiguity’ [629]. However, this separation can be achieved

by introducing priors on the displacements of the deformable object.

An important SLAM challenge is the fact that the camera is typically undergoing

an exploratory trajectory, meaning not all the frames observe the same scene region

(see Figure 15.14(c)). It is also frequent that the camera is close to the deforming

surface, hence the orthographic camera assumption is no longer valid. Figure 15.15

displays this typical close-up in a sequence observing a deforming mandala [628].

The final prevalent assumption is that the process has to be causal and in real-

time, thus to produce the map and camera pose at time k, only the frames from 1

to k can be processed. This is in sharp contrast to NRSfM where processing of all

images is performed in batch mode.

Given the difficulties involved, we will first talk about deformable SLAM with

depth information in Section 15.4.2 and then come back to deformable SLAM using

a monocular camera in Section 15.4.3.

15.4.2 Deformable SLAM with Depth Information

3D sensors such as RGB-D or stereo cameras provide depth. This makes the esti-

mation overconstrained, which greatly reduces the complexity of the problem com-

pared to the pure monocular approach. DynamicFusion [808] is the seminal work



15.4 Deformable SLAM 441

Figure 15.16 KillingFusion [1022] is a method that recovers a non-rigidly moving object
observed in a moving RGB-D camera. By using Signed Distance Function (SDF) and a
killing regularizer, it is able to recover structures that can undergo topological changes
such as the merging of the hands with the torso. (©2017 IEEE)

of deformable 3D SLAM from RGB-D. It builds a canonical map of the scene, i.e.,

its shape at rest, and deforms it in order to explain the current depth observation

combining a form of a Embedded Deformation graph model (ED) [1054] with an

as-rigid-as-possible regularizer [1031]. ED models build a discretization of the de-

formations space in a graph structure, speeding up dense reconstructions. Dynam-

icFusion defines the foundations for subsequent works like VolumeDeform [512],

that included photometric information to improve the results. Later, KillingFu-

sion [1022] proposed to enforce deformations to be smooth and nearly isometric.

An example of this is shown in Figure 15.16. All of the methods above represent the

map as SDF, which scale poorly with the size of the map and limit the application

of these methods for exploration. Surfelwarp [372] proposes a surfel representation

to be used instead of the classical SDF to improve scalability. In the medical arena,

MIS-SLAM [1029] presented deformable SLAM for a stereo system based on as-

rigid-as-possible deformations combined with the ED model. Also in stereo medical

applications, Zhou et al. [1289] propose the Expectation Maximization and Dual

Quaternion (EMDQ) algorithm combined with SURF features to track the camera

motion and estimate tissue deformation between video frames.

15.4.3 Pipeline for Deformable SLAM using Monocular Cameras

The pipeline reproduces the typical tracking at frame rate and the mapping at

keyframe rate of visual SLAM, but adapted to the deforming case as proposed in

DefSLAM [628].

Tracking. Deformable tracking is similar to SfT methods. The shape-at-rest

is assumed available for the local area that is being explored, as firstly proposed

in [627], with a deformation energy inspired in the physics based elastic model.



442 Dynamic and Deformable SLAM

Later, Gomez et al. [429] propose a deformable tracking system based on spa-

tial, as-rigid-as-possible, and viscous temporal regularizers. These methods ended

up integrated into full deformable SLAM systems in DefSLAM[628] and in NR-

SLAM [938], respectively.

Mapping. The deformable mapping thread takes point tracks along the sequence

as input and is in charge of recomputing the templates at keyframe rate. DefS-

LAM [628], the first ever deformable SLAM, uses isometric NRSfM [849] to perform

this computation. The NRSfM processes a subset of covisible keyframes to produce

a template per map keyframe. These templates are aligned with the previous tem-

plates computed at earlier stages by previous local mapping operations, assuming

a planar topology for the scene. To relax the assumption of planar topology, NR-

SLAM [938] introduces the concept of the dynamic deformable grap to cope with

any scene topology. Regarding the deformation model, the authors go one step fur-

ther than [429] and propose the intuitive visco-elastic deformation model, which

includes both temporal and spatial regularization. This model is brought into the

local mapping deformable bundle adjustment which is at the core of the deformable

mapping, replacing the isometric NRSfM of DefSLAM.

Feature Matching. Regarding feature matching, DefSLAM inherits the ORB [958]

features from ORB-SLAM [793]. However, they prove to be inadequate descrip-

tors for close frame tracking in medical scenes, where Lukas-Kanade (LK) optical

flow [715] shows better performance [399] due to its invariance to affine lighting

changes. In addition, the authors exploit the ORB descriptor combined with a

DBoW bag of words [370] for place recognition to achieve camera relocalization

after tracking losses. LK tracking is also the method for feature tracking in NR-

SLAM [938].

15.4.4 Initialization and Map Extension

Initialization from scratch is always a challenging step for any monocular visual

SLAM system. The challenge is even more pronounced in the deformable case.

DefSLAM [628, 399] relies on the isometric NRSfM algorithm [849], that is able

to compute the templates for the first keyframes from scratch. The only issue is

how to compute the initial matches between the keyframes, which is addressed by

assuming a planar scene. In the case of NR-SLAM [938], an initial guess for the

deformable bundle adjustment is needed, where the initial guess map and camera

motion are computed using rigid SfM. The dynamic deformation graph is initialized

from a segmentation of the image optical flow between the initial keyframes.

When the camera explores a new region, new points have to be added to the map

to expand the map to cover the new areas. In the case of DefSLAM, the isometric

NRSfM naturally handles this extension provided that matches in the keyframes can

be found for these new points. In the case of NR-SLAM, the fact that camera poses

are available is exploited to triangulate the new map points from their matches in



15.5 Summary, Challenges, and Future Directions 443

the already located frames. To this end, a model selection approach is proposed

where map points are triangulated with both a rigid and a non-rigid algorithm,

and then the right model for the newly explored region is selected.

15.5 Summary, Challenges, and Future Directions

SLAM in dynamic, changing, and deforming scenes is a highly active and developing

area of research. In this chapter, we aimed to provide an overview of key challenges

and solution approaches in the field. However, we inevitably could not cover all work

that is ongoing, and we hope this serves as inspiration to read more deeply into some

of the topics and contribute to the field in the future. In spite of notable advances,

many open problems remain. We highlight some of them and other promising future

directions below.

State Estimation in Extreme Environments. Modern SLAM systems are

already quite robust to changes and dynamics in the environment, even without ex-

plicitly modeling them. Nonetheless, integrating dynamic object tracking for state

estimation has shown to improve robustness and accuracy if there are large oc-

clusions [698, 458], large fractions of moving objects [904], and strong motion pri-

ors [458, 83]. However, these advantages come at increased computational cost and

currently each of these challenges is addressed separately. SLAM solutions that

are efficient and robust to a diverse range of extreme conditions, or ‘corner cases’,

remain an open problem.

Differentiable Scene Representations. Differentiable rendering models such

as NeRF and 3D Gaussian Splatting (3DGS) as introduced in Chapter 14, although

still recent, have already shown a lot of promise as representation for dynamic

scenes. Initial works demonstrate their capacity for high-fidelity reconstruction of

dynamic and deforming objects [1189] as well as for change detection [714]. Nonethe-

less, this is still a developing field with open challenges in memory and computation

cost for real-time SLAM, partial and noisy observations from mobile sensors, as well

as scaling and map management for spatially and temporally consistent mapping.

Data Association and Deep Learned Priors. The fundamental challenge of

data association is still a hard and relevant problem, especially for partial observa-

tions, occlusions, as well as long-term place recognition and instance re-localization.

To overcome this, there appears to be a trend toward deep learned methods that

incorporate priors to complete and associate objects from partial observations [353,

1302, 1204]. In particular, geometric deep learning techniques to extract SE(3)-

invariant or SE(3)-equivariant features hold promise to address these challenges.

However, there are still open questions with respect to generalization, reliability,

and scalability for mobile deployment.

Lifelong Operation and Continual Learning. A further open problem is the

scalability and performance of SLAM methods for lifelong operation. This includes

a range of perceptual challenges from appearance to geometric changes, as well as



444 Dynamic and Deformable SLAM

possible sensor degradation over time. Furthermore, if a robot can operate for long

durations, it should also be able to continually learn [1138] to adapt and improve

over time. Finally, both of these directions will need some form of memory man-

agement to decide which information to retain, how to summarize or marginalize,

and when and what to forget.

Deformable SLAM. The research on SLAM in deformable environments is

still at its earlier stage. There are still many open research questions [499]. For

example, under what conditions is it possible to accurately estimate both the camera

trajectory and the deformation of the map? Can we clearly distinguish the rigid

motion of the deformable object and the rigid motion of the camera? Can we provide

accurate estimates of the uncertainties of the deformable SLAM results? Are there

local minima in deformable SLAM? How can we know whether the obtained result

is the global minimum or not?

Towards Spatio-Temporal AI. Beyond SLAM in dynamic and deformable

scenes, spatio-temporal AI aims to build a holistic scene understanding that goes

beyond localization and reconstruction, but captures and learns temporal patterns.

Ideally, such a map or ‘world model’ will combine semantic priors and observations

from the robot to provide a profound and mechanistic understanding of a scene and

its dynamics. This will allow estimating a consistent and complete history of the

past, predicting future outcomes, and facilitate high-level and long-term reasoning

and decision making.



16

Metric-Semantic SLAM
Arash Asgharivaskasi, Kevin Doherty, Jens Behley, Nathan Hughes, Yun Chang,

John Leonard, Henrik I. Christensen, Luca Carlone, and Nikolay Atanasov

This chapter discusses how geometric map representations produced by SLAM

methods can be augmented into more semantically rich representations to enable

a broader set of downstream tasks, while also enhancing the SLAM performance

SLAM plays a critical role in mobile robot autonomy, by enabling robots to localize

themselves and maintain a consistent map representation of a priori unknown envi-

ronments. As we discussed in Chapter I, another equally important role of SLAM is

to support robot task and motion planning by providing information about task and

motion goals and constraints. Dense map representations (as the ones we reviewed

in Chapter 5) offer efficient ways to encode safety constraints for collision check-

ing in robot navigation and manipulation applications. Examples include motion

planning and trajectory optimization supported by occupancy [100, 176], signed

distance function [828, 1272], and mesh [895, 118] representations. However, as

one considers encoding more complex robot tasks, including semantic goals and

requirements (e.g., “navigate to the laptop in the office” or “avoid entering the

meeting room if there are people inside”), geometric information about the envir-

onment alone may be insufficient. In the context of robot navigation, information

about the semantics of the environment, e.g., whether a portion of the map is a

road, sidewalk, or vegetation, can be utilized to specify different traversability costs

[917, 672]. More generally, map representations generated by SLAM techniques can

support robot task specification and planning by providing semantic information

about objects, places, and their relations. Such information is not only useful for

downstream tasks, but is often useful for the SLAM system itself: semantically

meaningful features are more uniquely identifiable and viewpoint invariant, leading

to improvements in data association and loop closure [114, 718]. Similarly, semantic

information can help handle dynamic entities in the scene [948], which are typically

less informative for motion estimation.

Being able to construct semantically rich map representations requires extracting

additional information from the visual observations beyond image-gradient-based

keypoints. Advances in deep learning allow obtaining object detections, object key-

points, semantic edges, semantic segmentation, instance segmentation, panoptic

segmentation, or other semantic information from the visual observations. Object



446 Metric-Semantic SLAM

detection is a computer vision task that identifies and localizes objects within the

images, typically via bounding box annotations. Semantic keypoints [860] or seman-

tic edges [1252] can be identified as mid-level parts of objects (e.g., doors, wheels,

windshield of a car). Semantic segmentation [452, 939] goes beyond object detection

by assigning a class label to every pixel in an image. Instance segmentation also

identifies and separates individual objects, even if they belong to the same category,

by creating pixel-by-pixel masks around each object instance. Panoptic segmenta-

tion [588] combines semantic and instance segmentation to achieve a comprehensive

understanding of an image. This chapter describes different extensions of traditional

SLAM to utilize semantic information from the visual front-end and to generalize

the map optimized by the back-end to accumulate and fuse this information in 3D

spatial metric-semantic representation. In particular, Section 16.2 discusses how

to augment landmark-based SLAM with information about the landmark seman-

tics, Section 16.3 describes extensions of the dense representations in Chapter 5 to

incorporate semantic information, and Section 16.4 discusses hierarchical map rep-

resentations, that capture semantics at different levels of abstraction. As usual, we

close the chapter with a discussion about recent trends in Section 16.5. We remark

that this chapter focuses on “closed-set” semantics, i.e., the case where semantic

information is restricted to a relatively small (e.g., 100-1000 labels) and prede-

fined dictionary of semantic concepts (e.g., “chair”, “table”, “office”). We postpone

discussing how to incorporate open-set semantics (i.e., language embeddings) into

SLAM to Chapter 17.

16.1 From Traditional SLAM to Metric-Semantic SLAM

There are multiple ways to include semantic information in a map representation.

For instance, one can include sparse semantic information by adding semantics to

the landmarks in landmark-based maps, embed semantic labels in dense surface-

based maps, or even assign semantics to entire regions of free space (e.g., rooms in

indoors, or more general regions, such as a parking lot, in outdoors). In the case

of sparse maps, this involves a generalization of the usual 3D point landmarks to

represent objects with their categories, and possibly also include their poses and

shapes. The associated sensor measurement models also need to be extended from

low-level visual keypoints and features to high-level detections such as bounding

boxes [926], segmentation masks [452], or object parts [861]. This, in turn, leads

to novel formulations of probabilistic factors and novel factor-graph optimization

techniques that capture both metric and semantic information. In the case of dense

maps, semantic information can be captured by extending occupancy models from

a binary representation of free and occupied space to a multi-class representation

of semantic categories. More generally, semantic features extracted by computer

vision models at the front-end can be grounded to points, surfels, mesh faces, or

voxels maintained in dense maps. Besides a transformation of semantic observa-



16.2 Sparse Metric-Semantic Representations 447

tions to 3D space, this requires the formulation of novel observation models for

semantic information and sequential probabilistic inference techniques for semantic

map information updates. As we will see in Section 16.4, hierarchical mapping ap-

proaches often combine sparse and dense metric-semantic maps into a single unified

representation, describing semantics at multiple levels of abstraction, from dense

surface-based maps, to objects and regions.

16.2 Sparse Metric-Semantic Representations

Consider a landmark-based SLAM problem in which the landmarks represent phys-

ical objects in the environment. We refer to this setting as sparse metric-semantic

SLAM because the map consists of object landmarks with metric properties, such as

position, orientation, and shape, and semantic properties, such as object category.

As discussed in Chapter I, landmark-based SLAM is often formulated as a nonlin-

ear least-squares problem, where the landmark observations induce squared terms

ri(xi)
2 in the objective function, and residual errors have the following form:

ri(xi) = ∥zi − hi(Ti, ℓi)∥Σi , (16.1)

with measurement zi and state variable xi = (Ti, ℓi) containing robot pose Ti

and landmark state ℓi. In visual SLAM (Chapter 7), the landmarks ℓi are most

commonly represented as 3D points, and the associated measurements zi are 2D

pixel coordinates of the landmark projection to the image plane. In sparse metric-

semantic SLAM, the landmarks are generalized to model objects and their prop-

erties. Measurements and residual errors are also generalized to model object de-

tections from computer vision algorithms and measure error with respect to pro-

jections of objects from 3D space to the 2D image plane. Object representations,

object measurements, and object residual error definitions are discussed next.

16.2.1 Object Representation and Factor Graph Modeling

We begin by extending the notion of landmark from a 3D point to a rigid-body

object. An object landmark is characterized by not only its position but also its

orientation, scale, shape, and semantic category.

Definition 16.1 An object landmark is a tuple ℓ = (σ, q, λ, s) including a semantic

category σ ∈ N (e.g., “car”, “chair”, “table”), pose q ∈ SE(3), scale λ ∈ R>0, and

shape s ∈ Rd.

The pose q of an object landmark ℓ specifies the position and orientation of the

object local coordinate frame with respect to the global coordinate frame of the

map. In addition to a rigid-body transformation, the definition of an object local

coordinate frame requires scaling to allow the presence of objects from the same



448 Metric-Semantic SLAM

category and shape but of different sizes (e.g., a car vs. a toy car). We present possi-

ble descriptions of object shape next and illustrate object landmark representations

in several examples. Similar to dense surface modeling in SLAM (Chapter 5), the

shape s of an object can be represented using an explicit surface model (e.g., points,

elementary geometric shapes, mesh) or an implicit surface model (e.g., occupancy

function, signed distance function field). We present commonly used object shape

representations in object SLAM below.

16.2.1.1 Object Shape Representation as Semantic Landmarks

The shape of an object from a given category (Definition 16.1) can be modeled as

a collection {sj}j of sparse 3D points sj ∈ R3 called semantic landmarks. While

this shape model may be viewed simply as a point cloud, it is necessary for SLAM

backend optimization to relate the 3D semantic landmarks to 2D visual observations

and measure residual error. Instead of a generic point cloud, the semantic landmarks

s are defined as keypoints located in a 3D Computer Aided Design (CAD) object

model using a deformable (or active) shape model [239]:

sj = bj,0 +
∑

k

ckbj,k, (16.2)

where bj,0 are semantic landmarks from an average category-level shape model and

bj,k are several modes of shape variability obtained by PCA with associated shape

deformation coefficients ck ∈ R≥0 as described in [861]. For example, the average

shape of a car object may be represented by semantic landmarks bj,0 but, to allow

shape variations in car instances of different makes and models, we allow shape

deformation along the principal modes of variability bj,k with coefficients ck. Hence,

the shape of an observed object landmark may be estimated by optimizing {sj}j
directly or by optimizing the shape deformation coefficients ck [1012]. Contrary to

optimizing independent points, the parametrization (16.2) enforces the semantic

landmarks to describe plausible objects shapes.

We refer to the projection of a semantic landmark sj to the image plane of a cam-

era sensor as a semantic keypoint zj ∈ R2. Semantic keypoints can be detected in

camera images using convolutional neural network models trained using supervised

learning to provide heatmaps consisting of 2D Gaussians centered at each keypoint

[861, 1295]. This is illustrated in Fig. 16.1.

The residual error between an object landmark ℓi, with pose qi, scale λi, and

semantic landmark shape {si,j}j , and corresponding semantic keypoint detections

{zi,j}j obtained from robot pose Ti is measured using the camera perspective pro-

jection model:

ri(xi)
2 =

∑

j

∥zi,j − π(q−1
i Ti, λisi,j)∥2Σi

, (16.3)

where π(T , sj) denotes perspective projection of 3D point sj to 2D pixel coordi-

nates in the image plane of a camera with pose T . Each semantic landmark si,j is



16.2 Sparse Metric-Semantic Representations 449

(a)

(b)

(c)

Figure 16.1 Semantic keypoints extracted from an RGB measurement. (a) An outdoor
environment with two cars and a robot equipped with a camera. (b) RGB measurement
in the camera frame. (c) Semantic keypoints detected in the RGB image.

first scaled by λi, then transformed from the object coordinate frame to the global

coordinate frame via qi, and finally to the camera coordinate frame via Ti. The

predicted pixel coordinates of the object semantic landmarks are compared to the

semantic keypoint detections zi,j by the residual error in (16.3).

An example of object SLAM using semantic landmarks as the object shape rep-

resentation applied to the real-world KITTI dataset [381] is shown in Fig. 16.2. The

approach is an extension of that in [114] to utilize multiple semantic landmarks per

object instead of just the object centroid.

16.2.1.2 Object Shape Representation as Quadric Surface

Another commonly used explicit model of object shape is based on quadric surfaces

[811, 827, 1001]. In this case, we model the shape of an object landmark as an

ellipsoid Es ⊂ R3 with semi-axis lengths s ∈ R3 defined as:

Es = {x ∈ R3 | x⊤diag (s)
−2
x ≤ 1}. (16.4)

An ellipsoid is an example of a quadric surface [811] defined by matrix Qs ∈ R4×4

obtained by rewriting the inequality in (16.4) in homogeneous coordinates:

Es =

{
x ∈ R3

∣∣
[
x

1

]⊤ [
diag (s)

−2
0

0⊤ −1

]

︸ ︷︷ ︸
Qs

[
x

1

]
≤ 0

}
. (16.5)

An ellipsoid representation of object shape is attractive because its projection to

the image of a camera can be obtained analytically and, in turn, can be compared

to bounding-box object detections using a residual error term (see illustration in

Fig. 16.3). The relationship between a 3D ellipsoid and its perspective projection

to a 2D conic can be obtained analytically using a dual quadric representation. The



450 Metric-Semantic SLAM

Figure 16.2 Object detections (top left blue bounding boxes), semantic keypoints (top
left green 2D points), and regular visual keypoints (top left red 2D points) extracted from
RGB images in the KITTI dataset [381] are used to estimate car semantic landmarks
(green 3D points, e.g., wheels, front lights), car poses (visualized as blue meshes), and the
sensor trajectory (black curve).

dual of an ellipsoid Es is the set of all hyperplanes tangent to it:

E∗s = {y ∈ R3 | y⊤diag (s)
2
y ≤ 1} =

{
y ∈ R3

∣∣
[
y

1

]⊤
Q∗

s

[
y

1

]
≤ 0

}
, (16.6)

where Q∗
s is the adjugate of Qs. For an ellipsoid, Qs is invertible and Q∗

s =

adj(Qs) = det(Qs)Q−1
s can be simplified to Q−1

s due to the scale invariance of

the dual quadric definition in (16.6).

Consider an object landmark ℓ with pose q, scale λ, and shape s describing a

quadric surface Qs. The object surface is scaled and transformed from the local

object coordinate frame to the global coordinate frame as follows:

Q∗
ℓ ∝ q

[
λI3 0

0⊤ 1

]
Q∗

s

[
λI3 0

0⊤ 1

]⊤
q⊤. (16.7)

The perspective projection of the dual quadric Q∗
ℓ from the global coordinate frame

to the image plane of a camera with pose T ∈ SE(3) is a dual conic C∗
z ∈ R3×3



16.2 Sparse Metric-Semantic Representations 451

Figure 16.3 Ellipsoid representation of detected objects. The 2D projection of the 3D
ellipsoids onto the robot camera frame is shown, in addition to the detection bounding
boxes.

defined by:

C∗
x ∝

1

β
PT−1Q∗

ℓT
−⊤P⊤, (16.8)

where P =
[
I3 0

]
∈ R3×4 is a projection matrix the drops the last coordinate

and β captures the depth scaling of the camera. The subscript x emphasizes that

C∗
x is determined by the state variable x = (T , ℓ), including both the camera pose

T and the object landmark ℓ.

An object bounding-box detection z =
[
u v w h

]⊤ ∈ R4 consists of the

normalized pixel coordinates (u, v) of the bottom-left bounding-box corner (after

application of the inverse camera intrinsics matrix) and the width and height (w, h)

of the bounding box. The dual conic representation of an axis-aligned ellipse fit

inside the bounding box z with center (cu, cv) = (u+ w/2, v + h/2) ∈ R2 is:

C∗
z ∝




1 0 cu
0 1 cv
0 0 1






(w/2)2 0 0

0 (h/2)2 0

0 0 −1






1 0 cu
0 1 cv
0 0 1



⊤

(16.9)

Thus, the residual error between an object landmark ℓi, with pose qi, scale λi,

and quadric shape Qsi
, and corresponding bounding box detection zj obtained

from camera pose Ti can be measured by the discrepancy between the conic C∗
zj

in (16.9) obtained from the bounding box and the conic C∗
xi

in (16.8) obtained by



452 Metric-Semantic SLAM

Figure 16.4 Localization and object mapping in an indoor scene with chairs and moni-
tors. Bounding-box and semantic-keypoint detections are shown in (a) and (b). The es-
timated sensor trajectory (red curve), geometric landmarks (black dots), semantic land-
marks (green dots), and object ellipsoids (blue for chairs, orange for monitors) obtained
by OrcVIO [1000] are shown in (c).

projecting the quadric shape to the image plane:

ri(xi) = ∥C∗
zj
−C∗

xi
∥Σi

, (16.10)

To avoid defining a matrix norm and exploit the fact that conics are defined by

symmetric matrices, we can vectorize C∗
zj
− 1

βi
PT−1

i Q∗
ℓi
T−⊤
i P⊤. In detail, define

bj = vech(C∗
zj

) as the half-vectorization of the symmetric matrix C∗
zj

and sim-

ilarly define v(Ti, ℓi) = vech(T−1
i Q∗

ℓi
T−⊤
i ). Let A = D(P ⊗ P )E, where ⊗ is

the Kronecker product and matrices D ∈ R6×9 and E ∈ R16×10 are such that

vech(Q) = D vec(Q) and vec(Q) = E vech(Q). Thus, we can rewrite the residual

error in (16.10) as:

ri(xi) = ∥bj − 1
βi
Av(Ti, ℓi)∥Σi

. (16.11)

The reader my refer to [957] for details and to [811, 827] for alternative residual

error formulations.

An example of object SLAM with the OrcVIO algorithm [1000], combining se-

mantic landmarks and ellipsoids as the object shape representation, applied to

real-world data is shown in Fig. 16.4.



16.2 Sparse Metric-Semantic Representations 453

16.2.1.3 Object Shape Representation as Mesh

A more expressive object shape representation can be obtained by using a triangular

mesh with vertices V = {sj}j with 3D coordinates sj ∈ R3 and faces F ⊂ V×V×V.

To estimate the parameters of an object landmark with mesh shape, we associate a

rendering of the mesh with a segmentation mask zi ⊂ R2 in a camera image obtained

from detecting and segmenting [452, 926, 1125] the object. This is illustrated in

Fig. 16.5.

To optimize the mesh shape of an object in SLAM, we need to define a differ-

entiable residual error. The key challenge is to project and rasterize the mesh in

the image plane using differentiable rendering. Given a mesh with vertices V and

faces F , a rasterization function, ρ(V,F), can be defined by projecting the mesh

vertices to the image plane and drawing only the front-most face at each pixel when

multiple faces are present [740]. Kato et al. [549] and Liu et al. [687] were among

the first works to obtain an approximate gradient for the rasterization function ρ

with respect to the mesh vertices. The reader is invited to refer to [550] for a survey

on differentiable rendering.

The residual error between an object landmark ℓi, with pose qi, scale λi, and

mesh shape (V,F) and corresponding segmentation mask zi obtained from robot

pose Ti is measured using the reciprocal of the intersection-over-union between the

mesh image-plane projection and the segmentation mask:

ri(xi) =
ρ({π(q−1

i Ti, λisi,j)}j ,F) ∪ zi
ρ({π(q−1

i Ti, λisi,j)}j ,F) ∩ zi
, (16.12)

where π(q−1
i Ti, λisi,j) is the perspective projection of the 3D mesh vertices si,j to

the image plane as in (16.3) and ρ is a differentiable mesh rasterization function.

Similar to the semantic landmark representation above, the mesh vertex coordinates

{sj}j can be optimized directly or indirectly by defining an average category-level

shape and optimizing the deformation coefficients of the principle components of

shape variability. Other residual error function ri such as the ℓ2 loss or the binary

cross entropy between the rendered object mask ρ({π(q−1
i Ti, λisi,j)}j ,F) and the

segmentation mask zi may be used [710].

Differentiable mesh rendering has been used for object SLAM in [331], for human

pose estimation in [862], and for robot pose estimation in [710]. An example of object

SLAM from [331] using meshes as the object shape representation applied to the

real-world KITTI dataset [381] is shown in Fig. 16.6. A similar example from [1159],

generating differentiable segmentation masks from a deformable shape model (16.2)

of a voxel grid storing signed distance values is shown in Fig. 16.7.

16.2.1.4 Implicit Object Shape Representations

The semantic landmarks, quadric surface, and mesh representations of object shape

discussed above are examples of explicit shape models because they represent the



454 Metric-Semantic SLAM

(a) (b)

Figure 16.5 Mesh representation of the shape of detected objects. (a) Bounding boxes and
segmentation masks of detected objects in the camera view, highlighted in blue. (b) Result
of minimizing the residual error between the segmentation masks and the projections of
the object meshes.

Figure 16.6 Qualitative results of 3D object mesh shape and pose estimation using differ-
entiable segmentation masks [331] on the KITTI odometry dataset [381]. The method takes
bounding boxes (green), segmentation masks (magenta) and semantic keypoints (multiple
colors) as input and optimizes object poses and mesh shapes using the intersection-over-
union residual in (16.12).

object surface geometry directly. Next, we discuss implicit shape representations,

which model an object as a spatial function and a particular level set of this function

represents the object’s surface. Widely used implicit shape representations include

occupancy functions [766], SDFs [853], and NeRFs [1273].

Consider an object landmark with shape represented as a set S ⊂ R3. The

occupancy function fS(x) of set S is a binary function indicating whether a point



16.2 Sparse Metric-Semantic Representations 455

Figure 16.7 Qualitative results of 3D object shape and pose estimation using differentiable
segmentation masks obtained from deformable signed distance shape model [1159] on the
KITTI Stereo 2015 benchmark [763]. The method takes a stereo image with segmentation
masks, initial object pose and learned object mean shape as input. The object is projected
to the images and the consistencies between the projections and the segmentation masks
are measured by silhouette alignment and photometric consistency residuals to optimize
the object pose and shape.

x ∈ R3 is inside S:

fS(x) =

{
−1 if x ∈ S,

1 if x /∈ S.
(16.13)

The signed distance function dS(x) of set S is a real-valued function measuring the

signed distance from a point x ∈ R3 to the boundary of S:

dS(x) =

{
− infy∈∂S ∥x− y∥ , if x ∈ S,

infy∈∂S ∥x− y∥ , if x /∈ S.
(16.14)

The SDF definition is illustrated in Fig. 16.8.

Given the definitions above, reconstructing an implicit model of object shape from

sensor measurements can be viewed as a regression problem to estimate the object’s

occupancy function fS(x) or SDF dS(x). We focus our discussion on estimating

SDF shape but a similar approach can be used to obtain occupancy models instead.

To approximate dS(x), we introduce a neural network dθ(x, s) with parameters θ

and latent feature vector s ∈ Rd (referred to as shape code) that captures the specific



456 Metric-Semantic SLAM

d = 0

d > 0

d < 0

SDF Extraction

Figure 16.8 SDF of an object landmark. By definition, the object surface is at zero dis-
tance, while the distances inside and outside of the object are negative and positive,
respectively.

shape of S. In other words, we can think of dθ as a neural network decoder that

estimates the signed distance from a query point x to the surface of an object with

shape code s. Varying s allows us to consider variations of object shapes with the

same neural network decoder, which is useful for category-level shape representation

[853, 1002].

To estimate the SDF an object landmark ℓi, we consider a distance sensor, such

as LiDAR or depth camera, that provides data {yi,j , zi,j}j from robot pose Ti

consisting of point measurements yi,j near the surface of object ℓi and distance

measurements zi,j to the object surface. Then, the residual error between an ob-

ject landmark ℓi, with pose qi, scale λi, and shape code si, and corresponding

observation {yi,j , zi,j}j from robot pose Ti can be measured by comparing the

SDF prediction to the measured distance:

ri(xi)
2 =

∑

j

∣∣zi,j − dθ
(
λ−1
i qiT

−1
i yi,j , si

)∣∣2
σi
, (16.15)

where λ−1
i qiT

−1
i yi,j transforms the point yi,j , first from the robot frame to the

global frame, then from the global frame to the object frame, and finally scales

it by λ−1
i to obtain a query point in the canonical object frame [1152]. Assuming

that the SDF decoder is already trained, the residual in (16.15) can be minimized

to simultaneously estimate the robot pose Ti and the pose qi, scale λi, and shape

code si of the object landmark ℓi.

SDF regression methods often introduce other residual terms, e.g., relating nor-

mals at the object surface to the gradient of dθ via an Eikonal equation [412] or

encouraging positive/negative values far away from the surface [840].

We distinguish between the training phase, where we optimize the parameters

θ of the SDF decoder of an object category using offline data, and the testing

phase, where we optimize the pose qi, scale λi, and shape code si of a previously

unseen object instance from a category with pretrained decoder using online data.

In training, one usually assumes that the sensor pose Ti and landmark pose qi and



16.2 Sparse Metric-Semantic Representations 457

Figure 16.9 Qualitative results of 3D object pose and implicit SDF shape reconstruction
on the ScanNet dataset [245] (scene 0087) using ELLIPSDF [1002]. The figure shows RGB
images from the scene (left), a ground-truth colored point cloud reconstruction (top right),
and reconstructed object meshes using SDF models decoded from the object shape codes
and optimized SIM(3) poses (bottom right).

scale λi are known, and the residual in (16.15) is minimized with respect to θ and

si. The decoder parameters θ are usually the same for a whole object category,

while the shape code si is optimized separately for each object instance. In testing,

one usually assumes that the decoder parameters θ are known, and the residual in

(16.15) is minimized with respect to the state xi, consisting of Ti and qi, λi, and

si.

An example of object SLAM with the ELLIPSDF algorithm [1002], using an im-

plicit representation of both coarse (ellipsoid) and fine (SDF) object shape, applied

to the real-world ScanNet dataset [245] is shown in Fig. 16.9.



458 Metric-Semantic SLAM

16.2.2 Hybrid Solvers for Sparse Metric-Semantic SLAM

The representation of object-based or sparse metric-semantic SLAM combines dis-

crete information in the form of semantic object classes with continuous informa-

tion, like the position, orientation, and shape of an object. Consequently, solving

metric-semantic SLAM problems often requires reasoning jointly about these states

which are often coupled in intricate ways. For example: the semantic class of an

object might inform us about the shape of that object (e.g., as in [999]) and vice

versa. Discrete variables enter the sparse metric-semantic SLAM problems in other

ways, too, such as in the case where objects of interest have some discrete sym-

metries [713]. When using a learning-based front-end system for object detection

and pose estimation, like a neural network, occasionally the front end will provide

multiple discrete pose hypotheses we would like to track (see, e.g. [352]). Crucially,

much like in the case of landmark-based SLAM with purely geometric features, data

association (see Chapter 3) is a key challenge when developing systems for sparse

metric-semantic SLAM.

The introduction of discrete states into the SLAM problem greatly increases its

practical difficulty. When formulated as an optimization problem, metric-semantic

SLAM in its most general form is nonlinear and nonconvex, just as in purely metric

SLAM, but also combinatorial, involving search over a state space whose size can

be exponentially large in the number of discrete states to be estimated.

Given a model of object detections and classifications as the output of a (noisy)

sensor, the problem of jointly estimating the latent semantic class and geometry

of landmarks in the environment can be posed in terms of MAP inference (cf.

Chapter 1):

X̂, L̂, D̂ = arg max
X,L,D

p(X,L,D | Z), (16.16)

where Z denotes the full set of measurements (including semantic measurements);

X the set of robot poses; L the set of environmental landmarks, which typically

consist of some geometric information (e.g., position, orientation, size, and shape)

coupled with a discrete semantic label from a known, fixed set of classes; and D

the set of associations between measurements in Z and landmarks in L. A key

observation is that discrete-valued categorical information about objects can be

naturally combined with the already discrete inference problem of data associa-

tion: the knowledge of an object’s category can help distinguish it in clutter from

other objects. This formulation unifies discrete models of semantic category, geo-

metric estimation, and data association; however, in addition to being nonconvex

and high-dimensional (as in the standard SLAM formulation), it now also involves

combinatorial optimization. Moreover, in committing to the use of semantics for

data association, one must cope with the errors of learned perception models.

In general, the MAP inference problem in (16.18) is computationally intractable

[600, Section 13.1.1]. Indeed, even the purely continuous estimation problems arising



16.2 Sparse Metric-Semantic Representations 459

in robot perception are typically NP-hard (see Chapter 6 for a broader discussion).

Despite this, smooth (local) optimization methods often perform quite well on such

problems, both in their computational efficiency (owing to the fact that gradient

computations are typically inexpensive) and quality of solutions when a good ini-

tialization can be supplied. However, even if we assume the ability to efficiently solve

continuous estimation problems, the introduction of discrete variables complicates

matters considerably: in the worst-case, solving for the joint MAP estimate glob-

ally requires that for each assignment to the discrete states we solve a continuous

optimization subproblem, and discrete state spaces grow exponentially in the num-

ber of discrete variables under consideration. Consequently, efficient approximate

solutions are needed.

It will be useful to consider the representation of eq. (16.16) in terms of its

factorization as a hybrid factor graph:

p(Θ, D | Z) ∝
∏

k

ϕk(Vk),

Vk ≜ {vi ∈ V | (ϕk, vi) ∈ E},
(16.17)

where we grouped continuous variables Θ and discrete variables D, and each factor

ϕk is in correspondence with either a measurement likelihood of the form p(zk | Vk)

or a prior p(Vk). In (16.17), Vk is the set of (continuous or discrete) variables

involved in factor ϕk. In particular, the posterior p(Θ, D | Z) can be decomposed

into factors ϕk of three possible types: discrete factors ϕk(Dk) where Dk ⊆ D,

continuous factors ϕk(Θk), Θk ⊆ Θ, and discrete-continuous factors ϕk(Θk, Dk).

In turn, the maximum a posteriori inference problem (from (16.16)) can be posed

as follows:

Θ∗, D∗ = arg max
Θ,D

p(Θ, D | Z)

= arg max
Θ,D

∏

k

ϕk(Vk)

= arg min
Θ,D

∑

k

− log ϕk(Vk)

︸ ︷︷ ︸
≜L(Θ,D)

.

(16.18)

That is to say, we can maximize the posterior probability p(Θ, D | Z) by minimizing

the negative log posterior, which in turn decomposes as a summation.

It is common to consider hybrid estimation problems that can be represented

in terms of nonlinear least-squares problems, which will allow the use of the tools

developed in Chapter 1, like iSAM2 [540], for the estimation of continuous states

of interest. In particular, we can consider discrete-continuous factors ϕk(Θk, Dk)

admitting a description as:

− log ϕk(Θk, Dk) = ∥rk(Θk, Dk)∥22,
Θk ⊆ Θ, Dk ⊆ D,

(16.19)



460 Metric-Semantic SLAM

where rk is typically nonlinear in Θ and first-order differentiable with respect to

Θ, and the equality may be up to a constant independent of Θ and D. Likewise,

we consider factors involving only continuous variables admitting an analogous

representation.

With this formulation, we can leverage the conditional independence structure

of the factor graph model to develop an efficient local inference method. First, note

that if we fix any assignment to the discrete states, the only variables remaining

are continuous and approximate inference can be performed efficiently using smooth

optimization techniques. In this sense, if we happened to know the assignment to

the discrete variables, continuous optimization becomes “easy.” On the other hand,

if we fix an estimate for the continuous variables, we are left with an optimization

problem defined over a discrete factor graph which can be solved to global opti-

mality using max-product variable elimination. The latter still requires exploration

of exponentially many discrete states in the worst case, but also opens the door to

well-established heuristics to compute approximate estimates.

In particular, consider a partition of the discrete states into mutually exclusive

subsets Dj ⊆ D which are conditionally independent given the continuous states:

p(D | Θ, Z) ∝
∏

j

p(Dj | Θ, Z). (16.20)

It is straightforward to verify from the mutual exclusivity of each set Dj that the

problem of optimizing the conditional in (16.20) then breaks up into subproblems

involving each Dj :

max
D

p(D | Θ, Z) ∝
∏

j

[
max
Dj

p(Dj | Θ, Z)

]
. (16.21)

Critically, we have exchanged computation of the maximum of the product with

the product of each maximum computed independently. In cases where the discrete

states decompose into particularly small subsets (|Dj | ≪ |D|), inference may be

carried out efficiently.

Many hybrid optimization problems in robotics admit factorizations of the form

in (16.20). For example, point-cloud registration (with discrete data association

variables), robust pose-graph optimization (with switch variables for outlier re-

jection), and metric-semantic SLAM (with data association variables and discrete

object classes) can all be formulated in a way that admits this relatively “friendly”

decomposition (see, e.g. [284, 626]).

We can make use of this idea in a few ways. For example, DC-SAM [284] makes

use of alternating minimization by first, fixing an initial iterate Θ(i). Then, DC-

SAM attempts to solve the following subproblems:

D(i+1) = arg min
D

L(Θ(i), D) (16.22a)



16.2 Sparse Metric-Semantic Representations 461

Θ(i+1) = arg min
Θ

L(Θ, D(i+1)). (16.22b)

We may then repeat (16.22a) and (16.22b) until the relative decrease in L(Θ, D)

is sufficiently small or we have reached a maximum desired number of iterations.

In practice, each subproblem need not be solved to optimality. Rather, the usual

techniques for optimization are used for the continuous subproblem in eq. (16.22b).

Moreover, it is possible to generalize this two-stage block coordinate descent strat-

egy by taking steps with respect to smaller groups of variables, trading off the

per-step complexity with the number of optimization steps taken.

Bowman et al. [114] adopted a similar strategy for sparse metric-semantic SLAM.

They performed joint optimization via expectation maximization (EM): First, we

fix the robot poses and landmark locations to compute data association probabilities

and landmark classes (the E-step). Next, we fix the data association probabilities

and landmark classes and optimize the robot poses and landmark locations, with

measurements weighted by the respective probabilities of their landmark correspon-

dence (the M-step). This approach assigns “soft” associations to objects, gradually

converging to a locally optimal solution of (16.16). It has also been shown that

the probabilities in the E-step can be exactly recovered using a matrix permanent

computation. By approximating the matrix permanent, we can in turn approximate

the data association probabilities needed in the M-step more efficiently [47].

Multi-hypothesis methods aim to solve the optimization in eq. (16.18) by explic-

itly searching over possible assignments to the discrete states in D. Since the size

of the search space is exponentially large in the number of discrete states, these

methods use heuristics to prune the search space in order to remain computation-

ally tractable. General approaches like MH-iSAM2 [487] and iMHS [526] have been

applied to hybrid estimation problems like robust pose-graph optimization and con-

tact estimation for legged robots, but have not yet been applied to sparse metric-

semantic SLAM. Bernreiter et al. [81] present a method tailored to metric-semantic

mapping and localization that makes use of a multi-hypothesis representation.

An alternative approach to the combinatorial inference problem of Equation

(16.16) is to reframe the optimization over discrete variables as one over only

continuous-valued variables. In early work to this end, Sünderhauf et al. [1066]

optimized probabilities of semantic labels, which are defined over the (K − 1)-

dimensional unit simplex for a K-class semantic labeling problem. This approach

is similar to the strategies used in Chapter 3 for outlier rejection, but with the

extension to multiple labels. Similarly, there are methods that attempt to approx-

imate the full posterior in (16.16) with all of the discrete states marginalized out,

resulting in a mixture. Since this posterior distribution is generally non-Gaussian,

approximation methods are used in practice (see, e.g., [345, 498] for non-Gaussian

solvers targeted toward SLAM applications, and [282, 48] for applications to metric-

semantic SLAM).



462 Metric-Semantic SLAM

16.3 Dense Metric-Semantic Representations

In this section, we discuss dense metric-semantic representations, which extend

the representations discussed in Chapter 5 to include semantic information. We

start with point and surfel map representations that utilize semantic information

in Section 16.3.1. Next, we discuss how voxel map representations, such as the

widely used OctoMap [486], can be extended to capture semantic information in

a probabilistically consistent way in Section 16.3.2. Finally, in Section 16.3.3, we

discuss mesh representations which can be less expensive to store and easier to

deform in response to loop closures in comparison to voxel maps.

16.3.1 Point-based and Surfel-based Metric-Semantic SLAM

In this section, we focus on metric-semantic point cloud and surfel map repre-

sentations. The availability of large-scale densely annotated LiDAR datasets [75,

143, 76, 338] made it possible to learn semantic segmentation [774] and panop-

tic segmentation [773] directly on point clouds. As such models provide point-

wise semantics and potentially also instance information, several LiDAR SLAM

approaches [192, 659, 529] exploited this semantic information directly to build

metric-semantic map representations. As we already mentioned earlier in this chap-

ter, capturing semantic information allows identifying dynamic objects and improv-

ing data association, either by exploiting semantics in finding correspondences for

odometry [659, 529] or building a semantic scene descriptor for loop closure detec-

tion [601, 529].

A key challenge addressed by these methods is how to perform spatial integra-

tion of the potentially conflicting per-frame semantic segmentation of LiDAR point

clouds into a unified map representation. To this end, one of the first LiDAR-based

dense SLAM approach that uses a semantic segmentation, called SuMa++ [192],

enriched the surfel-based representation with a per-surfel semantic classes and con-

fidence score of the surfel semantics. Using the semantic confidence together with

the measurement uncertainty, Chen et al. [192] update the surfel confidence score

such that conflicting semantic labels will lead to reduced surfel confidences. The

confidence of a surfel is ultimately used to filter out low-confidence surfels that are

either caused by measurement uncertainty or semantic uncertainty.

By integrating the semantics into the surfel-based map representation, the ap-

proach is able to account for conflicting semantic labels and equipped with this

capability, the semantic map representation can more effectively filter dynamic ob-

jects. Here, Chen et al. [192] showed that simply removing all potentially moving

objects just based on the semantics is inferior to an approach that accounts only

for conflicting semantic labels between the map and the current semantic interpre-

tation of the scene. Chen et al. [192] attribute this to the prevalence of vehicles in

urban environments, which also can be often used for pose estimation. Thus, re-



16.3 Dense Metric-Semantic Representations 463

Figure 16.10 Large-scale semantic map of Berlin covering 8000 km of roads, generated by
a fleet of vehicles using the method in [201] (left). Zoomed-in sections of the semantic map
show fine-grained 3D reconstruction details (right).

moving simply all potentially moving objects will also remove valuable information

from the map representation that could be used for ICP alignment.

Follow-up approaches, like SA-LOAM [659] and SELVO [529], integrate semantics

in the pose estimation by matching only semantically compatible features [1258],

but also exploit semantics in the process of determining loop closures [601].

Building on LOAM [1264], Li et al. [659] use a point-based representation to store

features for surface-like and corner-like structures in distinct semantic maps. For

loop closures, the approach of this work uses a semantic graph generated from a

point-wise semantic segmentation to match scenes using the semantics.

Similarly, the approach of Jiang et al. [529] also only accounts for correspondences

of matching semantic classes, but extend the well-known ScanContext descriptor

to account for the semantic in the matching process of scene descriptors.

An example of a large-scale semantically annotated point-cloud map obtained

using stereo camera images only is shown in Fig. 16.10. The approach [201] uses

dense 2D semantic labels from the stereo camera images and combines a direct

sparse visual odometry front-end with a global optimization back-end.

16.3.2 Voxel-based Metric-Semantic SLAM

Dense environment models utilizing voxels have been widely used as alternatives to

point cloud mapping [103, 1069, 1128, 355]. Let E denote the environment in which

a robot is navigating. As we have seen in Chapter 5, a voxel mapm is a partitioning

of E using a grid of non-overlapping cubes (i.e., voxels), where each voxel stores a set

of environment attributes, such as occupancy, temperature, etc., that are assumed

to be constant within the corresponding physical 3D space. This section discusses

how to augment voxel-based representations with semantic information, in addition

to occupancy or distance information.

The first step towards extending voxel-based representations to metric-semantic



464 Metric-Semantic SLAM

mapping is the inclusion of semantics into robot observations. Let the environment E
be divided into a collection of disjoint sets Ek ⊂ R3, each associated with a semantic

category k ∈ K := {0, . . . ,K}, with E0 denoting the free space and each Ek for k > 0

represents a different object class such as building, cars, and terrain. Consider

a robot equipped with a sensor that provides information about the distance to

and semantic categories of surrounding objects along a set of rays {ηb}, where b

is the ray index, ηb ⊂ R3 with ∥ηb∥ = rmax, and rmax is the maximum sensing

range. Note that {ηb} is just a collection of unit vectors that represent the rays

of sensor such as an RGBD camera or a LiDAR. We can associate a semantically

annotated point measurement with each ray by processing camera [772] or LiDAR

[774] measurements with a semantic segmentation algorithm. More concretely, for

a robot with orientation Rt ∈ SO(3) and position pt ∈ R3 at time t, a range-

category observation is defined as a collection Zt = {zt,b}b of range and category

measurements z := (rt,b, yt,b) ∈ R≥0×K along the sensor rays Rtηb +pt. Fig. 16.11

shows an example where each pixel in an RGB image corresponds to a ray ηb, while

its corresponding values in the semantic segmentation and range images are the

category yt,b and range rt,b, respectively. The goal of voxel-based metric-semantic

mapping is to incrementally construct a multi-class map m of the environment E
based on streaming range-category observations. The map m is modeled as a grid

of cells i ∈ I := {1, . . . , N}, each labeled with a category mi ∈ K.

Consider the PDF p(Zt|m,Rt,pt) that models noise in sensor observations.

This observation model allows integrating the measurements into a probabilistic

map representation using Bayesian updates. Let pt(m) := p(m|Z1:t,R1:t,p1:t) be

the probability mass function (PMF) of the map m given the robot trajectory

(R1:t,p1:t) and observations Z1:t up to time t. Given a new observation Zt+1 ob-

tained from robot pose (Rt+1,pt+1), the Bayesian update of the map is:

pt+1(m) ∝ p(Zt+1|m,Rt+1,pt+1)pt(m). (16.23)

For brevity, we omit the dependence of the map distribution and the observation

model on the robot pose throughout the rest of this analysis.

The work by Asgharivaskasi and Atanasov [44] presents an online voxel-based

semantic mapping technique by generalizing the log-odds occupancy mapping algo-

rithm [1092, Ch. 9] to multi-class maps. In particular, an explicit derivation for the

Bayesian update in (16.23) is obtained using a multinomial logit model to represent

the map PMF pt(m) where each cell mi of the map stores the probability of object

classes in K. To ensure linear model complexity with respect to the map size N , a

factorized PMF is maintained over the map cells:

pt(m) =
N∏

i=1

pt(mi).

The authors in [44] introduce semantic log-odds as a vector that represents the



16.3 Dense Metric-Semantic Representations 465

Semantic
Segmentation

+
Depth

RGB

Figure 16.11 Creation process of a range-category observation. The robot is equipped with
an RGB-D sensor, where the RGB part of the sensor measurement is fed to a semantic
segmentation algorithm. Given the camera intrinsics, the semantic segmentation and depth
images are combined to form a semantically-annotated 3D point cloud.

individual cell PMFs pt(mi) over the semantic categories K:

ht,i :=
[
log pt(mi=0)

pt(mi=0) . . . log pt(mi=K)
pt(mi=0)

]⊤
∈ RK+1,

where the free-class likelihood pt(mi = 0) is used as a pivot. Given the log-odds

vector ht,i, PMF of cellmi may be recovered using the softmax function σ : RK+1 7→
RK+1:

pt(mi = k) = σk+1(ht,i) :=
e⊤k+1 exp (ht,i)

1⊤ exp (ht,i)
,

where ek is the standard basis vector with kth element equal to 1 and 0 elsewhere,

1 is the vector with all elements equal to 1, and exp (·) is applied elementwise to

the vector ht,i. The Bayesian update in (16.23) for ht,i can then be obtained in

terms of the range-category observation model, evaluated at a new measurement

set Zt+1:

ht+1,i = ht,i +
∑

z∈Zt+1

li(z), (16.24)



466 Metric-Semantic SLAM

where li(z) is the observation model log-odds:

li(z) :=
[
log p(z|mi=0)

p(z|mi=0) . . . log p(z|mi=K)
p(z|mi=0)

]⊤
. (16.25)

To complete the Bayesian multi-class mapping equation in (16.24) we need a

particular observation model. When a sensor measurement is generated, the sensor

ray continues to travel until it hits an obstacle of category K − {0} or reaches the

maximum sensing range rmax. The labeled range measurement z = (r, y) obtained

from position p with orientation R indicates that map cell mi is occupied if the

measurement end point p + r
rmax

Rη lies in the cell. If mi lies along the sensor

ray but does not contain the end point, it is observed as free. Finally, if mi is not

intersected by the sensor ray, no information is provided about its occupancy. A

consistent observation model should hence reflect such properties in its definition,

either through maually tuning [44] or learning form data [1163]. For example, the

work in [44] parameterizes the observation model log-odds vector in (16.25) as a

piecewise constant function along the sensor ray:

li((r, y)) :=





ϕ+ +Ey+1ψ
+, r indicates mi is occupied,

ϕ−, r indicates mi is free,

0, otherwise,

(16.26)

where Ek := eke
⊤
k and ψ+,ϕ−,ϕ+ ∈ RK+1 are parameter vectors, whose first

elements are 0 to ensure that li(z) is a valid semantic log-odds vector. Fig. 16.12

illustrates the proposed Bayesian multi-class mapping method using the observation

model of (16.26).

It is important to note that utilizing a regular-grid discretization to represent E
has prohibitive storage and computation requirements. Large continuous portions of

many real environments are unoccupied, suggesting that adaptive discretization is

significantly more efficient. A popular method to improve the memory efficiency of

voxel maps is proposed by Hornung et al. [486], called octomap, in which the octree

data structure is utilized to combine voxels with equal occupancy probability. An

octree is a hierarchical data structure containing nodes that represent a section of

the physical environment. Each node has either 0 or 8 children, where the latter

corresponds to the 8 octants of the Euclidean 3D coordinate system. Thus, the

children of a parent node form an eight-way octant partition of the space associated

with the parent node. An octree node that does not have any children is called a

leaf node, which provides the highest-resolution visualization of an octree map.

In [44], the authors extend the probabilistic 3D mapping technique of octomap to

metric-semantic representations through introduction of multi-class octree. A multi-

class octree is a type of octree data structure where each node stores a categorical

probability distribution over the set of object classes K in the form of a semantic log-

odds vector hi,t. Fig. 16.13 shows an example of a multi-class octree data structure.

In order to register a new observation, a ray-casting procedure over an octree



16.3 Dense Metric-Semantic Representations 467

ht,1 ht,2 ht,3 ht,4

ht,1+ϕ
- ht,2+ϕ

- ht,3+ϕ
- ht,4+ϕ

++E3ψ
+

zt+1=(7, ‘red’) 8 mBayesian 
Update

Maximum
Likelihood

Maximum
Likelihood

Figure 16.12 Illustration of the Bayesian multi-class mapping using a range-category sen-
sor measurement, where the object classes are defined as K = {‘free’, ‘blue’, ‘red’}. The
top-left shows the semantic log-odds vector at time t for each map cell along an observation
ray, shown as the dotted red line. The top-left represents a maximum likelihood estimation
of the map at time t, based on semantic log-odds vector. The range-category observation
zt+1 contain a range measurement of 7 meters and classification of ‘red’ at the point of
incidence. The bottom row shows the updated semantic log-odds vectors alongside the
maximum likelihood category estimations for each cell at time t+ 1.

(e.g. [434] or [23]) is performed to find the observed leaf nodes. Then, for each ob-

served leaf node, if the observation demands an update, the leaf node is recursively

expanded to the smallest resolution and the semantic log-odds of the downstream

nodes are updated using (16.24). To obtain a compressed octree, it is necessary to

define a rule for information fusion from child nodes towards parent nodes. Depend-

ing on the application, different information fusion strategies may be implemented.

For example, a conservative strategy would assign the semantic log-odds of the child

node with the highest occupancy probability to the parent node. Alternatively, one

can simply assign the average semantic log-odds vector of the child nodes to their

parent node, which is equivalent to the Bayesian fusion of information in the original

probability space. The benefit of an octree representation is the ability to combine

similar cells (leaf nodes) into a large cell (inner node). This is called pruning the

octree. Every time after an observation is integrated to the map, the tree nodes are

checked in a bottom-up manner to identify pruning opportunities. If the children of

an inner node are all leaf nodes and have equal semantic log-odds, the children are

pruned and the inner node is converted into a leaf node with the same semantic log-

odds as its children. This helps to compress the majority of the free cells into a few

large cells, while the occupied cells usually do not undergo pruning since only their

surfaces are observed by the sensor and their inside remains an unexplored region.

Fig. 16.14 displays the update and pruning procedure for a multi-class octree.

Implementations of multi-class octree mapping, such as the one in [44], consider



468 Metric-Semantic SLAM

Equal Semantic Log-Odds Parent Node

Leaf Node

Semantic Octree 
Mapping

Octree
Data Structure

Figure 16.13 An instance of multi-class octree mapping. The top-left shows the environ-
ment in which a robot with range-category sensor performs mapping. The top-right shows
the resulting multi-class octree map, where each class is shown with a distinct color (free
class is transparent). The bottom depicts the octree data structure corresponding to a
section of the map. The circle and square nodes represent parent and leaf nodes, respec-
tively. Each leaf node either belongs to the smallest resolution of the octree, or contains
children with identical semantic log-odds vectors.

Affected 
Voxels

Environment at t
2

Environment at t
1

Map at t
1

Map at t
2

Change in
the Environment

Recursive Expansion Bayesian 
Update

Pruning
Corresponding 3D Space

Figure 16.14 Multi-class octree map update. A change in the environment between t = t1
and t = t2 triggers a map update. Through ray-casting, the voxels highlighted in cyan
need to be updated. For this aim, the corresponding nodes in the octree are recursively
expanded, and updated via (16.24). Simultaneously, pruning opportunities are found for
the children of each parent node. The pruning process leads to smaller, but physically
larger, octree nodes, shown as the cyan cube for the map at t = t2.

additional design choices in order to enable real-time performance. Foe example,

due to sensor noise, it is unlikely that cells belonging to the same class (e.g., free

or occupied by the same obstacle) attain identical semantic log-odds. Maximum



16.3 Dense Metric-Semantic Representations 469

Figure 16.15 Qualitative results from a real-world SLAM experiment in which two quadro-
tor robots construct a multi-class octree map using the ROAM algorithm [45]. RGB and
semantically segmented images from RGBD cameras onboard the two robots are shown
on the left and right. The middle plot shows the resulting multi-class octree map.

and minimum limits for the elements of the semantic log-odds are used so that

each cell arrives at a stable state as its semantic log-odds entries reach the limits.

Stable cells are more likely to share the same multi-class probability distribution,

consequently increasing the chance of octree pruning. However, thresholding causes

loss of information near pt(mi = k) = 1, k ∈ K which can be controlled by the

maximum and minimum limits. Furthermore, the space and computational com-

plexity of multi-class map updates increases linearly with respect to the number of

class labels K, while the probability of pruning reduces exponentially as K grows.

Hence, one may store the semantic log-odds for only the K̄ most likely class labels,

and lump the rest of the labels into a single others variable. This encourages more

frequent pruning and significantly reduces the computation complexity during map

updates in cases with many semantic categories.

Several robots can construct a multi-class octree map collaboratively. Riemannian

Optimization for Active Mapping (ROAM) [45] formulates an optimization problem

over a graph with node variables representing octree maps of different robots and a

consensus constraint requiring the robots to achieve agreement on their local maps.

ROAM is based on distributed Riemannian optimization relying only only on one-

hop communication to achieve consensus and optimality guarantees. An example of

multi-class octree mapping with the ROAM algorithm [1002] applied to real-world

data is shown in Fig. 16.15.

16.3.3 Mesh-based Metric-Semantic SLAM

While voxel-based maps provide an effective representation to probabilistically fuse

information over time, they have two downsides. First, they tend to be expensive

to store (an issue that can be partially mitigated using octree data structures).

Second, they cannot be easily edited in response to loop closures: loop closures entail

large deformations in the robot trajectory estimate and the corresponding map,



470 Metric-Semantic SLAM

and voxel-based maps are expensive to update in response to these deformations.

Updating dense volumetric representations typically involves de-integrating and re-

integrating previous observations, which is computationally expensive (e.g., [246]).

In this section we discuss mesh-based representations as a way to circumvent

both issues. Meshes are collections of polygons (typically triangles) and their stor-

age complexity scales with the complexity of the scene being represented. Rather

than being directly built from sensor data, it is fairly common to build a voxel-based

representation first, and then compute a mesh from it using standard algorithms

(e.g., marching cubes). Advanced approaches, such as [948], build on ideas used

in geometric SLAM [1180], and only build a voxel-based map in a spatial window

around the robot, while the voxel-based representation is incrementally converted

into a mesh as voxels leave this active window. More interestingly, the mesh repre-

sentation enables to efficiently deform the map in response to loop closures, hence

providing a more computationally effective way to correct the map compared to

voxel de-integration and re-integration. We now review how to deform mesh-based

representations, an approach called Pose-Graph and Mesh Optimization (PGMO)

[948].

PGMO builds on the notion of embedded deformation graph, which was first

introduced in the context of shape manipulation in computer graphics [1054]. The

deformation graph is a collection of control nodes, obtained by downsampling the

origin mesh. Each control node is attached a local coordinate frame and the overall

graph can be deformed by solving an optimization problem that enforces local

rigidity of the graph edges. Then, after solving this optimization that computes the

deformation of the control nodes, the rest of the mesh is interpolated back, using

the newly found control nodes’ configurations. We formalize the approach below.

For dense 3D metric-semantic SLAM, a deformation graph can be created from

the pose graph of robot poses and a downsampled version of the dense mesh. The

pose vertices of the deformation graph are defined as the nodes of the robot pose

graph with associated transformation Xi = [RX
i , t

X
i ], and are connected according

to the connectivity of the pose graph. The mesh vertices of the deformation graph

are defined as the vertices of the downsampled mesh with associated transformation

Mk = [RM
k , t

M
k ] for mesh vertex k, and are connected according to the edges of the

simplified mesh. A pose vertex i is connected to the mesh vertex k if the mesh vertex

k is visible to the sensor associated to pose i. Fig. 16.16 shows the components of

the deformation graph.

In the undeformed state, Xi is the unoptimized pose for node i, and RM
k = I3

and tMk = gk, where gk is the original world frame position of vertex k. Intuitively,

these transformations describe the local deformations on the mesh: RM
k is the local

rotation centered at vertex k while tMk −gk is the local translation. Once deformation

is triggered (e.g., loop closure detected), the deformation graph is optimized as



16.3 Dense Metric-Semantic Representations 471

Figure 16.16 PGMO deformation. (a) Un-deformed pose graph and mesh. (b) Creating
a deformation graph. Pose vertices are shown in red and mesh vertices are shown in
purple. The green edges are the edges describing the connectivity of the simplified mesh.
The yellow edges are the edges connecting the pose vertices to the mesh vertices based on
visibility from the sensor. (c) A loop closure triggers the pose graph and mesh optimization.
Xi and Mi are updated based on the optimization results and the dense mesh deformed.
(d) The resulting deformed mesh and pose graph.

follows,

arg min
X1,...,Xn∈SE(3)
M1,...,Mm∈SE(3)

∑

Zij

∥∥X−1
i Xj −Zij

∥∥2
Ωij

+
m∑

k=0

∑

l∈NM (k)

∥∥RM
k (gl − gk) + tMk − tMl

∥∥2
Ωkl

+
n∑

i=0

∑

l∈NM (i)

∥∥RX
i g̃il + tXi − tMl

∥∥2
Ωil

, (16.27)

where NM (i) indicates the neighboring mesh vertices to a vertex i in the deforma-

tion graph, gi denotes the non-deformed (initial) position of mesh or pose vertex i

in the deformation graph, and g̃il denotes the non-deformed position of vertex l in

the coordinate frame of the odometric pose of node i.



472 Metric-Semantic SLAM

Notice that the first term of (16.27) follows from generic pose graph optimization,

the second term is enforces local rigidity between mesh vertices by preserving the

edge connecting two mesh vertices, and the third term enforces the local rigidity

between a pose vertex i and a mesh vertex l. Note that ∥·∥2Ω indicates the (squared)

weighted Frobenius norm

∥X∥2Ω = tr
(
XTΩX

)
. (16.28)

Following [948], we can show (16.27) can be formulated as a pose graph optimiza-

tion problem. Defining R̃i as the initial rotation of pose vertex i in the deformation

graph, we can introduce Gij and Ḡij such that

Gij =

[
I3 gj − gi
0 1

]

Ḡij =

[
I3 R̃i

−1
(gj − gi)

0 1

]
. (16.29)

We then can rewrite (16.27) as

arg min
X1,...,Xn∈SE(3)
M1,...,Mm∈SE(3)

∑

Zij∈Z

∥∥X−1
i Xj −Zij

∥∥2
ΩZij

+

∑

Gij∈G

∥∥M−1
i Mj −Gij

∥∥2
ΩGij

+

∑

Ḡij∈Ḡ

∥∥X−1
i Mj − Ḡij

∥∥2
ΩḠij

, (16.30)

where Z is the set of all pose graph edges (the red and blue in Fig. 16.16), G is

the set edges from the simplified mesh (the green in Fig. 16.16), and Ḡ is the set of

all the edges connecting a pose vertex to a mesh vertex (the yellow in Fig. 16.16).

We only optimize over translation in the second and third term, and as such ΩGij

and ΩḠij
correspond to information matrices where the rotation part is set to

zero. Taking it one step further and observing that the terms are all based on the

edges in the deformation graph, we can define Ti as the transformation of pose or

mesh vertex i and Eij is the transformation that corresponds to an edge in the

deformation graph that is of the form Zij , Gij , Ḡij depending on the type of edge.

We are then left with the classic pose graph optimization problem,

arg min
T1,...,Tn+m∈SE(3)

∑

Eij

∥∥T−1
i Tj −Eij

∥∥2
Ωij

. (16.31)

After the optimization, the position of each mesh vertex is updated from the

affine transformations of the m nearest control nodes in the deformation graph as

ṽi =

m∑

j=1

wj(vi)[R
M
j (vi − gj) + tMj ], (16.32)



16.4 Hierarchical Metric-Semantic Representations and 3D Scene Graphs 473

where vi indicates the original position and ṽi the new deformed position of the

i-th mesh vertex. The weights wj assigned to each control node are defined as

wj(vi) =
w̄j(vi)∑m
k=1 w̄k(vi)

w̄j(vi) =

(
1− ∥vi − gj∥

dmax

)2

(16.33)

where dmax is the distance to furthest of the m control nodes from the mesh vertex.

16.4 Hierarchical Metric-Semantic Representations and 3D Scene

Graphs

Up to this point, we have discussed sparse representations in Section 16.2 and

dense representations in Section 16.3 for encoding semantic information into the

maps that our robots build. Both representations have different advantages; as an

example, sparse representations present a convenient interface for manipulating

objects while dense volumetric representations excel at encoding information about

free-space and traversability. This section presents hierarchical representations that

combine dense and sparse maps into a unified model. In particular, we first discuss

how choices of spatial representations and semantic categories impact the memory

required by a robot, then observe that organizing information hierarchically leads

to memory and computational savings, and then provide a more concrete example

of a metric-semantic hierarchical map representations, namely 3D scene graphs.

16.4.1 Hierarchical Representations and Symbol Grounding

So far, we have primarily considered semantic features that are closed-set semantic

categories provided by some learned model, based on an input camera image or

LiDAR scan. These features are groundings of symbols, representations of concepts

that have specific meanings for a human, in the robot’s sensor data.1 High-level

instructions issued by humans, such as “go and pick up the chair”, intrinsically

involve symbols. For the robot to correctly execute the instruction “go and pick up

the chair”, the robot needs to ground the symbol “chair” to the physical location it

is situated in. This problem of embedding symbols into a map is commonly known

as the symbol grounding problem [438].

In principle, we could design the perception system of our robot to ground sym-

bols directly in posed sensor data. For instance, a robot with a camera could map

image pixels to appropriate symbols (e.g., “chair”, “furniture”, “kitchen”, “apart-

ment”).2 However, grounding symbols directly into sensor data is not scalable as

1 e.g., the word “chair” is a symbol in the sense that as humans we understand what a chair is.
2 Dense 2D semantic segmentation networks are examples of this strategy.



474 Metric-Semantic SLAM

obstacle

chair

dining room 

apartment

building

obstacle

stove

kitchen

apartment

building

obstacle

fridge

kitchen

apartment

building

obstacle

toilet

bathroom

apartment

building

free space

bathroom

apartment

building

obstacle

bed

bedroom

apartment

building

obstacle

bed

bedroom

apartment

building

obstacle

chair

dining room 

obstacle

obstacle

kitchen

obstacle

bathroom

free space

bedroom

apartment

building

free space

obstacle

bed

obstacle

stove

fridge

toilet

dining room 
kitchen

bathroom bedroom

apartment

building

obstacle

chair

obstacle

obstacle

obstacle

free space
free space

obstacle

bed

obstacle

stove

fridge

toilet

Figure 16.17 Groundings of symbols of interest to various sub-symbolic representations.

sensor data (e.g., images) is collected at high rates and is relatively expensive to

store. This is neither convenient nor efficient when grounding symbols for long-

term operation. Instead, we need intermediate (or sub-symbolic) representations

that compress the raw sensor data into a more compact format, which can be used

to ground symbols. In this light, the previous sections of this chapter have been con-

cerned with choices of geometric (i.e., sub-symbolic) representations and algorithms

for grounding semantic information into these sub-symbolic representations.

Hierarchy and Memory. The most naive strategy for grounding symbols in

a sub-symbolic representation is to simply store whether or not a specific symbol

(out of the L symbols of interest in the scene) is present in any given voxel. This is

subtly different than the voxel-based semantic map discussed in Section 16.3 as we

may not be willing to make the assumption that symbols are disjoint, i.e., multiple

symbols may be grounded to a single voxel (e.g., we might say that a voxel belong

to a chair, but it is also part of a kitchen). At a resolution δ, such a voxel grid

representing a scene with volume V has a memory requirement of

m = O
(
L · V/δ3

)
. (16.34)

This is shown in the leftmost subfigure of Fig. 16.17: here we simply have a voxel-

based map, where each voxel can store up to L semantic attributes.

Often the symbols that we are interested in display some sort of hierarchy. For

indoor environments, we may be interested in the presence of objects and rooms

(among other categories of concepts such as floors). Instead of densely and redun-

dantly storing these symbols in every voxel, they can be rearranged according to

their hierarchy. Intuitively, we can organize the representation into a graph, where

a nodes can represent objects, rooms, or buildings, and edges represent inclusion:

the children nodes of a building are the rooms contained in that building, while

the children nodes of a room are the objects contained within. This is pictured in

the middle subfigure of Fig. 16.17. This hierarchical organization already reduces

memory requirement to

m = O
(
V/δ3 +Nobjects +Nrooms + · · ·+Nbuildings

)
. (16.35)



16.4 Hierarchical Metric-Semantic Representations and 3D Scene Graphs 475

Importantly, this memory compression is lossless; the original dense exhaustive

voxel grid representation can easily be recovered from the hierarchical representa-

tion [503].

As seen previously in this chapter, having a dense and high-resolution voxel grid

of an entire scene is often impractical. If instead of using standard voxel-based

representations, we use more memory-efficient sub-symbolic representations, such

as an octree, the memory requirement becomes

m = O (Nsub-sym +Nobjects +Nrooms + · · ·+Nbuildings) (16.36)

where Nsub-sym is often much smaller than V/δ3. This is often a “lossy” compres-

sion, and the original voxel-based sub-symbolic representation may not be perfectly

recoverable even if the symbolic portion of the representation is [503]. This is shown

in the rightmost subfigure of Fig. 16.17

Hierarchy and Inference. In addition to being memory efficient, the hierar-

chical representation that we have outlined can also have important computational

properties that make it more advantageous than a strictly “flat” representation. To

explore this, we first need to formalize the notion of hierarchical representation by

introducing the definition of hierarchical graph.

Definition 16.2 (Hierarchical Graph) A graph G ≜ (V, E) is said to be hierar-

chical if there exists a partition of the vertices V into l layers (i.e., V = ∪i∈1:l Vi)
satisfying the following properties

1 Single Parent. Given a child node v ∈ Vi and a parent node u ∈ Vi+1 that

share an edge (v, u) ∈ E , there is no other edge (v, u′) where u′ ∈ Vi+1.

2 Locality. Every interlayer edge must be between consecutive layers, or formally

no edge (u, v) ∈ E where u ∈ Vi and v ∈ Vj exists such that |i− j| > 1.

3 Disjoint Children. For every node u, v ∈ Vi+1, we have that the children C(u)

of u and C(v) v are disjoint, i.e., there is no edge connecting any of the children.

The set of children of a node s ∈ Vi+1 is defined as C(s) ≜ {t : t ∈ Vi∧ (s, t) ∈ E}.

Note that this definition uses an assumed ordering of the layers, where 1 is the

lowest layer and l is the highest. This definition implies that for any node v ∈ Vi
in the graph, the tree of descendants v is disjoint from the tree of descendants of

any other node in Vi. As shown by Hughes et al. [504], this property allows for the

existence of a hierarchical tree decomposition and a corresponding bound of the

treewidth of any hierarchical graph. The resulting bound is given by

max
v∈V

tw[G[C(v)]] + 1, (16.37)

where G[C(v)] is the subgraph of G formed by the children of v, and tw[G] is the

treewidth of the graph G.3 Treewidth is an important property that influences the

3 The bounds given in [504] have an extra term for the treewidth of the top layer l, but we assume a
Vl is comprised of a single node for simplicity.



476 Metric-Semantic SLAM

Figure 16.18 Example 3D scene graph produced by [504].

computational complexity of inference of the graph. The treewidth is a well-known

measure of complexity for many problems on graphs [99, 256, 328, 411]. In partic-

ular, while inference is NP-hard in general for inference on graphical models [238],

proving that a graph has small treewidth opens the door to efficient, polynomial-

time inference algorithms. The bound provided in (16.37) therefore allows for ef-

ficient inference over hierarchical graphs if the treewidth of descendant subgraphs

remains small; this appears to hold in practice for a broad class of hierarchical

graphs called 3D scene graphs [504].

We conclude this section by observing that while hierarchical representations

have recently attracted a large amount of attention, hierarchical maps have been

pervasive in robotics since its inception [620, 178, 1094]. Early work focused on

2D maps and investigated the use of hierarchical maps to resolve the divide be-

tween metric and topological representations [961, 363, 1261, 221, 72]. These works

preceded the “deep learning revolution” and could not leverage the rich semantics

currently accessible via deep neural networks.

16.4.2 3D Scene Graphs

The definition of a 3D scene graph varies slightly depending on the community of

interest. The concept of 3D scene graph as a hierarchical map representation was

first introduced by Armeni et al. [43] as a hierarchical representation of semantic

and spatial information, including objects and rooms. Kim et al. [585] independently

introduced 3D scene graphs as a graph of objects and their relationships, extending

2D scene graphs. Wald et al. [1145] constructed similar 3D scene graph of objects

and their relationships from dense scene reconstructions, eventually as part of a

online SLAM system [1195], adding an implicit hierarchy to [585]. Rosinol et al.

[948] proposed a 3D scene graph structure that also included dynamic entities (such

as humans) in addition to objects and a representation of free-space (referred to



16.4 Hierarchical Metric-Semantic Representations and 3D Scene Graphs 477

as places). Hughes et al. [504] constructed the first online system to produce fully

hierarchical scene graphs that included objects, places, and rooms; the proposed

system was able to correct the 3D scene graph to be globally consistent. An example

of a 3D scene graph produced by [504] is shown in Fig. 16.18.

Formally, we define a 3D scene graph as an graph G ≜ (V, E) where each node v ∈
V is associated with a corresponding node feature or properties xv and each edge e ∈
E is associated with a corresponding edge feature or properties xe. Every 3D scene

graph spatially grounds symbols, and as such, every node feature xv is assumed to

contain positional information.4 Often, it makes sense to treat the scene graph G
as a layered graph such that V is partitioned into l layers, i.e., V = ∪i∈1:l Vi, where

3D scene graphs of objects and their relationships such as [585, 1145, 1195] trivially

have at least one layer. Approaches frequently construct 3D scene graphs from dense

metric [1145, 1195] or metric-semantic [43, 948, 504] representations by clustering

or segmenting the representation to obtain objects, creating a sparse, compressed

grounding of object symbols that is often more computationally tractable to work

with than the underlying dense representation. Additional layers, such as the places

or rooms in [504], are sparse representations of the free-space.

Inter-layer edges (edges between nodes in different layers) are often used in con-

junction with room and place layers to encode spatial containment (e.g., an edge

between a room and a specific object denotes that the object is in the room),

which allows for the construction of hierarchical graphs matching and efficient in-

ference [504]. Edges may encode other spatial relationships such as on top of or

nearby (often between objects) [1195], but many 2D scene graph relationship cate-

gories (e.g., left of, behind) are view-dependent and are ambiguous in 3D contexts.

Often these relationships are directed (e.g., an edge encoding a relationship of on

top of between a book and a table has a different meaning depending on the direc-

tion of the edge).

Factor Graphs and 3D Scene Graphs. As we discussed in Section 16.3.3,

it is important to efficiently correct the map representation in response to loop

closures. Hughes et al. [504] propose an approach to jointly optimize the 3D scene

graph and the underlying dense representation that extends the PGMO approach

outlined in Section 16.3.3. In addition to the pose graph and mesh control points,

the layer of places is included in (16.27) and jointly optimized, providing a struc-

tural prior in addition to the factors between the mesh control nodes. The solution

to this optimization is then used to interpolate and refine the other layers rather

than reconstruct them from scratch. Other approaches such as [68] propose addi-

tional factors between the different layers of the 3D scene graph that allow them to

optimize the entire 3D scene graph to correct for drift without requiring additional

4 Different domains may make different modeling choices, i.e., for 3D scene graphs of indoor
environments positions in R3 make sense, whereas for 3D scene graphs targeted at autonomous
driving such as [405], global position coordinates may be more useful.



478 Metric-Semantic SLAM

refinement steps afterwards. This however means that the optimization problem

can no longer be formulated as a pose graph optimization problem.

16.5 New Trends

Frontiers of 3D Scene Graphs. 3D scene graphs have been adopted for plan-

ning [24, 912, 920], manipulation [527], map compression [172], prediction [401, 700],

loop closure detection [504], and localization [537], among other problems. At the

same time, there is a growing body of work extending this representations in several

directions. First, extending 3D scene graphs to unstructured and outdoor scenes is

still an active research area, since the layers in the scene graph are harder to define

and build in generic outdoor environments [80, 1042]. A related problem is that the

layers of the scene graph are typically hard-coded by a human user, while ideally we

would like for the robot to automatically reorganize its hierarchical representation

depending on the task it is assigned; early works focusing on more fluid task-driven

3D scene graphs include [731, 174]. A third direction consists in extending scene

graphs beyond closed-set semantics, by incorporating language (or language embed-

dings) into 3D scene graphs [1179, 415, 731, 174]; we will discuss open-set semantics

mapping approaches at length in the next chapter. A forth direction focuses on ex-

tending 3D scene graphs with additional semantics information, including motion,

dynamics, and affordances [1263]. Finally, while there are established ways to per-

form uncertainty quantification in traditional SLAM problems (cf. Chapter 6), per-

forming uncertainty quantification in hierarchical representations mixing discrete

and continuous variables is still a largely unexplored problem.

Multi-Modal Implicit Maps, Task Planning, and Action Models. An

emerging trend is to generalize metric-semantic mapping beyond geometric, pho-

tometric, and semantic representations by encoding features from large vision-

language models (VLMs). Recent approaches encode high-dimensional, language-

grounded features that enable robots to reason about object affordances and robot

tasks. Embedding language features, such as CLIP embeddings [906], allows to

locate objects using an open vocabulary and opens up potentially new avenues

of building robotic systems by lifting the closed-world assumption. In particular

equipping neural scene representation, such as NeRF and Gaussian Splatting, with

language embeddings attacted recently considerable interest [563]. For instance, On-

line Language Splatting [551] builds dense, language-aware scene representations in

real time by fusing CLIP features into Gaussian splats, enabling downstream query

and grounding tasks. We discuss many of these approaches in the next chapter.

Turning the information encoded in a semantic map into action [835, 625] is

another recent development that is also enabled by encoding semantics directly

into the map representation by using lanuage-grounded embeddings. ATLAS Nav-

igator [835] actively constructs spatial maps embedded with language features

to facilitate efficient navigation to object-centric goals described in natural lan-



16.5 New Trends 479

guage. M3 [1308] introduces a persistent 3D-spatial multimodal memory that stores

VLM-aligned features and supports retrieval-based reasoning for long-horizon tasks.

Moving beyond mapping, LUMOS [804] integrates world modeling with language-

conditioned imitation learning, allowing robots to simulate, imagine, and plan in

VLM-grounded latent spaces. Finally, GNFactor [1260] demonstrates how gener-

alizable neural feature fields can bridge multi-task robot learning with real-world

generalization by encoding rich perceptual priors that inform control. These works

illustrate a shift toward actionable representations, where spatial memory, language,

and multimodal perception are tightly coupled to support task planning and skill

execution.

However, often these maps are build as a post-processing step and an open chal-

lenge is to build such representations incrementally [551, 664], where aggregat-

ing ambiguous information from multiple varying viewpoints in a consistent and

instance-aware way remains a formidable research challenge. Also in this case, cou-

pling such representations with uncertainty seems like a potential way forward,

which would allow modeling ambiguities in a principled way.

Multi-Robot Semantic Understanding. While in this chapter we have mostly

focused on single-robot metric-semantic SLAM approaches, the recent literature has

also investigated extensions of these representations to multi-robot teams, where

multiple robots explore an unknown environment and have to build a unified metric-

semantic map representation. This setting is challenging since now the information

is collected in a distributed way (hence creating communication bottlenecks when

sharing data among robots). Moreover, the amount of collected data and the size of

the resulting problems become unmanageable by a single robot and either require

a powerful central server or a distributed solution where the workload is shared

across multiple robots. Finally, in multi-robot SLAM problems one no longer has a

reliable initial guess for the poses of all robots (intuitively, all robots might use a

different coordinate frame), hence creating additional challenge in terms of robust-

ness and outlier rejection (cf. Chapter 3 and Chapter 6). Kimera-Multi [1099] is the

first approach to distributed multi-robot metric-semantic SLAM, while [1096] pro-

vides a detailed experimental analysis discussing tradeoffs between centralized and

distributed SLAM approaches. Finally, recent work has extended 3D scene graph

construction to multi-robot teams [173, 333].



17

Towards Open-World Spatial AI
Liam Paull, Sacha Morin, Dominic Maggio, Martin Büchner, Cesar Cadena,

Abhinav Valada, and Luca Carlone

Previously we have seen many different types of potential map representations, in-

cluding sparse representations that tend to represent the world as graphical struc-

tures (Chapter 1), dense representations that store the detailed geometric informa-

tion about the 3D space (Chapter 5), as well as hierarchical representations, such

as 3D scene graphs, that attempt to flexibly balance these two extremes (Chapter

16). Furthermore, we have seen how these representations are created in a way that

is dependent on the input sensor modality. Examples include vision (Chapter 7)

LiDAR (Chapter 8), and Radar (Chapter 9), among others. However, the types of

information contained within those representations have been largely restricted to

geometrical (or possibly photometric, e.g., Chapter 14) properties of the environ-

ment.

In the previous chapter (Chapter 16), we have seen that modern SLAM systems

can move beyond mere geometry to encode semantics and thus enable some form

of Spatial AI, or reasoning in a more abstract and high-level way. This has the

potential to enable robots to perform more complex tasks that can be specified

at a more intuitive level. For example, goals can be specified in high-level natural

language as opposed to low-level geometric primitives. This is enabled by building

representations that contain more semantically meaningful information (such as

objects). These representations tend to be built by querying perceptual models that

are trained with deep learning. However, in Chapter 16, the models used to build

these representations were typically trained in a closed-set manner, meaning that

the dictionary of potential classes, object types, or concepts was pre-determined at

the time the perceptual model (e.g., object detector) was trained and is therefore

fixed and finite.

In recent years, we have seen the rise of “foundation models” that are trained on

massive datasets, and have shown the ability to learn “open-world” representations,

meaning that they potentially generalize to any class, object type, or concept that

one might encounter.

These open-world representations can be useful for incorporating semantic in-

formation inside of the SLAM map, as shown in Figure 17.1. In this chapter, we



17.1 Introduction 481

Figure 17.1 By embedding representations from multi-modal foundation models like
CLIP [906] into SLAM maps, we can interact and query them in new ways. In this exam-
ple, adapted from ConceptFusion[520], we have a 3D point cloud where points also store
embeddings from other types of encoders. For example, when we query the map with a
text query “A comfy place to sit and watch tv”, this text is passed through a text encoder
and then we can look for all of the points in the map whose representation is sufficiently
close (in terms of cosine distance) to the embedded query. The result is that we find all
of the chairs and couches. The same methodology can be applied to any modality for
which we have a multi-modal foundation model with aligned embedding spaces between
the modalities. More details in Section 17.3.

.

will explore in detail how foundation models can be leveraged within the context

of SLAM.

17.1 Introduction

17.1.1 A Brief History of Foundation Models

A foundation model is a machine learning model trained on a sufficiently vast

dataset that we may reasonably expect that it should generalize to a wide variety

of operating conditions. Training such models requires two key components: 1)

deep learning architectures that are able to efficiently update a very large number

of parameters, and 2) a very large (e.g., internet-scale) dataset to train the model.

The first model that may apply to this definition in computer vision (although

not typically referred to as a foundation model) is AlexNet [616], which was a

CNN model trained in a supervised fashion (meaning that the dataset contained



482 Towards Open-World Spatial AI

labels that were provided by human annotators) on the ImageNet database [268],

which comprises 3.2 million labeled images. One issue with training such large

models using traditional CNN architectures is that they suffer from the problem of

vanishing gradients, where gradients that have to pass through many layers become

very small and therefore training the parameters based on these gradients becomes

very inefficient.

This was initially addressed through the introduction of residual networks [450],

or ResNets, which introduce a direct pathway from one layer to the next, making

training more stable and efficient. Vision encoders based on ResNets, which were

pre-trained on ImageNet, formed the basis for the development of deep-learning-

based closed-vocabulary visual perception systems, such as object detection models

including YOLO [6], RCNN [392], and many others.

However, constructing a large manually labeled dataset such as ImageNet is an

arduous task. In the field of natural language processing (NLP), it was possible to

automate this process. This was demonstrated by Bidirectional encoder represen-

tations from transformers (BERT) [276], which uses a corpus of data to generate a

task with associated labels in an automated way as a method for learning meaning-

ful representations. In the case of text, this is done by simply removing a word from

a sentence and then trying to predict the missing word. The set of all sentences in

the English Wikipedia (∼2.5 billion words) and BookCorpus(∼800 million words)

were two of the first datasets used in this manner. This process is referred to as

unsupervised learning 1 since no human labels are needed.

BERT also showcased the benefits of a new type of model architecture called the

Transformer [1127], which was based on the concept of attention [50]. Attention

enabled the capturing of longer-term dependencies in input data. Concurrently with

BERT, the first Generative pre-trained transformer (GPT) model was released,

which was also based on the transformer and trained on the BookCorpus dataset

and showed similar capabilities.

While it was relatively intuitive to perform this type of unsupervised training

with language, it was not immediately clear how to extend this concept to higher-

dimensional inputs such as images. Words contain specific semantic meanings in a

way that random patches of an image may not. This problem began to be unlocked

through the development of contrastive learning-based approaches combined with

vision transformers [288].

In constrastive learning approaches, such as SimCLR[191], representations are

learned by augmenting the input image in some way (such as removing patches,

flipping it etc.) and then creating a loss function that pushes the original and

augmented image closer in representation space (positives), while pushing all other

1 It is fairly common in the literature to distinguish between self-supervised learning, where a label is
manually generated, and unsupervised learning, where there is no explicit label, but we make no
such distinction here and refer to all methods that do not require human annotations as
unsupervised.



17.1 Introduction 483

inputs or modified inputs away (negatives). Through this process, the hope is that

the representations that are learned are invariant to the data augmentation and are

therefore robust for downstream visual perception tasks (see Figure 17.2).

←−Representation−→

x

x̃i x̃j

hi hj

zi zj

t ∼ T
t
′ ∼ T

f(·) f(·)

g(·) g(·)

Maximize agreement

Figure 17.2 Reproduced from [191]. An input x is red through two different data augmen-
tation operators sampled (t ∼ T and t′ ∼ T ) and applied to each data example to obtain
two correlated views. These augmented inputs are then fed through an encoder network
f(·) to obtain a representation, and a projection head g(·), which is used for training
through a contrastive loss.

Concurrent with the development of contrastive learning was the porting of the

transformer to the visual domain [288], shown in Figure 17.3. By leveraging a

similar idea of “tokenization” of an image and multi-headed self-attention, the vision

transformer was applied to classification and shown to be competitive with state-

of-the-art supervised ResNet models on classification tasks.

Transformer Encoder

MLP 
Head

Vision Transformer  (ViT)

*

Linear Projection of Flattened Patches
*  Extra learnable

     [ c l ass]  embedding

1 2 3 4 5 6 7 8 90Patch + Position 
Embedding

Class
Bird
Ball
Car
...

Embedded 
Patches

Multi-Head 
Attention

Norm

MLP

Norm

+L x

+

Transformer  Encoder

Figure 17.3 Reproduced from [288]. The vision transformer splits an image is split an
image into fixed-size patches and linearly embeds each of them together with position
embeddings. The resulting sequence of vectors is fed as input to a standard Transformer
encoder. To perform classification, an extra learnable “classification token” is added to
the to the sequence.



484 Towards Open-World Spatial AI

The combination of these two approaches led to breakthroughs in unsupervised

visual representation learning. One canonical example was Deeper into neural net-

works (DINO) [160], which used a teacher-student distillation setup (instead of

contrastive learning) for unsupervised training of a vision transformer encoder, and

was remarkably impressive at learning visual representations.

Contrastive learning also enabled the alignment of representation spaces across

modalities. For example, contrastive language-image pre-training (CLIP) leverages

image-text pairs collected from the internet and uses a contrastive loss to push an

image and its associated text caption closer together in feature space, while pushing

all other examples away [906].

At this point, the majority of the theoretical tooling was present to enable feature-

based and generative foundation models (see Section 17.2 for further details about

this distinction). Further improvements to models, datasets, and workflows, com-

bined with ever-increasing computational capabilities, continue to improve the rep-

resentational capabilities of these models, showing impressive ability to generalize

to unseen tasks and settings. However, it is somewhat unclear whether this progress

will continue at the same rate in the future.

As we turn our focus to the ways in which these models can be useful in the

context of SLAM, it is important to keep in mind that the existence of truly mas-

sive, internet-scale datasets has been one of the key ingredients in the incredible

representational power of these models. As a result, several data modalities that are

commonly used in SLAM systems, and have been discussed in previous chapters,

such as LiDAR or Radar, among others, lack readily available data at this scale.

17.1.2 Nomenclature and Scope

We seek to make precise exactly what types of methods we consider to be in scope

for the remainder of this chapter. A first concept to make precise is exactly what we

mean by “open-world”, as this represents the key distinction between this chapter

and Chapter 16.

Open-World Queries. There are (at least) two ways that we could envisage

that this open-world concept could be applied in the context of SLAM. In the

first paradigm, we could consider using open-world variants of front-end perception

systems. Examples of such object detection systems include YOLO-World [202],

which is an open-vocabulary variant of YOLO [6], and OV-DETR [1259], which is an

open-vocabulary variant of the “Detection Transformer” (DETR) [152]. However, it

is important to emphasize that while these models do admit open-vocabulary text-

conditioned queries, this conditioning must happen at the time that the perception

model is queried, which in the case of SLAM is at the time of map construction.

Consequently, the resulting map should be considered to be closed-world since the



17.2 Foundation Models for Spatial AI 485

decision about which concepts should be represented is enforced at the time of map

creation.

A second paradigm typically embeds open-world representations into the SLAM

map in a way that enables open-world queries when the map is actually being used.

We will focus primarily on this second paradigm in Section 17.3.

Localization vs. Mapping vs. SLAM. Foundation model representations have

been used for visual place recognition (VPR) and localization/loop closure detec-

tion. For example, AnyLoc [555] studies which layers and features from DINO [160]

can be aggregated to derive image descriptors for VPR under spatial, temporal,

and viewpoint variation. While this is certainly an important line of work related

to SLAM, we will focus more directly in this chapter on the data structures and

algorithms that enable open-world querying and task specification in SLAM maps.

The vast majority of the methods that we will discuss in the remainder of the

chapter are actually pure mapping algorithms since they assume the availability of

posed camera frames (for example from some upstream SLAM system such as one

of the ones previously discussed). As such, in most cases, the problem reduces to

the question of how to embed foundation model representations into SLAM maps?

Chapter Outline. The remainder of the chapter is structured as follows: in Sec-

tion 17.2, we continue with a more detailed technical discussion of some of the

most influential and useful foundation models for open-world mapping; in Section

17.3 we present several examples of how these open-world foundation model repre-

sentations are being incorporated and embedded into SLAM maps to enable joint

geometric/semantic reasoning; and, finally, in Section 17.4, we look forward to what

might be next in this rapidly evolving field.

17.2 Foundation Models for Spatial AI

In this section, we will introduce three classes of foundation models helpul for

building open-world map representations. We first distinguish between feature-

based and generative foundation models. Feature-based foundation models such

as CLIP [906] extract real-valued vectors from text or images (i.e., features) and rely

on feature space computations to achieve tasks. In contrast, generative foundation

models can generate novel data given text and/or image prompts. The distinction

is not always clear-cut: some of the feature-based models we will introduce are

actually used as subcomponents in generative models, and conversely, features can

technically be extracted from generative models. However, differences in outputs

and typical use cases in the mapping context support the distinction. Generally

speaking, we also note that inference with generative models, while potentially more

powerful, tends to be more computationally expensive than extracting features. We

conclude this section with a brief overview of useful computer vision models for



486 Towards Open-World Spatial AI

class-agnostic image segmentation since these models are very widely used in

the various approaches that we will cover in Section 17.3.

17.2.1 Feature-Based Foundation Models

Features, also known as embeddings, representations, or codes, are real-valued vec-

tors resulting from the encoding of an input data point by a deep neural network.

We will only briefly mention network architectures and training objectives and sim-

ply denote different feature extractors as functions, leaving the reader to consult

works such as [400] for a proper overview of deep learning. For the purposes of

this chapter, we will consider that we have an encoder fx (typically a deep neural

network) that can be applied to an input x of modality x resulting in d-dimensional

features fx according to fx = fx(x) ∈ Rd.

The field of deep learning aims to learn such encoding functions with useful

properties. A key property for this chapter will be the ability to easily measure

meaningful similarities between data points. Distances in feature space will help

us answer queries such as “How similar are these two text excerpts?” or “How

similar is this text caption to this image?”

Research in self-supervised learning objectives and deep architectures has led to

the emergence of feature extractors that can act as a foundation for a wide range

of applications. Modern feature extractors are pre-trained on large internet-scale

NLP and computer vision datasets. While it is possible to fine-tune these models

for specific tasks or even use their features as inputs to downstream classifiers or

regressors, the mapping methods we consider in this chapter mostly use the features

“as is”. Here, we present a brief overview of some available text, vision, and multi-

modal feature extractors.

Natural Language. BERT [276] transformed the NLP landscape and introduced

bi-directional transformers pre-trained on a masked language modeling objective.

The resulting model achieves strong performance on a number of downstream NLP

tasks, with and without fine-tuning. While BERT provides features at the level of

tokens (i.e., substrings of the input), SentenceBERT [930] adds a pooling operation

and fine-tunes BERT to output sentence-level features that can efficiently be com-

pared with cosine similarities (the cosine of the angle between the two embeddings

treated as vectors originating from the origin). SentenceBERT model checkpoints

are available in a number of languages and have been fine-tuned for a variety of

NLP tasks.

Vision. DINO [160] trains vision transformers [288] with a self-supervised learn-

ing scheme involving a student network matching the predictions of a teacher net-

work. A key training ingredient is multi-crop augmentation: the teacher is exposed



17.2 Foundation Models for Spatial AI 487

to global views (> 50% of the image) while the student has to process both lo-

cal views (< 50% of the image) and global views of the same image, encourag-

ing “local-to-global” learning. DINOv2 [837] proposes various improvements to the

training procedure and introduces a curated dataset of 142M images. The result is

a powerful visual feature extractor with a strong holistic understanding of images.

DINO outputs image-level visual features that generalize zero-shot to downstream

tasks such as image classification or image retrieval. For example, distances in the

DINO feature space can serve as a foundation to build k-nearest neighbors classi-

fiers for specific supervised tasks. Even simple models such as logistic regression can

achieve strong performance in the image domain when trained on DINO features.

The transformer architecture underpinning DINO also allows for the prediction of

patch-level features (e.g., a feature vector for every 8x8 patch in the image).

Training additional models on these dense features can yield strong performance

on pixel-resolution downstream tasks such as semantic segmentation, depth esti-

mation, and surface normal estimation [837, 52]. Directly using distances in feature

space has also been explored for multi-view correspondence estimation [52].

Multimodal. A learned feature space can be a powerful tool to reason about sim-

ilarities between data points from the same modality. Different modality-specific

encoders can also map to a common aligned feature space to enable multimodal

capabilities. CLIP [906] is a notable example of this approach in the vision-language

setting, training an image encoder fimage and a text encoder ftext (Fig. 17.4).

Given an RGB image I and a text query T , CLIP extracts unit-norm features

fI = fimage(I) and fT = ftext(T ). This enables image-text comparisons using the

cosine similarity ⟨fI ,fT ⟩.
CLIP encoders are trained using a contrastive learning scheme on 400M image-

caption pairs collected from the internet, yielding features encoding a broad array

of visual and textual concepts out-of-the-box. CLIP features can be repurposed for

a variety of downstream tasks without any fine-tuning or retraining. For example,

we can construct a zero-shot image classifier by defining a set C of class labels

in text form, possibly using a template sentence (e.g., {a picture of a dog, a

picture of a cat }), and use CLIP similarities to predict a class for an image I

with

arg max
c∈C

⟨fI ,fc⟩. (17.1)

Reformulating a classifier for a new problem is simply a matter of specifying a new

class set through the definition of the text prompts, allowing transfer to a wide

array of tasks. The classifier in (17.1) can be extended to other modalities such as

sound [428], given an appropriate encoder.

Extracting dense patch-level image features from CLIP vision encoders is also

possible. However, one should not expect these features to be language-aligned,



488 Towards Open-World Spatial AI

and some studies have found them to be more limited for vision and 3D-related

tasks in comparison to models such as DINO [837, 52].

I1·T2 I1·T3 …

I2·T1 I2·T3 …

I3·T1 I3·T2 …

⋮ ⋮ ⋮

I1·T1

I2·T2

I3·T3

(1) Contrastive pre-training

Image
Encoder

Text
EncoderPepper	the

aussie	pup

Pepper	the
aussie	pup

Pepper	the
aussie	pup

Pepper	the
aussie	pup

T1 T2 T3 …

I1

I2

I3

⋮

(2) Create dataset classifier from label text

plane

car

dog

⋮

bird

A	photo	of
a	{object}.

⋮

Text
Encoder

T1 T2 T3 TN

…

(3) Use for zero-shot prediction

Image
Encoder

I1 I1·T2 I1·TNI1·T1

…

…

A	photo	of
	a	dog.

TN

IN·T1 IN·T2 IN·T3

I1·TN

I2·TN

I3·TN

⋮

…IN

…

⋮ ⋱

IN·TN

I1·T3

Figure 17.4 Figure reproduced from [906]. (1) CLIP learns image and text features with
contrastive learning. Image and caption features from the same image-caption pair are
incentivized to be close in feature space (positives, in blue) while image features and
features from other randomly sampled captions are pushed away (negatives, in white). We
note that the pre-training of CLIP does not rely on the definition of any particular class
set. (2) After training, class text labels (possibly in a template) can be encoded to define
a classifier. (3) The feature vector extracted from an image can be compared with class
features for zero-shot prediction.

17.2.2 Generative Foundation Models

Large language models (LLMs) are transformers trained for text generation, gen-

erally using self-supervised objectives. The models are typically large (i.e., many

learnable parameters) and trained on a massive text corpus, resulting in impressive

generalization. Here we outline key aspects of LLM training and inference and refer

the reader to [1127, 1117, 1108] for an in-depth treatment of transformers in the

NLP context.

The first step in language modeling is tokenization. Tokenization is the process of

segmenting the input text into tokens (e.g., words, subwords, characters, or bytes)

defined in a vocabulary. Each token is assigned to a unique integer value and has a

corresponding learnable embedding. LLMs will process text as a sequence of token

embeddings.

The specifics of LLM training are beyond the scope of this chapter, but the core

learning objective is next-token prediction. Given a context of T − 1 tokens

w1:T−1, LLMs learn to predict the probabilities p(wT |w1:T−1) of the next token. At

inference time, LLMs will accept an initial context of text instructions (a prompt)

and autoregressively generate text by predicting the next token, adding it to the

context, and repeating the process until some stopping condition is met.



17.3 Open-World Mapping 489

LLMs can, in principle, be used for any task where instructions, inputs, and

outputs can be specified in text form. Examples include interactive chatbots, code

generation, text summarization, or symbolic planning. Prompt design will signif-

icantly impact task performance and has driven research on prompt engineering

techniques such as chain-of-thought (prompting the model to think step-by-step)

and in-context learning (providing input-output examples in the prompt). Some

widely used LLMs include the LLaMa family of models [1108] and the GPT mod-

els [12]. Many others are available with newer, more powerful models being released

frequently.

There is great interest in extending the general abilities of LLMs to other modal-

ities, such as vision. Vision language models (VLMs) share most of the components

of LLMs in addition to accepting image tokens as part of their input. LLaVA [655]

achieves multimodal capabilities by connecting the CLIP vision encoder to an LLM

and training on vision and language data. Recent GPT models also support vision

inputs and outputs. Given an adequate prompt, VLMs can perform tasks such as

image classification, image captioning, and more general visual question answering.

17.2.3 Class-Agnostic Image Segmentation

Image segmentation is a key component in many mapping methods and will be

essential for reasoning about the semantics of specific image regions. We will be

interested in detecting a set of R segmentation masks {Zi ∈ {0, 1}H×W }Ri=0 repre-

senting the likely objects in an RGB image I of width W and height H. Critically,

we need the mask proposals to be class-agnostic to properly capture the breadth of

objects typically found in robot environments (and to exploit the open-vocabulary

nature of the foundation models that we just introduced). Throughout this chapter,

we will denote this function as Seg(·).
The main tool to implement this function is SAM [589, 918]. SAM is based on

large-scale supervised learning for class-agnostic image segmentation. The result is

a promptable segmentation model that takes as input pixel coordinates, a bounding

box, or even another segmentation mask and predicts a segmentation mask. SAM

can also automatically process a full image to generate a set of masks describing

different instances in the image. While SAM can be applied directly as a standalone

segmentation model, it can also process the bounding box detections from an open-

vocabulary object detector [688] to achieve better object definition and reduced

inference time.

17.3 Open-World Mapping

In Chapter 5, we saw how geometric quantities such as occupancy or distance

fields could be stored in maps, and Chapter 16 extended this to semantics, primar-

ily through the storage of additional class information. While certainly offering a



490 Towards Open-World Spatial AI

reasonable discrete approximation of scene semantics, the class framework faces a

number of limitations in practice. Chief among them is the closed-set assumption:

classical semantic maps require a priori knowledge of the vocabulary of classes we

wish the map to support. For example, any mapping system relying on image clas-

sifiers or object detectors inherently assumes that the world can be fully described

by the vocabulary of their perception front-end.

In practice, predefined object classes only offer a very coarse approximation of

reality. Consider the typical objects found in a toolbox. Most classifiers will lack

the vocabulary to fully describe the usual objects in our box. While “tool” might

be an acceptable general description for each object, more specific labels such as

“screwdriver” or “hammer” are certainly more desirable. Even then, we might be

interested in additional object properties such as the color of specific tool instances

(“red hammer”, “blue screwdriver”), their material (“metal”, “rubber”) and po-

tentially other physical properties (“hard”, “soft”, “hot”, “cold”) that are typically

lost if we assign a single class to a map element. Of particular interest to robots, we

might want to encode additional information on the typical uses and affordances

of a given object (“cutting”, “measuring”). In the case of objects with depictions

(“a painting of Ronaldo”), an ideal map would encode both the medium (“paint-

ing”) and the content, even in the case of a specific cultural reference (“Ronaldo”).

Meeting all these objectives with a predefined set of classes is an arduous task. A

vocabulary containing hundreds of classes may still fall short at some level, even

on common objects, and the issue is magnified for rare “long-tail” objects that

are unlikely to be included in the vocabulary in the first place. Other continuous

properties, such as the typical sound an object can make, are inherently hard to

represent with a discrete class label.

To remove the closed-set assumption and enable support for a broader range of

concepts, we can replace class labels in the map with some high-dimensional con-

tinuous features extracted by the foundation models we introduced in Section 17.2.

The large datasets used to train these feature extractors ensure that the features

can represent a vast, open set of objects, along with their associated properties.

While grounded features themselves are not directly usable, their multimodal align-

ment allows for comparison with queries expressed in different modalities, primarily

through natural language, and enable the ability to perform a number of tasks in

a zero-shot manner.

Throughout this section, the primary sensor of interest will be RGB-D, which

supports both RGB feature extraction using image-based foundation models and

pixel-level conversion to 3D representations like point clouds. We generally assume

a sequence of posed RGB-D frames in a static scene, therefore focusing on the

mapping problem as opposed to the full SLAM problem. We process each frame

sequentially to incrementally build our maps.



17.3 Open-World Mapping 491

17.3.1 Dense Representations

In this section, we study the three main components involved in building a dense

open-vocabulary map: 1) the choice of 3D representation, 2) the extraction of open-

vocabulary features from sensor data using foundation models, and finally 3) the

aggregation across frames and its spatial grounding of these features. Finally, we

will discuss the process of performing inference or querying the map.

Map Representation. Open-vocabulary mapping embeds semantic features from

foundation models into one of the dense spatial representations introduced in Chap-

ter 5. Without loss of generality, we will assume that a map representation is com-

prised of a set of map elements M ≜ {mk} where each map element mk ≜ {pk,fk}
is composed of a geometric component pk (voxel, point, etc.), and a semantic com-

ponent or feature vector fk.

The choice of representation is mainly driven by the downstream application:

navigation methods will favor cell-level feature aggregation in a 2D grid [492] while

a mobile manipulation pipeline may opt for voxel-grids [685]. ConceptFusion [520]

and OpenScenes [870] model space and semantics in a map with an unordered set of

3D points. Open-Fusion utilizes a volumetric representation with a TSDF [1209]. A

hybrid approach taken by VLMaps is to accumulate the information in a 3D point

cloud but then project it into a 2D grid map [492].

It should be emphasized that the geometric component of the map elements, pk,

is assumed to be provided by an upstream SLAM system, such as one of the ones

that we have seen in previous chapters.

Feature Extraction. We turn our attention now to the choice of which features to

embed in the 3D representation and how to obtain them. A common approach is to

extract intermediate semantic features from the RGB data of a given frame I using

a foundation model f , such as one of the ones described in Section 17.2.1. One issue

is that foundation models typically yield image-level features encoding information

on the whole collection of objects in the camera frustrum. While this larger context

is valuable, we are also interested in more fine-grained, local semantics to properly

describe the different parts of the image, potentially at a pixel-level resolution. But

there is a question of how to obtain these more fine-grained features.

One approach is to use a foundation model that directly outputs pixel-level [654]

or region-level [387] features. These models are trained by fine-tuning a foundation

model like CLIP on a segmentation dataset. OpenScenes and VLMaps directly ex-

tract CLIP features from the RGB images through LSeg [654]. Open-Fusion [1209]

adopts a different strategy by employing SEEM [1307] to directly extract region-

based features, aiming for better computational efficiency.

However, recent evidence suggests that these dense features do not capture as

many long-tail concepts as the original unaltered CLIP features [520]. An alterna-



492 Towards Open-World Spatial AI

tive approach taken in ConceptFusion aims to preserve the original CLIP features

and relies on feature arithmetic to construct pixel-level feature vectors. However,

this requires some heuristics to balance the need for local and global semantics

information.

The method balances the need for local and global semantics by computing:

• Global features fG by encoding the entire image with fG = f(I);

• Local features fL
i by processing all the masks R = Seg(I) inferred by a class-

agnostic segmentation method (such as SAM [589] see Section 17.2). Each mask

is converted to a bounding box to create tight image crop Ii. Applying f results

in mask-level features fL
i = f(Ii);

• Pixel-level mask features fP
i = wif

G + (1 − wi)f
L
i . The weights wi ∈ [0, 1]

for the linear combination are computed to emphasize local features that are i)

distinct from the global features and ii) unique when compared to the other local

features; and

• Pixel-level features fP
u,v by summing all the fL

i such that Zi[u, v] = 1 (i.e.

the pixel-level features of the masks covering the pixel) and unit-normalizing the

result.

Certainly, other methods of local and global feature merging could be possible,

and performing this merge in a more principled manner could be an interesting

avenue for future work.

In summary, assuming a pinhole camera model and pixel-feature correspon-

dences, we can follow the procedure introduced in Section 5.1 to generate an open-

vocabulary semantically-enhanced organized point-cloud observation. Each point

has a corresponding semantic feature vector calculated using one of the methods

above (i.e., either querying a pixel-resolution model or performing global/local fea-

ture merging). We refer to these as range-feature observations, analogous to the

range-category observations introduced in Chapter 16.

Feature Aggregation and Grounding. Given a choice of spatial representation

and a method for generating range-feature observations, the next component deals

with how the features from different RGB-D frames that correspond to the same

3D location get combined into one that annotates the corresponding map element.

A straightforward approach is adopted by VLmaps where the range-feature ob-

servations in 3D from all frames are averaged if they correspond to the same 2D

cell projection [492].

ConceptFusion [520] converts the range-feature observation to a global coordinate

frame, then, for every element mk in the map, all pixel-level features corresponding

to the point pk are weighted and averaged by the feature confidences. The features,



17.3 Open-World Mapping 493

fk and confidences, ck are updated using an averaging scheme:

fk ←
ckfk + αfP

u,v

ck + α
(17.2)

ck ← ck + α (17.3)

where α = e−γ2/2σ2

is the confidence assigned to each pixel-feature associated to

the point being aggregated, γ is the radial distance to the camera center, and σ

is a scaling term. Intuitively, α assigns higher confidence to features closer to the

camera center, similar to previous 3D reconstruction work [557].

Similarly, OpenScene [870] averages all the per-frame 2D features. However it also

distills them into 3D features. The fusion of averaged 2D features and the distilled

3D ones is carried out through an ensemble mechanism. Open-Fusion [1209] takes a

different approach and maintains in each occupied voxel only a key to a dictionary

of features. The decision on which key to assign to the voxel results from a temporal

feature matching.

Other works have investigated alternative feature aggregation or ensembling

strategies to i) avoid averaging high-dimensional feature vectors, and ii) increase

robustness to outlier feature vectors. For instance, accumulating a feature set Fk =

{fk,1, ...,fk,t} over time for all map elements and retaining the feature vector with

the lowest Euclidean distance to the other features in the buffer (the medoid vec-

tor) [870]. Clustering methods can reduce Fk to a few representative cluster cen-

troids [712] or make feature selection more robust by selecting the feature vector in

Fk that is closest to the centroid of a majority cluster [1179].

Inference. Once the features are grounded and aggregated in the map, they can

be used to perform various tasks by comparing them to other features extracted

from different modalities. For example, in the case of vision and language feature-

alignment, as is the case with CLIP, zero-shot semantic segmentation can be

achieved by encoding the textual class labels in a prompt list C. If the map contains

map elements mk with corresponding features fk, then point-level labels yk can be

predicted with

yk = arg max
C∈C

⟨fk,fC⟩ (17.4)

where fC is the feature representation obtained by encoding the prompt C with

the text encoder: fC = ftext(C). Note that this mirrors exactly the image classifier

discussed in Section 17.2. Critically, C does not need to be known when building

the map and can be redefined at will to predict different labels. The segmenta-

tion process for other map representations, such as grid maps and voxel maps, is

analogous.

However, the main use case of open-vocabulary maps is arguably querying.



494 Towards Open-World Spatial AI

Open-ended querying is achieved by encoding a query and comparing query features

with all map features. In the CLIP context, one can encode a free-form text query

T to extract the corresponding feature vector fT = ftext(T ) and score the points

in M based on the query similarities ⟨fk,fT ⟩.
The resulting similarities can be thresholded to return a set of relevant map

elements. The spatial coordinates of the returned elements can also be clustered

to identify different instances. Again, no prior knowledge of the queries is required

at map building time and the generality of the multi-model foundation model will

ensure that even the most specific queries can be reasonably answered.

While language is a natural way of specifying queries, any modality with an

aligned encoder can be used to extract query features. Query features can also be

retrieved through user interaction. As an example, in addition to text, ConceptFu-

sion explores a range of multimodal queries (see Figure 17.1):

• Click query is taken as the feature vector fk of a clicked point in a visualization

of M;

• Image query fI = fimage(Iquery) using the image encoder fimage on a query

image Iquery;

• Audio query fs = faudio(s) using the AudioCLIP [428] sound encoder faudio
on a sound clip s.

Zero-shot inference is more limited when using vision-only features (e.g., DINO

[160]). Such maps will still support image queries, local image queries (e.g., with im-

age clicks), and map click queries. Users can click on a few objects in some reference

images to achieve accurate segmentation of objects and parts in the map [752].

17.3.2 Object Maps and 3D Scene Graphs

While dense open-vocabulary maps can model semantics at a very granular level,

they scale poorly with the size of the environment due to the high dimensionality

of commonly used feature vectors. In our ConceptFusion example, we saw the value

of considering masks in images to extract local features. This strategy leverages

spatial correlations: nearby pixels in an image tend to belong to the same objects

and share the same semantics. This observation also applies to maps in general. We

expect nearby map elements (points, voxels) to generally share similar semantics,

which suggests that semantic features could be stored at the level of objects without

incurring a large loss of information.

In this section, we study the construction of open-vocabulary object maps and

3D scene graphs. Building on the maps introduced in Section 5.1, we model every

object in the scene with a geometric representation and only store one feature vector

per object, drastically reducing the memory footprint of the map. Object-centric

representations are also particularly well-suited for embodied AI applications since

they lend themselves more naturally to object retrieval queries and object-centric



17.3 Open-World Mapping 495

task planning. We first describe how to build an open-vocabulary object-centric map

using steps from OVIR-3D [712] and ConceptGraphs [415] as examples. We then

discuss different ways to model relationships between objects (object scene graphs)

and how to integrate objects in spatial hierarchies (hierarchical scene graphs) and

highlight HOV-SG [1179] as an example of such an approach.

Map Representation. We represent the map as a set of J objects VO = {oj}Jj=1.

Each object oj is characterized by a geometric representation and a feature vec-

tor. The geometric representation can range from sparse abstractions such as ob-

ject centers [184] and 3D bounding boxes to dense representations like 3D point

clouds [415, 1179, 1071]. For the examples in this section, we will describe each ob-

ject with a 3D point cloud Poj , a feature vector foj , and a detection count noj . We

incrementally build the map by processing incoming posed RGB-D frames, adding

or initializing objects as needed.

Feature Extraction. Object-centric maps typically rely on a class-agnostic seg-

mentation method (such as SAM [589]) to extract a set of masks R = Seg(I) from

the current image. We convert each mask to a bounding box, create the correspond-

ing image crop Ii and extract some mask-level features fM
i = f(Ii). This procedure

is identical to the extraction of local features in ConceptFusion.

Using the depth data, camera pose and camera intrinsics, we backproject the

pixels of every mask to 3D resulting in mask point clouds PM
i which are converted

to the map frame. Mask point clouds can also be denoised at this stage (e.g.,

with DBSCAN [319]). In tandem with the mask features, we obtain a mask-feature

observation {(PM
i ,f

M
i )}Ri=0.

Object Association. We now need to measure the similarity of our masks with

existing objects in VO. Methods will usually rely on some notion of geometric

and semantic similarities. Geometric similarity can be measured as the nearest

neighbor ratio ϕgeo(PM
i ,Poj ) ∈ [0, 1] defined as the proportion of points in point

cloud PM
i that have nearest neighbors in point cloud Poj , within a distance threshold

of δnn [415, 1179]. Semantic similarity can be measured using a function of feature

similarity such as ϕsim(fi,foj ) = ⟨fi,foj ⟩/2 + 1 ∈ [0, 1].

Geometric and semantic similarities can be combined in an overall score or thresh-

olded separately to identify potential mask-object matches. A greedy strategy [415]

can associate incoming masks to a single object in VO. Other more sophisticated

schemes allow one mask to be associated with multiple objects [712, 1179]. If a mask

has no match, its geometry and features can be used to initialize a new object in

VO.

Object Fusion and Feature Aggregation. In the event of a match between oj
and the ith mask, object oj needs to be updated. One approach is to combine point



496 Towards Open-World Spatial AI

clouds and average features:

foj ←
nojfoj + fi

noj + 1

Poj ← Poj ∪ PM
i

noj ← noj + 1

with Poj being subsequently downsampled to remove redundant points. The alter-

native feature aggregation strategies discussed for dense maps also apply here.

Open-vocabulary methods will also rely on additional processing steps to refine

object estimates. Methods may periodically (i.e., every few frames) run association

and fusion algorithms between the objects in VO to minimize the number of redun-

dant objects [415, 712]. It is also possible to remove objects with a low detection

count noj either periodically during mapping or after processing all frames.

3D Segmentation. An alternative to 2D image segmentation and mask associ-

ation would be to accumulate all frames in a global scene point cloud and then

directly perform object segmentation in 3D, using either a learned model [1071] or

geometric techniques such as region growing [547]. By reprojecting 3D object masks,

methods can identify representative images for each object and extract features ac-

cordingly. 3D segmentation approaches have the potential to be faster since they

avoid segmenting individual RGB frames and associating their segments. However,

they do not lend themselves naturally to incremental mapping since the full scene

point cloud is required.

Inference. The zero-shot segmentation and querying mechanics are very similar

to the dense open-vocabulary mapping scenario. For zero-shot segmentation, 3D

points inherit the predicted class label of the object to which they belong. Assuming

a point pk ∈ Poj belonging to an object with some CLIP-aligned object features

foj , the predicted point-level class label is defined as

yk = arg max
C∈C

⟨foj ,fC⟩

where C is a set of classes in text form and fC is the CLIP text feature vector of a

given class prompt. Objects and their similarities can also be adapted for instance

segmentation [1071].

Queries become significantly more useful as they can now be used for object

retrieval. Given some text query, T , its features fT , we can retrieve the most relevant

object in the object set VO:

o∗ = arg max
o∈VO

⟨fo,fT ⟩



17.3 Open-World Mapping 497

Object retrieval capabilities are extremely useful for language-driven goal specfi-

cation in the context of navigation and manipulation. For instance, a query such as

“Something to drink” will correlate strongly with the object features of a soda

can. The corresponding point cloud can be forwarded to a motion planning pipeline

to navigate to, inspect and potentially manipulate the soda can.

Language Descriptions. Language-aligned object features work best when com-

pared to the language features of short descriptive queries. They typically fail to

capture the nuances of more complex queries involving negation or affordance in-

formation. “Something to drink other than a soda can” will likely correlate

with a soda can features regardless of the query intent. Moreover, features are not

explicit and cannot be directly understood by human users or LLMs.

An alternative to object features is to directly use free-form language to describe

objects in the map. Language as an alternative representation of semantics is made

possible thanks to recent progress in developing VLMs that can reasonably describe

most objects. A simple way to extract object descriptions is to track the best image

crops of each object (e.g., by tracking the masks that contributed the most points

to an object) and pass them to a VLM along with a prompt such as “describe the

central object in the image”. Individual object views can be captioned before

obtaining on final summary per object using an LLM. Some VLMs also directly

accept multiple images as input. We note that some methods use both features and

language descriptions [415, 170].

Object captions are much more expressive than closed-set class labels and benefit

from the general object understanding of VLMs. For querying, an LLM can be

instructed to “search” for the most relevant object in the map given the list of

object captions and a user query. This LLM-based object retrieval strategy has been

found to address some of the limitations of feature-based object retrieval with more

complex object queries [415]. We note, however, that LLM captioning and inference

is typically much slower than feature-based alternatives. Alternative text-based

representations such as language tags have also been leveraged effectively [1270].

Object Scene Graphs. We can consider a more general map representation G =

(VO,EO) where the edge set EO explicitely models the pairwise relationship between

the different objects in VO, forming a 3D scene graph. Much like object semantics,

we aim to infer open-vocabulary edge descriptions either using language or features.

ConceptGraphs [415] relies on object captions and positions to infer spatial rela-

tionships such as “a on b” or “b in a” with an LLM and discusses the extension

of spatial edge types to other relationships a language model can interpret, such

as “a backpack may be stored in a closet” and “sheets of paper may be re-

cycled in a trash can”. Edge features can be derived by encoding images where

two objects are co-visible with a foundation model [596] and there is a growing

interest in learning relationships using graph neural networks [595, 597]. Querying



498 Towards Open-World Spatial AI

in the context of object scene graphs requires additional thought: OVSG [170] maps

contextual language queries to graph structures using LLMs and proposes a graph

matching approach to compare them with the scene graph [170].

Objects

Regions

Floors

Environment

Concept 
Feature

Object 
Caption

Concept 
Node

... ... ...
...

Object 
Relation

...

fo

fo
fo fo

fo

fo

fo

VLM
Prompting

Task Query

"Find the pillow in the 
living room upstairs."

qf

qo

qr

pillow
living room upstairs

Figure 17.5 Open-vocabulary 3D scene graphs including hierarchical environment par-
titioning [1179] (HOV-SG) and language-level object-object relations [415] (Concept-
Graphs).

Hierarchical Scene Graphs. Orthogonal to the object-object relations discussed

before, multiple works have investigated the partitioning of hierarchical scenes while

relying on open-vocabulary semantics [1179, 476, 1038]. Following the definition of

hierarchical graphs introduced in Section 16.4, the observed environment is sparsely

modeled as a graph G = (V,E) that is hierarchically partitioned into l ordered

concept layers. This yields a set of nodes V = ∪i∈1:l Vi, which can come in various

forms depending on the target environment. While HOV-SG [1179] separates indoor

environments into floors, regions, objects, and Voronoi nodes covering navigable free

space, Clio [731] models regions, places, and objects. Other works adapt to typical

urban outdoor environments that are decomposed into, e.g., roads, lanes, and static

or dynamic objects [1038, 271].

In the following, we discuss typical indoor scenes and follow the approach intro-

duced by HOV-SG. We assume the following map factorization employing pair-wise

disjoint sets of nodes and edges, respectively:

V = VE ∪ VF ∪ VR ∪ VO E = EEF ∪ EFR ∪ ERO, (17.5)

where VE represents a single root node and VF , VR, VO denote the floor, region, and



17.3 Open-World Mapping 499

object nodes. Thus, we extend the prior object factorization of ConceptGraphs [415]

to multiple conceptual layers. Accordingly, the set of edges EEF connects floors with

the root node, EFR floors with regions, and ERO regions with objects, respectively.

This layering enables hierarchical relation identification, smaller memory footprints,

and fast graph search. HOV-SG supports language grounding of all concepts, rang-

ing from floors to objects, by equipping each conceptual node with at least one

open-vocabulary concept feature that is attained using CLIP. This is visualized in

Fig. 17.5 and detailed in the following.

Similar to the setting of ConceptGraphs, HOV-SG performs incremental RGB-D

mapping and class-agnostic instance prediction while assuming access to accurate

camera poses. This produces a point cloud that is separated into multiple floors

based on binning observed points along the gravitationally-aligned height axis of

the scene and subsequent peak identification. In order to refer to the obtained floors

via language, each floor gets assigned a templated CLIP text feature of the form

“floor {X}” or “upstairs”.

Next, we derive region estimates that satisfy geometric constraints and exhibit

semantic coherence. Downstream tasks involving navigation require region primi-

tives that adhere to spatial continuity and structural boundaries represented by,

e.g., walls or doors [476]. In contrast, semantic higher-level reasoning policies favor

semantically consistent grounding of regions. A typical corner case of this is a com-

bined kitchen and living room area covering large extents but sharing a significant

number of semantically-distinct sub-regions. While HOV-SG employs a pure geo-

metric approach at region segmentation by thresholding Euclidean distance fields

per floor, others cluster navigational nodes obtained through a Generalized Voronoi

Diagram (GVD) given a task instruction [731], or harness doors as logical indicators

of region boundaries [476].

To enrich region concept nodes with open-vocabulary features, we obtain the

camera views of all camera poses falling into the interior set of a region segment,

respectively. For each assigned camera view, we obtain the corresponding image-

level CLIP embedding. In order to represent a distinct region, we distill the set

of camera views into K representatives {fr,k}Kk=1 using k-means clustering. We

identify region categories by scoring those representatives against a putative set of

candidate region categories CR that are encoded via CLIP, yielding {fR,c}|CR|
c=1 . A

typical set could include the following regions categories: {“kitchen”, “bathroom”,

“living room”, “corridor”}. We obtain category votes for each representative frk
through dot-product scoring:

c∗rk = arg max
c∈CR

⟨frk ,fR,c⟩, (17.6)

where c∗rk represents the highest-scoring region category per region representative

frk . By computing the majority vote among all representatives, a single region

category is identified.



500 Towards Open-World Spatial AI

Furthermore, HOV-SG demonstrates natural language-based navigation within

large-scale environments by hierarchically scoring against concept layers. Given a

complex text query such as “go to the plant in the living room on the first floor”,

a generative foundation model (GPT) decomposes the long query into multiple

distinct captions based on the concepts imposed during the mapping stage. In

turn, those concepts (“plant”, “living room”, “first floor”) are encoded to match

the CLIP feature space of the constructed scene graph. As depicted in Fig. 17.5, the

concepts are progressively scored against all hierarchical layers, going from higher

to lower concepts, e.g., floors to regions to objects. In the case of regions, this

procedure allows queries against a set of region representatives {fr,k}Kk=1 instead

of queries against a single text embedding denoting the region category, which

ultimately fosters robust region retrieval.

Pose Maps. While we adopted an object-centric perspective in this section, we

note that a number of related methods instead store open-vocabulary semantic

information at the level of camera poses or viewpoints [548, 1090, 1270]. This results

in sparse spatial representations that can be leveraged for room segmentation and

loop closure detections [548] and relocalization [1090]. Querying the map features

returns the most relevant viewpoints and can be used to specify navigation goals.

The semantic and spatial overlaps between different viewpoints can localize specific

object instances [1270], enabling object querying capabilities comparable to those

of explicit object maps.

17.3.3 Implicit Functions

In Chapter 14 we saw the use of radiance fields for creating photorealistic and geo-

metric map representations using Neural Radiance Field (NeRF) [770] and with 3D

Gaussian Splatting (3DGS) [560]. Numerous works have extended these to include

open-set semantics. In general, most of the NeRF-based methods are trained to add

language features to NeRF’s implicit radiance field map and methods using Gaus-

sian Splatting assign embeddings to the Gaussians which can then be rasterized to

the image plane. Since storing unique language embeddings to each Gaussian can

lead to high memory usage (CLIP’s ViT-L/14 model for example uses language

embeddings of size 768), it is common practice to either learn a compressed CLIP

embedding or group Gaussians and assign a single CLIP vector to the group. We

will look at LERF [563] and LangSplat [902] as examples of NeRF and 3DGS based

approaches, respectively.

LERF. LERF adds an output to NeRF for a semantic embedding given a point

x and a scale s, which is the width of a cube centered at x. View-dependency is

omitted to enforce consistent output at different viewing directions. The embedding

is rendered similarly to color in NeRF as covered in Chapter 14, with a frustum along



17.3 Open-World Mapping 501

each ray increasing proportionally from the initial scale simg in the image to define

the volume for rendering the semantic embedding, as shown in Fig. 17.6. During

training, to get CLIP embeddings for training supervision at multiple resolutions

per image, LERF precomputes CLIP embeddings at multiple randomly sampled

scales of image crops (i.e., multiple values for simg) for a given training image,

resulting in an image pyramid of semantic embeddings. During training, rays are

assigned ground truth embeddings at randomly selected scales in the pyramid for

supervision. To produce crisper semantics along boundaries of potential objects,

LERF uses supervision from DINO [160] embeddings. We will look at LERF [563]

and LangSplat [902] as examples of NeRF and 3DGS based approaches respectively.

Volume Render

x,y,z,θ,φ

scale

R,G,B
Density
DINO Features
CLIP Features

Network

Language
 Loss

LERF Rendering Multiscale CLIP Preprocessing

CLIP

Multiscale CLIP Features Training ImageImage Patches

s(t)

simg

Figure 17.6 Reproduced from [563]. LERF [563] trains a neural radiance field to render
CLIP features. To get supervised semantic embeddings at multiple resolutions to be used
during training, LERF precomputes a pyramid of embeddings by passing image crops at
multiple scales to CLIP.

When querying a rendered image for similarity to a text embedding ftext, LERF

computes a relevancy score to each language embedding frender in the image as

min
i

exp(⟨frender, ftext⟩)
exp(⟨frender, f icanonical⟩) + exp(⟨frender, ftext⟩)

, (17.7)

where f icanonical are embeddings from a set of canonical phrases such as “object”,

“things”, “stuff”, and “texture.” Using the canonical phrases is intended to help

denoise the relevancy score.

LangSplat. While LeRF computes CLIP vectors for multiple-sized image crops

across an image pyramid to get semantic embeddings at multiple resolutions, Lang-

Splat [902] computes CLIP vectors of class-agnostic image segments obtained from

SAM at three levels of granularity. Not only does this help capture local and global

context, but it also induces crispness into the map of language embeddings, which

makes it unnecessary to additionally use DINO supervision as in LERF.

Each 3D Gaussian is assigned an added attribute for each of the three levels of

language embeddings. As assigning CLIP vectors to each Gaussian greatly increases

memory requirements (LangSplat uses a CLIP model which has embeddings of size



502 Towards Open-World Spatial AI

512), LangSplat trains a scene-specific network that compresses CLIP vectors for

a particular scene from their original size of 512 to size 3, and trains a decoder

that recovers the original embedding. The intuition is that the semantic variation

of a typical scene is much smaller than that of CLIP’s training corpus, and thus a

smaller size embedding vector is sufficient. The 3D Gaussians then use compressed

embedding vectors at the three levels of granularity as training supervision. Seman-

tic rendering is performed as in the RGB case to splat the compressed embeddings

at the three granularity levels to the image plane, and is then upscaled to the full-

size embeddings. Querying is done using the same relevancy score as LERF, which

in the case of LangSplat returns three scores (one for each granularity level) and

the level with the highest score is selected when locating an object of interest.

17.3.4 Task-Driven Applications of Foundational Models

While open-set mapping can enable a broader range of concepts with richer de-

scriptions than closed-set mapping, it brings up an interesting question of how to

define objects. In the closed-set scenario, objects are defined by a list of labels such

as “tool” and “cup”. In the open-set scenario, there is ambiguity of what is the

correct granularity to define objects. For example, consider making an open-

set semantic map of a scene consisting of a piano in an otherwise empty room. One

possible map could have the piano as a single object. If the task of the agent using

the map is to move the piano, this would be an appropriate granularity. However, if

the agent’s task is to play the piano, the scene must be mapped as over 90 objects

— considering each key and pedal as a separate object. An agent tasked with tuning

the piano would need to consider the scene as hundreds of objects — considering

the strings, tuning pins, and so forth. Likewise, if a forest should be represented

as a single area of landscape or as branches, leaves, trunks, etc., remains ill-posed

until we specify the tasks that the representation has to support. Most practi-

tioners would agree that the correct scene representation depends on the tasks an

agent must complete [739, 1025], but until the recent availability of vision-language

foundation models, it has been unclear how to incorporate knowledge of tasks in

practice.

We have previously looked at examples of selecting objects for an object-set

map which typically assume objects can be defined by clustering regions based on

semantic or geometric similarity (see for example, ConceptGraphs in Sec. 17.3.2).

While this can approximate the correct object granularity for some scenes and

applications, to more generally ensure the correct open-set map representation is

generated, Clio [731] formally introduces the problem statement of task-driven

open-set mapping as follows: given a set of tasks in natural language such as

“clean backpacks” and “get condiment packets”, construct a map with objects at

the correct granularity to support the tasks.

Clio (Fig. 17.7) shows that the problem statement can be formalized mathemat-



17.3 Open-World Mapping 503

Figure 17.7 Reproduced from [731] (©2024 IEEE). Clio generates an open-set task-driven
3D scene graph given RGB-D images and a list of tasks in natural language. Clio clus-
ters object primitives (derived from associating image segments in 3D) into task-relevant
objects at the right granularity to support the task list. Likewise, the idea extends up
the scene hierarchy by clustering place primitives (representing regions of free space) into
task-relevant regions such as rooms.

ically using the classical Information Bottleneck theory [1102] where given a set of

overly-fine primitive observations X (for example, in an extremely fine sense this

could be the set all pixels observed from every visual observation), the objective is

to form a compressed scene representation X̃ (i.e., the task-relevant objects) that

preserves the necessary information needed to complete desired tasks Y .

Writing soft assignments in terms of probabilities p(x̃|x) (i.e., the probability that

a primitive x ∈ X is clustered into an object x̃ ∈ X̃), the task-driven clustering

problem can be written using the Information Bottleneck as

min
p(x̃|x)

I(X; X̃)− βI(X̃;Y ), (17.8)

where β is a parameter that controls the trade-off between compression and pre-

serving information about the tasks and I is the mutual information.

The Information Bottleneck requires defining p(y|x), which in the case of task-

driven mapping, describes the relevance between a primitive x and one of the given

tasks y. To make the problem more tractable, Clio defines X as being a set of

over-segmented 3D object primitives which are created by projecting class agnos-

tic image segments, Seg(I) to 3D meshes and tracking them throughout frames.

The primitives are assigned semantic embedding vectors by aggregating (through



504 Towards Open-World Spatial AI

averaging) CLIP embedding vectors computed for each segment associated to the

primitive. Clio then uses the cosine score between image and text embeddings to

inform an approximation of p(y|x).

The optimization problem (17.8) can be solved incrementally using the Agglom-

erative Information Bottleneck algorithm [1023], which defines a graph where nodes

correspond to primitives, and edges connect nearby primitives, and then gradually

clusters primitives together. This produces a hard clustering assignment p(x̃|x).

More in detail, each edge (i, j) is assigned a weight, dij which measures the amount

of distortion in information caused by merging primitive clusters x̃i and x̃j as:

dij = (p(x̃i) + p(x̃j)) ·DJS[p(y|x̃i), p(y|x̃j)], (17.9)

where p(x̃i) and p(x̃j) are computed by the algorithm (and intuitively store the

number of primitives merged in clusters i and j), and DJS is the Jensen-Shannon

divergence. At each iteration, edges are merged greedily based on their weight.

Clio extends the idea of task-driven mapping up the scene hierarchy by also

clustering 3D regions of free space (referred to as places primitives) in the scene

into task-relevant regions such as rooms, creating a hierarchical 3D scene graph

with layers of object primitives, objects, place primitives, and regions.

While the mathematical representation in (17.8) is a general way to frame the

task-driven mapping objective, in practice, solving it by approximating the infor-

mation between image and text (i.e., estimating p(y|x)) and determining how to

aggregate semantic knowledge across views are potential sources of error that can

lead to incorrect representations. These two issues, which are currently active areas

of research, are discussed and provided with a more probabilistically driven solution

in Bayesian Fields [730]. Bayesian Fields also uses a similar Agglomerative Infor-

mation Bottleneck method as Clio, but instead of coarse meshes, uses a Gaussian

Splatting map, where the task relevant objects, X, are groupings of 3D Gaussians

which form high-resolution, photorealistic objects.

The current examples of task-driven mapping we have discussed require that

the tasks be supplied in specific language such as “clean backpacks”, but looking

ahead, task-driven mapping can be more broadly thought of as robots on-the-fly

determining how to represent relevant information of a scene that will be required to

complete their broader mission objective such as keeping a home clean or monitoring

a factory.

17.4 Future Trends

In this section, we will try to project into the future, a difficult task given how

rapidly things are evolving in this space.



17.4 Future Trends 505

17.4.1 Grounding Foundation Models with Maps

We saw in Section 17.2 how LLMs can be prompted to achieve a wide array of tasks

conditioned on any textual information included in their prompts. Their rich prior

knowledge of the world and reasoning abilities hold great promise for spatial AI, and

there is significant interest in grounding LLMs in the physical world, potentially

to deploy them as agents. This gives rise to a natural question that may guide

research in this space in the coming years: how can we fully integrate LLMs and

map representations? Here we highlight two other ways in which foundation models

and map representations may become more integrated.

Map Prompting. Directly providing the map in text form to an LLM is some-

times possible. We previously saw an example of this approach with 3D scene

graphs. When objects and edges are described with natural language by a VLM,

a scene graph can be naturally represented as a structured text file (e.g., JSON or

YAML) and added to the prompt [415, 733]. Some sparse geometric descriptions

of objects (e.g., centroid position, size, bounding box coordinates) can, in prin-

ciple, be included but how well LLMs can effectively leverage this information is

unclear [733]. Such a modular system, where a VLM-based map is passed in text

form to an LLM, can be interpreted as a Socratic model [8], a modular framework

in which pretrained models can be composed.

Map API. Textual map prompting fails to convey detailed geometric informa-

tion about the world and is restricted to maps with a sparse, text-compatible

structure. An alternative is to treat the map as a completely separate module

and expose some functionalities through a symbolic map API. Examples of such

functions could include queries such as exists(object), where is(object) or

distance(object A, object B) where inputs are described in natural language

and the actual function implementations rely on the query mechanisms we dis-

cussed in Section 17.3. Map function calls can be interleaved with LLM calls and

robot API calls to build complex and capable systems. As an example, NLMap [184]

proposes a planning framework where an LLM breaks down user queries into dif-

ferent proposed objects and verifies object existence and location by querying an

open-vocabulary map. The map API can also be leveraged for “tool calling”, a

framework in which an LLM is free to call external functions and use their outputs

during answer generation. LLMs can query open-vocabulary maps to generate robot

plans [1270] or answer diverse scene queries expressed in natural language [520, 480].

17.4.2 Revisiting the Question of the Need for Maps

With such impressive visual perceptual representations learned from internet-scale

datasets, it is reasonable to revisit one of the first questions from the Prelude to this



506 Towards Open-World Spatial AI

SLAM Handbook - the question of the need for SLAM maps, or at least explicit

map representations. In this section, we will detail some ways in which explicit

maps could, in some cases, be replaced directly by foundation models.

Long-context VLMs/ Models such as Gemini and GPT4+ [1082, 12] can directly

process sequences of RGB images that we would otherwise use to build a map,

although to what extent long-context VLMs have a coherent understanding of the

spatial structure underlying the images is unclear. OpenEQA [733] benchmarks

various integrations of VLMs and scene graphs for embodied question answering

tasks. They find that directly prompting GPT-4V with 50 frames outperforms using

an explicit scene graph prompt on their benchmark. Mobility VLA [209] explores

long-context VLMs in the context of navigation: it prompts a VLM with a full office

tour (948 frames) and asks it to identify a high-level goal image given a user query.

The goal image is then forwarded to a map-based navigation pipeline. The authors

experimented with a map-free variant of their system, where the VLM was tasked

to output navigation actions directly given the current observation and the office

tour, and found this to be ineffective. Based on these results and others, we argue

that, at present, the need for an explicit map representation in the context of LLM

or VLM-based physical agents appears to largely depend on the spatial and temporal

horizons of the considered tasks and remains an active area of research.

Physics or geometry-aware VLMs. Some other approaches have attempted to

enhance foundation models with an awareness of geometric and physical properties

of the environment, something that has been demonstrated to be lacking out-of-the-

box for most VLM models [52, 1166]. For example, [183] takes this perspective that

the sensor is not embodied in the sense that it can be actuated or controlled and is

only considering a single view. Nevertheless, these enhanced models have shown an

impressive ability to reason about 3D space from a single camera image. However,

while the performance on benchmarks such as OpenEQA is impressive, at present

there is still an important gap between this and the level of embodied intelligence

that we have seen demonstrated with the inclusion of SLAM in the pipeline. It is

possible that this gap could be filled through other learning-based paradigms, such

as imitation or reinforcement learning, a subject we will cover more thoroughly in

the next section.

17.4.3 A Foundation Model for Robotics?

Language and 2D vision foundation models have proved comparatively straightfor-

ward to build due to the availability of internet-scale data that can be used for

training. Given the incredible advances that have ensued as a result of the repre-

sentational power of these models, it is natural to consider if we can find a way

to generate enough data to build foundation models for other domains. One great



17.4 Future Trends 507

example is Dust3R [1162] discussed in Chapter 13, which has already had a signif-

icant impact on the field of 3D vision. But the question remains as to whether this

is directly possible for robotics, and, if so, does this cause us to revisit the question

of the need for explicit maps. Therefore, to close this chapter, we consider a recent

effort in the robotics community to explicitly build a foundation model for robots.

The objective of such a robotics foundation model is to serve as a base generalist

policy that can perform a diversity of skills across a variety of robot embodiments.

The policy would have to learn how to somehow implicitly represent the world and

then leverage this representation to execute tasks. The data therefore should be of

the form of input-output pairs (sensor data and associated actions). As noted in

Section 17.1, creating foundation models requires a massive amount of data, and

this is preclusively difficult on real robot hardware. Nevertheless, there have been

some efforts to collect this scale of data on both real hardware and using simulation

data.

In the next sections, we will briefly overview some of the recent efforts at col-

lecting such large-scale robotics datasets, and then we will subsequently overview

some of the models that have been built to consume these datasets with the objec-

tive of producing generally capable robot agents that do not require explicit world

representations.

Datasets and Benchmarks. RT1: Robotics Transformer[124] was an early dataset

effort comprising 130k robot trajectories of a fleet of 13 robots performing 700

different tasks over a period of 17 months. The “BridgeData V2” [1146] further

enhanced the diversity of tasks compared to RT1, including over 50k demonstra-

tions of 13 skills over 24 environments. Although the hardware is fixed, there is

an effort to randomize the external camera locations to provide robustness. The

DROID dataset [567] was a multi-institutional effort to create a diverse dataset of

robot interaction data that could be used primarily to train manipulation policies.

All of these datasets and several others were integrated to create the Open-X-

Embodiment dataset [234], which comprises over 1M episodes of 22 different robot

embodiments performing 527 different “skills” in diverse environments (34 different

university labs).

An important factor in scaling up the collection of data has been to build efficient

and intuitive APIs for humans to provide demonstrations, often together with asso-

ciated high-fidelity simulations. For example, DROID [567] leveraged a VR headset

for teleoperation. The ALOHA [1081] setup is relatively low-cost and comprises

two sets of synchronized manipulators so that humans can provide demonstrations

that will be mimicked directly on the robot hardware. The “Universal Manipulation

Interface” [208] is a low-cost handheld gripper setup that exactly matches a robot

gripper and eye-in-hand sensor configuration and therefore can be easily used to

collect robot demonstrations in a flexible and low-cost manner.

For the most part, The data in these aforementioned datasets takes the form



508 Towards Open-World Spatial AI

of trajectories of sensor action pairs D = {zt, ut}Tt=1 where T is the length of the

trajectory. As such, they are really primarily targeting the learning of robot skills,

such as grasping and manipulation, across a diversity of operating conditions and

robot configurations. However, the objective is that complex tasks can be achieved

either through increasingly complex demonstrations (combined with language con-

ditioning), or by chaining together shorter demonstrations of sub-tasks.

Model Categories. There are several modeling paradigms that have been devel-

oped to consume the datasets presented in the previous section with the objective

of producing generalist agents. These agents should be able to perform a wide array

of abstractly-specified tasks in a variety of environments and on a diversity of robot

configurations/morphologies.

A simple and intuitive approach to learn a behavior model from data is simply

to perform behaviour cloning (BC): train a model in a supervised fashion to learn

the mapping from observations to actions [888]. However, this approach is known

to be brittle and prone to divergence since little sub-optimal data is contained in

the demonstrations and small deviations in action from the demonstration lead to

the model becoming out of distribution [950]. The “behaviour transformer” model

has shown initial promise in being able to overcome some of these challenges [998],

even when trained and evaluated exclusively in simulation.

As a result, the majority of the models trained on these large-scale datasets,

which form the “robotics foundation model” candidates, follow a similar structure

as the foundation models introduced in Sec. 17.2, except now the output tokens of

the transformers are interpreted directly as control actions, referred to generally as

“Vision Language Action” (VLA) models, as shown in Figure 17.8.

Figure 17.8 Figure reproduced from [125]. In a “Vision Language Action” model, a trans-
former is modified to directly output robot actions.

Perhaps the first such example was GATO [927], in which they showed that one



17.4 Future Trends 509

generalist agent can potentially perform a huge diversity of tasks, including robot

control, with a single model by tokenizing the input and output. Subsequently,

PaLM-E [289], built an “embodied multimodal language model,” which was trained

on vision-language data as well as robot manipulation data, to perform a diversity of

language, motion planning, and manipulation tasks directly. RT1 [124] uses a FiLM

image encoder rather than a ViT as was the case with PaLM-E, but otherwise the

structure of the models is similar. RT2 [125] takes the data from PaLM-E and RT1

and combines them. RT1-X and RT2-X are variants of RT1 and RT2 trained on

the Open-X-Embodiment dataset [234].

A variant of the standard VLA model is the “Action Chunking Transformer”

(ACT) [1081]. Specifically designed to handle fine manipulation challenges with

the ALOHA low-cost data collection platform, the ACT model outputs a sequence

of actions rather than just an individual action (as was done in RT1), and has

subsequently been shown to be an important modification to the original VLA

transformer achitecture to obtain better generalization performance [91].

Perhaps unsurprisingly, gains are potentially achievable by further integrating the

representational power of existing VLMs and LLMs that we introduced in Section

17.2 into the language and vision encoders of these generalist policies. For exam-

ple, The OpenVLA model is built on entirely open-source models, including VLM

(DINOV2) and LLM (Llama 2) components, and, after finetuning for (15 days on

a 64 A100 GPU cluster) produces a very performant model for the task of robot

manipulation as compared to models trained on the Open-X-Embodiment dataset

[581] alone. A similar approach was taken in the training of the π0 model [91].

A somewhat different paradigm for obtaining generalist robot policies is through

the use of diffusion models [471]. A diffusion model is a type of generative model

that learns to create data by reversing a gradual noising process. During training, it

takes clean data and adds noise to it incrementally until it becomes pure noise. The

model then learns how to reverse this process, denoising the noisy input in stages

to recover the original data. When generating new samples, it starts from random

noise and iteratively refines it to generate a sample from the training dataset. This

process has been successfully applied to generate robot actions through a “diffusion

policy” by representing a visuomotor policy as a conditional denoising process [207],

and is currently a very active area of research.

It should also be noted that these two paradigms are not necessarily mutually

exclusive. Octo, for example, leverages a large transformer for producing outputs

which are fed to an “action head” that runs a forward diffusion process [824].

Reinforcement learning (RL) is also an increasingly popular paradigm for training

robot policies. However, since the large datasets mentioned above do not contain an

explicit notion of rewards, the reward would need to be inferred or learned as in an

inverse RL setup. RL methods are particularly amenable to training in simulation

where reward functions can be easily defined and evaluated, and where rollouts

are relatively inexpensive to perform compared to real hardware. RL also has the



510 Towards Open-World Spatial AI

potential to act as a fine-tuning mechanism that acts on the policies generated by

the previously mentioned VLA or diffusion methods.

This section is by no means meant to be an exhaustive list of the state of the

art of training generalist policies. This field is rapidly evolving with new, more

capable models being released very frequently. As the capacity of these models

grows, their ability to implicitly encode some representation of their environment

also seems to improve, and may modify in what contexts we still need an explicit

map representation.

17.4.4 Concluding Remarks

It is undeniable that foundation models of all kinds have transformed robotics in a

similar manner to many other fields. It remains to be seen, however, to what degree

this progress continues. On the one hand, it seems conceivable that simply fur-

ther scaling the robotics datasets and dedicated foundation models combined with

internet-scale VLMs and LLMs could produce increasingly impressive capabilities

that may render explicit map representations obsolescent. However, it has been

demonstrated that transformers in particular struggle to perform compositional or

chain-of-thought reasoning [305]. For this reason, we are seeing the re-emergence of

neural memory mechanisms, such as “structured state space models” [414], which

are specifically designed to have a notion of statefulness, in much the same way as

recurrent neural networks. But the limits of these neural memory architectures and

how they become integrated with generalist policies are still unclear.

Equally as likely (or perhaps more so) at this time is that true generalization

and scalability to compositional tasks in large and complex environments could be

achieved through some form of explicit structure that is learned through a process

such as SLAM. One view could be that, in fact, these two paradigms (explicit

world modeling through SLAM and planning vs. generalist robotics policies) are

entirely complementary. Perceiving, representing, and understanding the world is a

prerequisite for taking action (at least in the types of complex problems in which

we are interested), and this type of explicit world modeling should only help our

ability to perform complex actions robustly.



18

The Computational Structure of Spatial AI Systems
Andrew J. Davison

SLAM algorithms, which map an environment and estimate a device’s position

within it, have enabled a range of important new products and capabilities which are

already having an impact on the world, in areas such as industrial automation, home

robotics, drones and virtual/augmented reality (VR/AR). However, we believe that

this is just the start of something much bigger: the capability for artificial devices to

build genuinely rich but efficient representations of their surroundings which enable

them to interact with them in generally intelligent ways. We define this capability

as Spatial AI, a term first coined in ‘FutureMapping’ [254].

In this chapter, we argue that Spatial AI capabilities are an ongoing evolution of

the SLAM research that has been presented throughout this handbook. We predict

and analyse the capabilities and computational structure of Spatial AI systems over

the coming years, and in particular analyse the impact that machine learning and

new sensing and computing hardware will have.

18.1 From SLAM to Spatial AI

18.1.1 Intelligent Embodied Devices Need Spatial AI

The goal of a Spatial AI system is not abstract scene understanding, but con-

tinuously to build the right representations to enable real-time interpretation and

general, intelligent action. The design of such a system will be framed at one end by

task requirements on its performance, and at the other end by constraints imposed

by the setting of the device in which it is to be used.

Let us consider the example of a mass market household robot product of the fu-

ture, which is set the tasks of monitoring, cleaning, and tidying a set of rooms. The

robot may be a humanoid, or other platform with general movement and manipu-

lation capabilities. Its task requirements will include cleaning or sweeping surfaces

and knowing when they are clean; recognising, tidying, moving and manipulating

objects; and dealing promptly and respectfully with humans by moving out of the

way or assisting them. Meanwhile, its Spatial AI system, comprising sensors, proces-



512 The Computational Structure of Spatial AI Systems

sors and algorithms, will be constrained by factors including price, aesthetics, size,

safety, and power usage, which must fit within the range of a consumer product.

As a second example, this time from the domain not of autonomous robotics

but wearable assistive devices for humans (which with pleasing symmetry we may

refer to as “IA”, Intelligence Augmentation), we imagine a future augmented re-

ality system which can provide its wearer with a robust spatial memory of all of

the places, objects and people they have encountered, enabling things such as eas-

ily finding lost objects, and the placing of virtual notes or other annotations on

any world entity. This capability could enable the full context of a person’s life to

be available automatically to an always-on Large Language Model assistant, and

perhaps general amplification of that person’s intelligence capabilities. To achieve

wide adoption, the device should have the size, weight,v and form factor of a stan-

dard pair of spectacles (65g), and operate all day without needing a battery charge

(<1W power usage).

There is currently a big gap between what such powerful Spatial AI systems need

to do in useful applications, and what can be achieved with current technology un-

der real-world constraints. There is much promising research on the algorithms and

technology needed, but robust performance is still difficult even when expensive,

bulky sensors and unlimited computing resources are available. The gap between

reality and desired performance becomes much more significant still when the con-

straints on real products are taken into account. In particular, the size, cost, and

power requirements of the computer processors currently enabling advanced robot

vision are very far from fitting the constraints imposed by these applications we

envisage.

18.1.2 Scene Representation and World Models

We believe that the key to Spatial AI is representation. A representation is a set

of values held in a computer’s memory which represent the state of an embodied

device and the world around it in a way that is persistent, but adaptable, and

always changing as the device acquires new information about the world, or the

state of the world itself changes. Also, the device may choose to abstract or even

“forget” parts of its representation for reasons of efficiency.

The term ‘world model’ has recently become popular in machine learning re-

search [430], and this term has very much the same meaning as scene represen-

tation. Many in machine learning consider world models a rather new domain of

research, because most current trained neural network architectures are stateless,

simply processing inputs and turning them deterministically into outputs. There is

significant current research in robot learning on training such networks to perform

tasks in an “end-to-end” manner, where inputs from sensors are turned directly into

actions, in domains from autonomous driving to the manipulation of objects. These

approaches are often extremely effective, but struggle to achieve long-horizon tasks.



18.1 From SLAM to Spatial AI 513

World model research in neural networks aims to equip them with persistent mem-

ory modules which represent the changing state of a system and its environment,

allowing simulation and longer-term planning.

Despite this recent new interest, the ideas of world models and scene represen-

tation of course have a long history in the more general world of AI, and SLAM

research in robotics is the most clear example of where aiming to build persistent

scene representations enables consistent, long-horizon behaviour. Most obviously,

SLAM maps enable in reliable long-term navigation to multiple waypoints, or guar-

anteed area coverage, in applications such as autonomous drones or robot floor

cleaners.

As SLAM expands beyond building minimal scene representations for localisation

towards dense, semantic and even object-level and physically predictive scene mod-

els, it will enable devices to simulate and plan in general ways. Model-predictive

control (MPC) can take place in an incrementally built but accurate, up-to-date

simulation of a robot’s environment, allowing optimal and creative behaviour, even

for object manipulation.

Many machine learning researchers would assume that a ‘world model’ is some-

thing much more abstract then an explicit 3D map of a scene that is the typical

output of a SLAM system, and we agree that there is much research to be done here

on which world representations will enable true spatial intelligence while remain-

ing efficient and practical. However, there are many advantages to representations

which are rather explicit about the geometry and objects in a scene, in terms of

efficiency, composability, interpretability, and generality.

We therefore make the following hypothesis: When a device must operate for an

extended period of time, carry out a wide variety of tasks (not all of which are

necessarily known at design time), and communicate with other entities including

humans, its Spatial AI system should build a general and persistent scene represen-

tation which is close to metric 3D geometry, at least locally, and is human under-

standable. To be clear, this definition leaves a lot of space for many choices about

scene representation, with both learned and designed elements, but rules out algo-

rithms which make use of very specific task-focused representations, or completely

abstract “black box” world models.

Our second hypothesis is that: The usefulness of a Spatial AI system for a wide

range of tasks is well represented by a relatively small number of performance mea-

sures. That is to say that whether the system is to be used to guide the autonomous

flight of a delivery drone in a tight space, or a household robot to tidy a room, or to

enable an augmented reality display to add synthetic objects to a scene, then even

though these applications certainly have different requirements and constraints,

their Spatial AI systems will be largely similar, with differences specified by a small

number of performance parameters. The obvious parameters describe aspects like

global device localisation accuracy and update latency, but we believe that there

are other metrics which will be more meaningful for applications, like distance to



514 The Computational Structure of Spatial AI Systems

surface contact prediction accuracy, object identification accuracy, or tracking ro-

bustness. We will discuss performance metrics further in Section 18.8.

For the purposes of the rest of this chapter, we will therefore call such a module

which incrementally builds and maintains a generally useful, close to metric scene

representation, in real-time and from primarily visual input, and with quantifiable

performance metrics, a Spatial AI system.

Judea Pearl, recently discussing efficient situated learning and the need to rea-

son about causation [863], argued that “what humans possessed that other species

lacked was a mental representation, a blue-print of their environment which they

could manipulate at will to imagine alternative hypothetical environments for plan-

ning and learning”. We believe that Spatial AI is similarly what will set apart ad-

vanced robots and devices which can take embodied intelligence to the next level.

Further, there is evidence that the spatial reasoning capabilities of humans are

used more generally as a fundamental tool for intelligence, by organising thinking

in spatial ways, even for abstract concepts [78]; this may also be true for artificial

systems.

18.1.3 SLAM is Evolving into Spatial AI

Research in SLAM, and especially visual SLAM, has long been driven by live

demonstrations, with real-time visualisations, and the release of open source code.

These live demos (of systems such as MonoSLAM, PTAM, KinectFusion, LSD-

SLAM, SVO, ORB-SLAM, iMAP, Gaussian Splatting SLAM) have arguably been

the most important markers of progress rather than the dataset results prominent

in computer vision. This is because datasets often only capture limited aspects of

a system’s performance (especially accuracy) while not highlighting robustness, ef-

ficiency, or flexibility, which are equally important and are readily assessed from a

short real-time demo.

The level of scene representation that has been possible in real-time visual SLAM

has gradually improved, from sparse features to dense maps and now increasingly

semantic labels. Commercial SLAM provider Slamcore has referred to sparse lo-

calisation, dense mapping, and semantic labelling as Levels 1, 2 and 3 capabilities

respectively. Beyond this is perhaps the final destination of advances in scene repre-

sentation, scene graphs with accurately segmented and physically simulated object

instances making up geometry hierarchically (cf. Chapter 16 for further discussion).

These are ongoing steps along SLAM’s evolution towards Spatial AI. Observing the

steady and consistent progress of SLAM over more than 30 years, we have become

confident that the operation of current and foreseeable SLAM systems is the best

guide we have for the algorithmic structure of future Spatial AI.

We would like to emphasize the despite this level-based interpretation, the way

that SLAM systems progress is usually not by the pure addition of layers to an

already-working system. Rather, each change of representation causes the whole



18.2 Overall Computational Structure 515

system to be re-designed. Once a dense scene map is available, for instance, it can

be used to implement accurate and robust direct tracking for camera localisation;

or semantic scene labelling can improve dense reconstruction quality. This kind of

thinking is inherent to real-time systems research, where every part of a system

affects every other part in a closed loop.

We therefore believe strongly that ongoing SLAM research is the best model we

have for the development of Spatial AI.

18.2 Overall Computational Structure

As a sensor platform carrying at least one camera and other sensors moves through

the world, its motion either under active control or provided by another agent, the

essential way that a Spatial AI system of any variety works can be summarised as

follows:

1 Our system will comprise outward looking sensors such as cameras, and support-

ing sensors such as an IMU, closely integrated with a processing architecture in

a low-power package which is embedded in a mobile entity such as a robot or AR

system.

2 In real-time, the system must maintain and update a world model, with geometric

and semantic information, and estimate its position within that model, from

primarily or only measurements from its on-board sensors.

3 The system should provide a wide variety of task-useful information about ‘what’

is ‘where’ in the scene. Ideally, it will provide a full semantic level model of the

identities, positions, shapes and motion of all of the objects and other entities in

the surroundings.

4 The representation of the world model will be close to metric, at least locally, to

enable rapid reasoning about arbitrary predictions and measurements of interest

to an AI or IA system.

5 It will probably retain a maximum quality representation of geometry and seman-

tics only in a focused manner; most obviously for the part of the scene currently

observed and relevant for near-future interaction. The rest of the model will be

stored at a hierarchy of residual quality levels, which can be rapidly upgraded

when revisited.

6 The system will be generally alert, in the sense that every incoming piece of

visual data is checked against a forward predictive scene model: for tracking, and

for detecting changes in the environment and independent motion. The system

will be able to respond to changes in its environment.

The key computational quality of this approach is its closed loop nature, where the

world model is persistent and incrementally updated, representing in an abstracted

form all of the useful data which has been acquired to date, and is used in the real-

time loop for data association and tracking. This is in contrast with vision systems



516 The Computational Structure of Spatial AI Systems

which perform incremental estimation (such as pure visual odometry, where camera

motion is estimated from frame to frame but long term data structures are not

retained), or which can only achieve global consistency with off-line, after-the-fact,

batch computation. That is not to say that in a closed loop Spatial AI system every

computation should happen at a fixed rate, but more importantly that it should be

available when needed to allow real-time operation of the whole system to continue

without pauses.

The next element of our high-level thinking is to identify the core ways that

we can achieve all of this with high performance but low power requirements. We

believe that the key to efficient processing in Spatial AI is to identify the graphs of

computation and data movement in the algorithms required, and as far as possible

to make use of or design processing hardware which has the same properties, with

the particular goal of minimising data movement around the architecture. We need

to identify the following things: What is stored where? What is processed where?

What is transmitted where, and when?

We will not attempt here to draw strong parallels with neuroscience, but clearly

there is much scope for relating the ideas and designs we discuss here in artificial

Spatial AI systems with the vision and spatial reasoning capabilities and structures

of biological brains. The human brain apparently achieves high performance, fully

‘embedded’ semantic and geometric vision using less than 10 Watts of power, and

certainly its structures have properties which mirror some of the concepts we dis-

cuss. We will leave it to other authors to analyse the relationships further; this is

mostly due to our lack of expertise in neuroscience, but also partly to a belief that

while artificial vision systems clearly still have a great deal to learn from biology,

they need not be designed to replicate the performance or structure of brains. We

consider the Spatial AI computation problem purely from the engineering point of

view, with the goal of achieving the performance we need for applications while

minimising resources. It should surely not be surprising that some aspects of our

solutions should mimic those discovered by biological evolution, while in other re-

spects we might find quite different methods due to two contrasts: firstly between

the incremental ‘has to work all of the time’ design route of evolution and the

increased freedom we have in AI design; and secondly between the wetware and

hardware available as a computational substrate.

Before making this computational analysis more concrete, in terms of proposing

a generic design for Spatial AI implementations, we need to consider two important

topics: (i) state estimation vs. machine learning, and (ii) the landscape of future

processor and sensor hardware. We will discuss these in the next two sections.

18.3 State Estimation and Machine Learning in Spatial AI

Much of this handbook covers approaches to SLAM which are based on human-

designed algorithms and representations; predominantly ‘state estimation’ methods



18.3 State Estimation and Machine Learning in Spatial AI 517

based on probability theory. In the later chapters, we see the rise of machine learn-

ing techniques of many types. The key machinery of machine learning in SLAM

is the artificial neural network. SLAM is notable within the broader picture of ar-

tificial intelligence in that it has not yet been completely dominated by ML. The

best performing systems for localisation and sparse mapping are still mostly hand-

designed, and dense and semantic SLAM systems use a balance, where ML is used

to replace part of or add to the functionality of state estimation. However, the

gradual rise of ML techniques to cover more of the functionality of Spatial AI has

been undeniable.

In some of the first uses of ML in SLAM, a learned module was used to add a

layer of functionality but did not interact directly with the state estimation compo-

nents. An example is SemanticFusion [754], which used CNN-based semantic image

segmentation to add labels to a the dense geometric map produced by Elastic-

Fusion [1181]. Soon though, it became clear that learned components could play

important roles in the core geometric estimation loop of SLAM, and this has taken

several key forms, including:

1 Networks trained to predict geometric properties from single images, such as

depth maps, normal maps, or object segmentation.

2 Components for updating standard geometric estimates, like poses and point

clouds, as used in DROID-SLAM; these networks often perform operations such

as matching or geometric optimisation.

3 The latest networks which produce higher-quality geometric predictions from

multi-image input, such as DUSt3R and VGGT.

Although neural networks can directly predict geometry, such as depth maps from

a single image, it has proven difficult to use these outputs in SLAM because single-

view predictions often contain large systematic errors, and have poorly understood

uncertainty. A promising branch of this approach is to train networks to predict

somewhat weaker properties than raw depth, such as coded depth CodeSLAM [97]

or depth covariance [277], allowing low-dimensional multi-view optimisation to per-

form consistent dense geometry fusion.

Perhaps the end goal of this single-view research is to develop a network which

can turn an input image into a reliable set of semantic, object-like entities which

can be then used to populate an efficient, abstract 3D object map or scene graph

which is subject to ongoing, dynamic multi-view optimisation and updating. This

approach was pioneered in SLAM by SLAM++ [969], which built an efficient scene

graph map directly at the level of recognised 3D objects, though with the limitation

that a pre-defined 3D model of every object was needed. A modern generalisation

of this approach is SuperPrimitives [751] which uses generic single-image object

segmentation and local reconstruction to enable a long-term map of arbitrary 3D

object chunks.

The appeal of machine learning in Spatial AI has perhaps two key aspects. First,



518 The Computational Structure of Spatial AI Systems

neural networks can be trained to carry out tasks have proven very difficult to

design by hand, such as scene labelling or depth prediction. Second, they compress

iterative computation into an efficient, computationally simple form, which can run

feed-forward and often fast on modern processors.

We should naturally ask the question of whether the whole of SLAM and Spatial

AI will ultimately be performed end-to-end by a neural network, with no hand-

designed representations or state estimation at all. Of course many researchers

believe in this idea, and there are increasingly impressive pieces of work from the

early demonstrations of end-to-end visual odometry DeepVO [1161, 1294] to net-

works such as VGGT which outputs 3D point clouds directly from a set of unposed

images.

This work will surely continue to improve, but we believe that hybrid methods

combining learning and state estimation will continue to be preferable for the fore-

seeable future, for several reasons. First, the issue of understanding the uncertainty

of network predictions remains, and we will need to keep the ability to update and

fuse data into models. If we have a network which can produce a 3D scene model

from 100 images, how should we update it when one more image is available? Surely

we should not need to run the whole network again with 101 images. As soon as we

accept that long-term representation and fusion is needed, then we need the tools

of probabilistic state estimation, and there is a strong motivation towards modular

scene representations.

Ultimately, the Spatial AI systems of the mid-term future will surely have learned

and designed components so tightly integrated that it is hard to tell which is which;

and this position may be reached either by adding more and more learned modules

to a designed system, or by adding structure to a purely learned system. What still

remains important in either case, and at the centre of our interest in this chapter,

is the storage and computational structure of the whole system.

18.4 The Future Landscape of Processor and Sensor Hardware

18.4.1 Processors

SLAM research was for many years conducted in the era when single core CPU

processors could reliably be counted on to double in clock speed, and therefore serial

processing capability, every 1–2 years. In recent years this has stopped being true.

The strict definition of Moore’s Law, describing the rate of doubling of transistor

density in integrated circuits, has continued to hold into the current era. What has

changed is that this can no longer be proportionally translated into serial CPU

performance, due to the breakdown of another less well known rule of thumb called

Dennard Scaling, which states that as transistors get smaller their power density

stays constant. When transistors are reduced down to today’s nanometre sizes, not

so far from the size of the atoms they are made from, they leak current and heat



18.4 The Future Landscape of Processor and Sensor Hardware 519

up. This ‘power wall’ limits the clock speed at which they can reasonably be run

without overheating uncontrollably to something around 4GHz.

Processor designers must therefore increasingly look towards alternative means

than simply faster clocks to improve computation performance. The processor land-

scape is becoming much more complex, parallel and specialised, as described well in

Sutter’s online article ‘Welcome to the Jungle’ [1067]. Processor design is becoming

more varied and complex even in ‘cloud’ data centres. Pressure to move away from

CPUs is even stronger in embedded applications like Spatial AI, because here power

usage is a critical issue, and parallel, heteregeneous, specialised processors seem to

be the only route to achieving the computational performance Spatial AI needs

within power restrictions which will fit real products. So while current embedded

vision systems, e.g., for drones, often use CPU-only implementations of SLAM algo-

rithms (rather than requiring GPUs), we believe that this is not the right approach

for the longer term. While current desktop GPUs are certainly power-hungry, Spa-

tial AI must fully embrace parallelism. However, GPUs are only the beginning of

the wide space of processor designs that will emerge over the coming years. We

highly recommend the recent PhD thesis of Julien Martel for ambitious thinking

about this whole area [741].

Mainstream geometric computer vision started to take advantage of parallel pro-

cessing in the form of GPUs nearly 20 years ago (e.g., [887]), and in Spatial AI this

led to breakthroughs in dense SLAM [806, 807]. The SIMT (Single Instruction, Mul-

tiple Threads) parallelism that GPUs provide is well suited to elements of real-time

vision where the same operation needs to be applied to every element of a regular

array in image or map space. Concurrently, GPUs were central to the emergence of

deep learning in computer vision [615], by providing the computational resource to

enable neural networks of sufficient scale to be trained to finally prove their worth

in significant tasks such as image classification.

The move from CPUs to GPUs as the main processing workhorse for computer

vision is only the beginning of how processing technology is going to evolve. We

foresee a future where an embedded Spatial AI system will have a heterogeneous,

multi-element, specialised architecture, where low power operation must be achieved

together with high performance. A standard SoC (system-on-chip) for embedded

vision ten years from now, which might be used in a personal mobile device, con-

sumer robot or AR headset, will be likely to still have elements which are similar

in design to today’s CPUs and GPUs, due to their flexibility and the huge amount

of useful software they can run. However, it is also likely to have a number of

specialised processors optimised for low power real-time vision.

The key to efficient processing which is both fast and consumes little power is to

divide computation between a large number of relatively low clock-rate or otherwise

simple cores, and to minimise the movement of data between them. A CPU pulls

and pushes small pieces of data one by one from and to a separate main memory

store as it performs computation, with local caching of regularly used data the only



520 The Computational Structure of Spatial AI Systems

mechanism for reducing the flow. Programming for a single CPU is straightforward,

because any type of algorithm can be broken down into sequential steps with access

to a single central memory store, but the piece by piece flow of data to and from

central memory has a huge power cost.

More efficient processor designs aim to keep processing and the data operated

on close together, and to limit the transmission of intermediate results. The ideal

way to achieve this is a close match between the design of a processor/storage

architecture and the algorithm it must run. A GPU certainly has large advantages

over a CPU for many computer vision processing tasks, but in the end a GPU is

a processor designed originally for computer graphics rather than vision and AI.

Its SIMT architecture can efficiently run algorithms where the same operation is

carried out simultaneously on many different data elements. In a full Spatial AI

system, there are still many aspects which do not fit well with this, and a joint

CPU/GPU architecture is currently needed with substantial data transfer between

the two.

While it is relatively accessible to design custom ‘accelerator’ processors which

could implement certain specific low-level algorithms with high efficiency, there has

been relatively little work until recently on thinking about the whole computational

structure of closed-loop embedded systems like Spatial AI. It is certainly true now

that low power vision is seen as an increasingly important aim in industry, and

custom processors to achieve this have been developed such as Movidius’ Myriad

series. These processors combine low power CPU-like, DSP-like and custom ele-

ments in a complete package. The ‘HPU’ custom-designed by Microsoft for their

original Hololens AR headset is rather similar in design. More recently, the Apple

Vision Pro uses a custom Apple R1 co-processor for real-time sensor input process-

ing. Meta’s ARIA Gen 2 smart glasses research device has custom silicon for ‘ultra

low power and on-device machine perception’, so that SLAM, eye tracking, hand-

tracking and speech recognition can all operate on-device without the need for an

external battery. The details of these commercial chips and the algorithms that run

on them are confidential, but we can imagine that they are custom designed for

efficient operation of small neural networks, other image processing and some level

of general probabilistic optimisation.

If we try to look further ahead, we can conceive of processor designs which offer

the possibility of a much closer match between architecture and algorithms. Highly

relevant to our aims are major efforts which are now taking place on new ways of

doing large-scale processing by being made up from large numbers of independent

and relatively low-spec cores with the emphasis on communication. SpiNNaker [356]

is a major research project from the University of Manchester which aims to build

machines to emulate biological brains. It has produced a prototype machine made

up from boards which each have hundreds of ARM cores, and with up to a million

cores in total. With the rather different commercial aim of providing an important

new type of processor for AI, Graphcore is a UK company developing ‘Intelligence



18.4 The Future Landscape of Processor and Sensor Hardware 521

Processing Unit’ (IPU) processors which comprise thousands cores on a single chip,

each of which with which is able to run an independent program on its own local

memory, with an efficient programmable interconnect structure. Other companies

such as Tenstorrent and Cerebras have interesting novel chip designs.

The focus of these projects has largely been efficient implementation of neural

networks, in the case of both SpiNNaker and Graphcore with the belief that the

important matter is the overall topology of a large number of cores, each performing

different operations but highly and efficiently inter-connected in a graph configura-

tion adapted to the use case. These designs have not taken strong decisions about

the type of processing carried out at each core, or the type of messages they can ex-

change, with the desire to leave these matters to the choice of future programmers.

This is as opposed to more some explicitly neuromorphic architectures aiming to

implement particular models of the operation of biological brains, such as IBM’s

Truenorth project.

Such architectures are not yet close to ready for embedded vision, but seem

to offer great long term potential for the design of Spatial AI systems where the

graph structure of the algorithms and memory stores we use can be matched to the

implementation on the processor in a custom and potentially highly efficient way.

We will consider this in more detail later on.

But we also believe that we should go further than thinking of mapping Spatial

AI to a single processor, even when it has an internal graph architecture. A more

general concept of a graph applies to communication to cameras and other sensors,

actuators and other outputs; to other independent robots and devices sharing the

same environment; and potentially entirely off-board computing resources in the

cloud.

18.4.2 Sensors

Cameras are the most important sensors in Spatial AI, and the concept of a camera

is today becoming increasingly broad with ongoing innovation by sensor designers;

for our purposes we consider any device which essentially captures an array of light

measurements to be a visual sensor. Most are passive in that they record and mea-

sure the ambient light which reaches them from their surroundings, while another

large class of cameras emit their own light in a more or less controlled fashion. In

Spatial AI, many types of camera have been used, with the most common being

passive monocular and stereo camera rigs, and depth cameras based on structured

light or time of flight concepts. Every camera design represents a choice in terms of

the quality of information it provides (measured in such ways as spatial and tem-

poral resolution and dynamic range), and the constraints it places on the system it

is used in such as size and power usage. In previous work [435] we studied some of

the trade-offs possible between performance and computational cost in the Spatial

AI sub-problem of real-time tracking.



522 The Computational Structure of Spatial AI Systems

A particularly promising sensor for Spatial AI, as already discussed in this hand-

book, is the event camera, which removes redundancy by sensing and transmitting

only changes in intensity. An event stream encodes the information content of video

at a much lower bit-rate, while offering advantages in temporal and intensity sen-

sitivity. This is surely only the starting point for coming rapid changes in image

sensor technology, where low power computer vision will be an increasingly impor-

tant driver.

One significant ongoing academic project in this space is the SCAMP series of

vision chips with in-plane processing from the University of Manchester (see [742]

for an introduction). The SCAMP5 chip runs at 1.2W and has an image resolution

of 256×256, with each pixel controlled by and processable by per-pixel processing.

Using analog current-mode circuits, summation, subtraction, division, squaring,

and communication of values with neighbouring pixels can be achieved extremely

rapidly and efficiently to permit a significant level of real-time vision processing

completely on-chip. Ultra-low power operation can alternatively already be achieved

in applications where low update rates are sufficient.

As we will discuss later on, the range of vision processing which could eventually

be performed by such an image plane processor is still be to fully discovered. The

obvious use is in front-end pre-processing such as feature detection, local motion

tracking, or segmentation. We believe that the longer term potential is that while

a central processor will be required for full model-based Spatial AI, close-to-sensor

processing can interact fully with this via two-way low communication, with the

main aim of reducing the bit-rate needed between the sensor and main processor

and therefore the communication power requirements.

Finally, when considering the evolution of the computing resources for Spatial

AI, we should never forget that cloud computing resources will continue to expand

in capacity and reduce in cost. All future Spatial AI systems will likely be cloud-

connected most of the time, and from their point of view the processing and memory

resources of the cloud can be assumed to be close to infinite and free. What is

not free is communication between an embedded device and the cloud, which can

be expensive in power terms, particularly if high bandwidth data such as video

is transmitted. The other important consideration is the time delay, typically of

significant fractions of a second, in sending data to the cloud for processing. There

may also be applications where an always-on, high-bandwidth cloud connection is

unfeasible (e.g., space, undersea, underground).

18.5 Mapping Spatial AI Graphs to Hardware

We now turn more specifically to a design for the architecture of a Spatial AI device.

Despite the clear potential for cloud-connected shared mapping, here we choose to

focus purely on a single device which needs to operate in a space with only on-board



18.5 Mapping Spatial AI Graphs to Hardware 523

Map Store

Real-Time Loop

Camera Interfaces

Sensor Interface

Actuator Interface

Camera Processors

Figure 18.1 Spatial AI brain: how the representation and processing graph structures of
a general Spatial AI system might map to a graph processor. The key elements we identify
are the real-time processing loop, the graph-based map store, and blocks which interface
with sensors and output actuators. Note that we envision additional ‘close to the sensor’
processing built into visual sensors, aiming to reduce the data bandwidth (eventually in
two directions) between the main processor and cameras, which will generally be located
some distance away.

resources, because this is the most generally capable setup which could be useful

in any application and not require additional infrastructure.

We argue that in the overall architecture of our Spatial AI computation sys-

tem, the long-term key to efficient performance is to match up the natural graph

structures of our algorithms to the configuration of physical hardware. As we have

seen, this reasoning leads to the use of ‘close to the sensor’ processing such as in-

plane image processing, and the attempt to minimise data transfer from sensors

and towards actuators or other outputs using principles such as events.

However, we still believe that the bulk of computation in an embedded Spatial AI

system is best carried out by a relatively centralised processing resource. The key

reason for this is the essential and ever-present role of an incrementally built and

used world model representing the system’s knowledge of its state and that of its

environment. Every new piece of data from possibly multiple cameras and sensors

is ultimately compared with this model, and either used to update it or discarded

if the data is not relevant to device’s short or long-term goals.



524 The Computational Structure of Spatial AI Systems

18.5.1 World Model Processing

What we are anticipating for this central processing resource is however far from

the model of a CPU and RAM-like memory store. A CPU can access any contents

of its RAM with a similar cost, but in Spatial AI there is much more structure

present, both in the locality of the data representing knowledge of the world and in

the organisation of the computation workload involved in incorporating new data.

The graph structures of processing and storage should be built into the design

of the central world model computation unit, which should combine storage and

processing in a fully integrated way. There are already significant efforts on new

ways to design architectures which are explicitly and flexibly graphlike.

To focus on one processor concept, Graphcore’s IPU or graph processor is de-

signed to efficiently carry out AI workloads which are well modelled as operations

on sparse graphs, and in particular when all of the required storage is itself also

held within the same graph rather than in an external memory store. An IPU chip

has a large number of independent cores (in the thousands), each of which can run

its own arbitrary program and has its own local memory store, and then a powerful

communication substrate such that the cores can efficiently send messages between

themselves. When a program is to be run on the IPU, it is first compiled into a

suitable form by analysis of the patterns of computation and communication it re-

quires. A suitable graph topology of optimised locations of operations, data, and

channels of communication is generated.

In Figure 18.1 we have made a first attempt at drawing a ‘Spatial AI brain’ model

which is analogous to the way Graphcore compiles a computation graph onto the

IPU. The disc contains the modules we anticipate running inside the main processor.

One of the two main areas is the map store, which is where the current world model

is stored. This has an internal graph structure relating to the geometry of the world.

It will also contain significant internal processing capability to operate locally on

the data in the model, and we will discuss the role of this shortly. The second

main area is the real-time loop, which is where the main real-time computation

connecting the input image stream to the world model is carried out. This has a

processing graph structure and must support large real-time data flows and parallel

computation on image/map structures so is designed to optimise this.

The main processor also has additional modules. There are camera interfaces,

the job of each of which is to model and predict the data arriving at the sensor to

which it is connected. This will then be connected to the camera itself, which the

physical design of a robot or other device may force to be relatively far from the

main processor. The connection may be serial or along multiple parallel lines.

We then imagine that each camera will have its own ‘close-to-sensor’ processing

capability built in, separated from the main processor by a data link. The goal of

modelling the input within the main processor is to minimise actual data trans-

fer to the close-to-sensor processors. It could be that the close-to-sensor processor



18.5 Mapping Spatial AI Graphs to Hardware 525

performs purely image-driven computation, in a manner similar to the SCAMP

project, and delivers an abstracted representation to the main processor. Or, there

could be bi-directional data transmission between the camera and main processor.

By sending model predictions to the close-to-sensor processors, they know what is

already available in the main processor and should report only differences. This is a

generalisation of the event camera concept. An event camera reports only changes in

intensity, whereas a future optimally efficient camera should report places where the

received data is different from what was predicted. We will discuss close-to-sensor

processing further in Section 18.5.3.

18.5.1.1 World Model

The graph structure of world models has been recognized and made use of by many

important SLAM methods (e.g., [541, 603, 969, 315, 761]).

As a robot moves through and observes the world, a SLAM algorithm detects,

tracks, and inserts into its map features which are extracted from the image data.

Note that we use the word ‘feature’ here in a general sense to mean some abstraction

of a scene entity, and that we are not confining our thinking to sparse point-like

landmarks. As abstraction in Spatial AI increases, these features are likely to be

objects or other semantic entities. Each feature in the scene has a region of camera

positions from which it is measurable. A feature will not be measurable if it is

outside of the sensor’s field of view; if it is occluded; or for other reasons such that

its distance from the camera or angle of observation are very different from when

it was first observed.

This means that as the robot moves through a scene, features become observ-

able in variable overlapping patterns. As measurements are made of the currently

visible features, estimates of their locations are improved, and the measurements

are also used to estimate the camera’s motion. The estimates of the locations of

features which are observed at the same time become strongly correlated with each

other via the uncertain camera state. Features which are ‘nearby’ in terms of the

amount of camera motion between observing them are still correlated but some-

what less strongly; and features which are ‘distant’ in that a lot of motion (and

SLAM based on intermediate features) happens between their observation are only

weakly correlated.

The probabilistic joint density over feature locations which is the output of SLAM

algorithms can be efficiently represented by a graph where ‘nearby’ features are

joined by strong edges, and ‘distant’ ones by weak edges. A threshold can be chosen

on the accuracy of probabilistic representation which leads to the cutting of weaker

edges, and therefore a sparse graph where only ‘nearby’ features are joined.

One way to do SLAM is not to explicitly estimate the state of scene features,

but instead to construct a map of a subset of the historical poses that the moving

camera has been in, and to keep the scene map implicit. This is usually called

pose-graph SLAM (cf. Chapter I), and within this kind of map the graph structure



526 The Computational Structure of Spatial AI Systems

is obvious because we join together poses between which we have been able to get

sensor correspondence. Poses which are consecutive in time are joined; and poses

where we are able to detect a revisit after a longer period of time are also joined

(i.e., loop closures). Whether the graph is of historic poses, or of scene features, its

structure is very similar, in that it connects either ‘nearby’ poses or the features

measured from those poses, and there is not a fundamental difference between the

two approaches.

This leads us to conclude that the most likely representation for Spatial AI is

to represent 3D space by a graph of features, which are linked in multi-scale pat-

terns relating to camera motion and together are able of generating dense scene

predictions. Within the main processor, a major area will be devoted to storing

this map, in a manner which is distributed around potentially a large number of

individual cores which are connected in a topology to mirror the map graph topol-

ogy. In SLAM, the map is defined and grown dynamically, so the graph within the

processor must either be able to change dynamically as well, or must be initially

defined with a large unused capacity which is filled as SLAM progresses.

Importantly, a significant portion of the processing associated with large-scale

SLAM can be built directly into this graph. This is mainly the sort of ‘maintenance’

processing via which the map optimises, refines, and abstracts itself; including:

1 Feature clustering; object segmentation and identification.

2 Loop closure detection.

3 Loop closure optimisation.

4 Map regularisation (smoothing).

5 Unsupervised clustering to discover new semantic categories.

With time, data, and processing, a map which starts off as dense geometry and

low-level features can be refined towards an efficient object-level map. These op-

erations will run with very high parallelism and data locality. Smoothing and seg-

mentation for instance take place at each part of the graph separately, while global

map optimisation can be implemented via message passing, as we will explain in

Section 18.6. Most importantly, all of these processes can take place in a manner

which is internal to the map store itself.

The on-chip memory of current graph processors like Graphcore’s IPU is fully

distributed among the processing tiles, and the total capacity is large (on the order

of around 1MB per tile, or around 1GB total over 1000 tiles), but not huge (certainly

when compared with standard off-processor RAM), and therefore there should be

an emphasis on rapidly abstracting the map store towards an efficient long-term

form. Future processors may however have much more distributed storage.



18.5 Mapping Spatial AI Graphs to Hardware 527

18.5.2 Real-Time Loop

We make a hypothesis that the core computation graph for the tightest real-

time loop of future SLAM systems will have many elements which are familiar

from today’s systems. Specifically the dense SLAM paradigm introduced by New-

combe et al. [805, 807, 806] is at the centre of this, because this approach aims to

model the world in dense, generative detail such that every new pixel of data from

a camera can be compared against a model-based prediction. This allows systems

which are generally ‘aware’, since as they continually model the state of the world

in front of the camera, they can detect when something is out of place with respect

to this model, and therefore dense SLAM systems are now being developed which

are moving beyond static scenes to reconstruct and track dynamic scenes [808, 962].

Dense SLAM systems can also make the best possible use of scene priors, which

will increasingly come from learning rather than being hand-designed.

Some of the main computational elements in the real-time loop are:

1 Empirical labelling of images to features, usually via a neural network.

2 Rendering: producing a dense prediction from the world map into image space.

3 Tracking: aligning a prediction with new image data, including finding outliers

and detecting independent movement.

4 Fusion: fusing updated geometry and labels back into the map.

5 Self-supervised learning from the running system.

Architecturally, this processing depends on both the live input from cameras and

other sensors, and the world model, and must therefore in some sense take place

‘between’ them. Data from the map store is needed for rendering, when a predicted

view of the scene is needed for tracking against new image data, and for fusion,

when information (geometry and labels) acquired from the new data is used to

update the map contents. This is generally massively parallel processing which is

familiar from GPU-accelerated dense SLAM systems, and these functions can be

defined as fixed elements in a computational graph which use a number of nodes and

access a significant fraction of the main computational resource. Functions such as

segmentation and labelling of input images could also be implemented here, though

as we will discuss shortly these would be more sensibly located outside of the main

processor by close-to-sensor processing.

The most difficult issue in applying graph processing to the real-time loop is

the fact that correspondence with the relevant part of the graph-based map store

for these operations changes continuously due to motion. This seems to preclude

defining an efficient, fixed data path to the distributed memory where map infor-

mation will be stored. Although there will be internal processing happening in the

map store, this will be focused on maintenance and it does not seem appropriate

to move data rapidly around the map store, for instance such that the currently

observed part of the map is always available in a particular graph location.



528 The Computational Structure of Spatial AI Systems

Instead, a possible solution is to define special interface nodes which sit between

the real-time loop block and the map store. These are nodes focused on communi-

cation, which are connected to the relevant components of real-time loop processing

and then also to various sites in the map graph, and may have some analogue in

the hippocampus of mammal brains. If the map store is organised such that it has

a ‘small world’ topology, meaning that any part is joined to any other part by a

small number of edge hops, then the interface nodes should be able to access (copy)

any relevant map data in a small number of operations and serve them up to the

real-time loop.

Each node in the map store will also have to play some part in this communication

procedure, where it will sometimes be used as part of the route for copying map

data backwards and forwards.

18.5.3 Processing Close to the Image Plane

A robot or other device will have one or more cameras which interface with the

main processor, and we believe that the technology will develop to allow a significant

amount of processing to occur either within the sensors themselves or nearby, with

the key aim of reducing the amount of redundant data which flows from the cameras.

The pixels which make up the image sensor of a camera have a regular, usually

rectangular geometry. While each of these pixels is normally independently sensitive

to light intensity, many vision algorithms make use of the fact that the output of

nearby pixels tends to be strongly correlated. This is because nearby pixels often

observe parts of the same scene objects and structures. Most commonly, a regular

graph in which each pixel is connected to its four (up, down, left, right) neighbours

is used as the basis for smoothing operations in many early vision problems such as

dense matching or optical flow estimation (e.g. [886]). The regular graph structure

of images is also taken advantage of by the early convolutional layers of CNNs for

all kinds of computer vision tasks. Here the multiple levels of convolutions also

acknowledge the typical hierarchical nature of local regularity in image data.

Most straightforwardly, a sensor with in-plane processing similar to SCAMP5 [742]

could be used to carry out purely bottom-up processing of the input image stream;

abstracting, simplifying, and detecting features to reduce it to a more compact,

data-rich form. Calculations such as local tracking (e.g., optical flow estimation),

segmentation and simple labelling could also be performed. This has biological

analogies with the ‘early vision’ processing carried out by the retina and optic

nerve.

Tracking using in-plane processing is an interesting problem. In-plane processing

is good for problems where data access can be kept very local, so estimating local

image motion (optical flow), where the output is a motion vector at every pixel, is

well suited. At each update, the amount of image change locally can be augmented

using local regularisation where smoothness is applied based on the differences of



18.5 Mapping Spatial AI Graphs to Hardware 529

neighbouring pixels. If we look at the parallel implementation of an algorithm like

Pock’s TV-L1 optical flow [886], we see that it involves pixelwise-parallel operations,

where purely parallel steps relating to the data term alternate with regularisation

steps involving gradient computation, which could be achieved using message pass-

ing between adjacent neighbours. So such an algorithm is an excellent candidate

for implementation on an in-plane processor.

More challenging is the tracking usually required in SLAM, where from local

image changes we wish to estimate consistent global motion parameters relating to

a model. This could be instantaneous camera motion estimation, where we wish

to estimate the amount of global rotation for instance between one frame and the

next via whole image alignment [715], or tracking against a persistent scene model

as in dense SLAM [705, 805]. When dense tracking is implemented on standard

processors, it involves alternation of purely parallel steps for error term compu-

tation across all pixels with reduction steps where all errors are summed and the

global motion parameters are updated. The reduction step, where a global model

is imposed, plays the role of regularisation, but the big difference is that the regu-

larisation here is global rather than local.

In a modern system, such global tracking is usually best achieved by a combi-

nation of GPU and CPU, and therefore a regular (and expensive) transfer of data

between the two. But we do not have this option if we wish to use in-plane process-

ing and keep all computations and memory local. Our main option for not giving

up on data locality is to give up on guaranteed global consistency of our tracking

solution, but to aim to converge towards this via local message passing. Each pixel

could keep its own estimate of the global motion parameters of interest, and after

each iteration share these estimates with local neighbours. We would expect that

global convergence would eventually be reached, but that after a certain number of

iterations that the values held by each pixel would be close enough that any single

pixel could be queried for a usable estimate. Convergence would be much faster if

the in-plane processor also featured some longer data-passing links between pixels,

or more generally had a ‘small world’ pattern of interconnections.

Turning to the questions of labelling using local processing, this is certainly feasi-

ble but a problem with sophisticated labelling is that current in-plane processor de-

signs have very small amounts of memory, which makes it difficult to store learned

convolutional masks or similar. Future processors for bottom-up processing may

move beyond operating purely in the image plane, and use a 3D stacking approach

which could be well suited to implementing the layers of a CNN. Currently 3D

silicon stacks are hard to manufacture, and there are particular challenges around

heat dissipation and cost, but the time will surely come when extracting a feature

hierarchy is a built-in capability of a computer vision camera. Work such as fea-

turemetric tracking [243] shows the wide general use this would have. We should

investigate the full range of outputs that a single purely feed-forward CNN could

produce when trained with a multi-task learning approach.



530 The Computational Structure of Spatial AI Systems

An interesting question is whether processing close to the image plane will remain

purely bottom-up, or whether two-way communication between cameras and the

main processor will be worthwhile. This would enable model predictions from the

world map to be delivered to the camera at some rate, and therefore for higher level

processing to be carried out there such as model-based tracking of the camera’s own

motion or known objects.

In the limit, if a fully model-based prediction is able to be communicated to the

camera, then the camera need only return information which is different from the

prediction. This is in some sense a limit of the way that an event camera works. An

event camera outputs data if a pixel changes in brightness — which is like assuming

that the default is that the camera’s view of the scene will stay the same. A general

‘model-based event camera’ will output data if something happens which differs

from its prediction. These questions come down to key issues of ‘bottom-up vs.

top-down’ processing, and we will consider them further in the next section.

As a final note here, any Spatial AI system must ultimately deliver a task-

determined output. This could be the commands sent to robot actuators, com-

munication to be sent to another robot or annotations and displays to be sent to a

human operator in an IA setting. Just as ‘close to the sensor’ processing is efficient,

there should alse be a role for ‘close to the actuator’ processing, particularly be-

cause actuators or communication channels have their own types of sensing (torque

feedback for actuators; perhaps eye tracking or other measures for an AR display)

which need to be taken account of and fused in tight loops.

18.6 Convergent Distributed Computation

with Gaussian Belief Propagation

We have argued that efficiency and low power demand a graph design for Spa-

tial AI systems, where processing and local storage is divided into modules and

spread potentially across several hardware processors and sensors, but so far said

little about the algorithms that will keep the stored representations up to date.

As explained throughout this handbook, probability and estimation theory provide

the fundamental background for state estimation in SLAM, and in particular factor

graphs [259] have been universally useful as a flexible representation of the structure

of the complex structure of SLAM systems.

Sutton’s famous ‘Bitter Lesson’ of AI [1068] is that ‘general methods that leverage

computation are ultimately the most effective, and by a large margin’. In Spatial AI,

if we truly believe that low-power computation and storage resources will become

more and more distributed, both within and across processors, the right algorithms

to bet on should be ready to scale with these conditions. The purest representation

of the knowledge in a Spatial AI problem is the factor graph itself, rather than

probability distributions derived from it, which will always have to be stored with

some approximation. What we are really seeking is an algorithm which implements



18.6 Convergent Distributed Computation with Gaussian Belief Propagation 531

Spatial AI by storing the factor graph as the master representation and operating

on it in place using local computation and message passing to implement estimation

of variables as needed but taking account of global influence. Messages should con-

tinually ‘bubble’ around a large factor graph, which is changing continually with

the addition of new measurement factors and variable nodes, and perhaps never

reaching full convergence, but always being close in a way which can be controlled.

It may be that estimation processes will proceed in an attention-driven way, using

a lot of computation to bring high quality to currently important areas or aspects,

which then are allowed to fade to a less up-to-date state once attention moves on,

in a ‘just-in-time’ style.

If we wish estimation on factor graphs to have the properties of purely local

computation and data storage, we must get away from the idea that a ‘god’s eye

view’ of the whole structure of the graph will ever be available. We are guided

towards methods where each node of a processing and storage graph can operate

with minimum knowledge of the whole graph structure –— at a minimum, only

purely local information about itself and its near neighbours.

This is the character of the Belief Propagation (BP) family of algorithms for

inference of probabilistic factor graphs. In BP, each variable and factor node pro-

cesses messages with no knowledge about the rest of the graph other than its direct

neighbours, and BP can converge with arbitrary, asynchronous message passing

schedules which need no global coordination.

In particular, the most important techniques in current geometric Spatial AI

estimation are all Gaussian-based techniques such as Extended Kalman Filtering

and Bundle Adjustment. Gaussian-based methods have very close links to linear

algebra, because optimising Gaussian likelihoods is equivalent to least-squares min-

imisation which involves the solution of linear systems. Gaussian Belief Propagation

(GBP) is the specific form of BP when all factors and variables in a graph have

Gaussian form, and it has particularly strong properties of convergence to optimal

solutions in loopy graphs.

Davison and Ortiz gave a general introduction to GBP in FutureMapping 2 [251],

and an interactive tutorial is presented in the online article ‘A Visual Introduction

to Gaussian Belief Propagation’ [839]. These articles showed that GBP is fully

compatible with the non-linear and robust factors which are ubiquitous in Spatial

AI problems, and can be applied to problems including pose graph optimisation,

sparse SLAM, surface fitting and image smoothing.

There had been a previous practical implementation of GBP to SLAM in [913],

showing that it has some useful properties even when implemented on a single

CPU, but Ortiz et al. [838] demonstrated its longer-term potential by using it to

implement high performance bundle adjustment on a Graphcore IPU chip, with

a fully distributed implementation solving small real vision optimisation problems

30X faster than on a CPU. Figure 18.2 shows the simple way that a bundle ad-



532 The Computational Structure of Spatial AI Systems

Figure 18.2 Mapping a bundle adjustment factor graph onto the tiles (cores) of a graph
processor, allowing rapid, distributed, in-place inference via Gaussian Belief Propagation,
from [838] (©IEEE). Here we display the most simple mapping in which each node in the
factor graph is mapped onto a single arbitrary tile. Keyframe nodes are blue, landmark
nodes are green and measurement factor nodes are orange. Tiles process synchronously,
alternating compute and exchange steps.

justment factor graph was laid down on the tiles of a graph processor to take full

advantage of its parallelism.

The generality of distributed of computation on graphs with GBP was taken

even further by Murai et al. in Robot Web [794], showing that it can also be

used for many-robot Spatial AI problems. Specifically, multi-robot localisation was

formulated as a single factor graph as shown in Figure 18.3, which was divided up

and stored across a network of robots connected by ad-hoc communication such

as Wi-Fi. Robot Web showed GBP can achieve convergent, accurate estimation

even with asynchronous message passing and in the presence of failing sensors

and dropped communication. These properties also promise much for single robot

Spatial AI when we envision the very long-term prospects for robot processors,

which may achieve even higher performance per unit energy by becoming more

brain-like — with perhaps low-precision number representation and asynchronous

or event-driven parallelism.



18.7 Continual Learning within Factor Graphs 533

Robot 2

Robot 1

Robot 3

Pose Variable
Inter-robot

Measurement

Odometry Factor

Figure 18.3 A factor graph for multi-robot localisation, taken from Robot Web [794]
(©IEEE). Responsibility for storing and updating it is divided up between the multiple
robots participating, as shown by the coloured regions separated by dotted lines. Each
robot maintains its own pose variable nodes, odometry factors, and factors for the inter-
robot measurements made by its sensors, and carries out continuous GBP on this graph
fragment. Message passing across dotted line bound arises is via Robot Web Pages pub-
lished and updated by each robot, and happens on an asynchronous and ad-hoc basis.

18.7 Continual Learning within Factor Graphs

We discussed the increasing importance of learned components in Spatial AI in

Section 18.3, but interfacing these with modular state estimation continues to be

clunky and with many limitations. Looking further ahead, we believe that the

following ambitious properties are important for learning in Spatial AI:

1 Learning will be a key part of Spatial AI systems, but should run seamlessly

alongside existing tried-and-tested hand-designed probabilistic inference algo-

rithms which can correctly weigh and combine multiple uncertain information

sources.

2 The primary mode of learning should be self-supervised, meaning that a running

system can learn useful abstractions without external help, such as from a human

providing labelled datasets.

3 Learning in Spatial AI should be continual, taking place as part of a running

system whose performance is gradually improving in consequence. We should

move away from the current artificial divide between ‘training time’ and ‘test

time’.

4 Learned components should ideally be interpretable, or human understandable,

at least at some level of modules and how they connect together.



534 The Computational Structure of Spatial AI Systems

Most learning algorithms, and in particular standard neural networks, are trained

and used separately. Training finds values for the parameters (weights) of a model

by gradient descent using empirical numbers to determine learning rates and stop-

ping criteria, and ad-hoc concepts are used such as dividing data into training and

validation sets. It is very hard to imagine how such methods could be used properly

for continual, self-supervised learning alongside probabilistic estimation.

We first argue that the points above lead us to employ a probabilistic approach

to machine learning for Spatial AI. In probabilistic, or Bayesian ML, the param-

eters which represent a learned model are estimated using the same probabilistic

inference laws as in standard probabilistic inference. There is no fundamental dif-

ference between state estimation in probabilistic inference, and model learning in

Bayesian ML. It is simply a matter of structure and scale. Using the same machin-

ery for both means that we can correctly attack self-supervised, continual learning

alongside standard Bayesian inference.

Efficient and scalable Bayesian ML is a challenging topic, but Nabarro et al.

[799] have recently made a proposal and preliminary demonstrations of a GBP

Learning approach which is fully compatible with the factor graph Spatial AI vision

of this chapter. The key idea is that overparameterised learning structures are built

into factor graphs themselves, and that learning takes place as Bayesian inference

using standard Gaussian Belief Propagation machinery. Instead of the neurons and

weights of a neural networks, we build a graph of variables and factors with a

similar structure. Variables infer values in a manner equivalent to weight learning,

but this can happen continuously and with no explicit difference between training

and inference time. Non-linear factors play the role of neurons, able to soft-switch

and therefore combine in varied patterns to represent complex functions. Figure 18.4

from [799] shows a factor graph block with convolutional structure which has was

used in a system able to to continual learning of image denoising and classification.

This approach or something similar could unlock general continual learning in

Spatial AI. For instance, a robot could learn a smoothing or segmentation model for

a scene while reconstructing it. The unified factor graph structure of both learning

and estimations components of its systems would allow many choices of efficient

or distributed estimation, or the easy synchronisation of learned elements across

multiple devices.

18.8 Performance Metrics

One of the hypotheses we made at the start of this chapter is that the usefulness

of a Spatial AI system for a wide range of tasks is well represented by a relatively

small number of performance measures which have general importance.

The most common focus in performance measurement in SLAM is on localisation

accuracy, and there have been several efforts to create benchmark datasets for



18.8 Performance Metrics 535

Figure 18.4 In GBP Learning [799], factor graphs are designed with structure which mir-
rors common NN architectures, enabling distributed training and prediction with GBP.
Learnable parameters are included as random variables (circles), as are inputs, outputs
and activations. The parameters are shared over across all observations, where the other
variables are copied once per observation. Factors (black squares) between layers con-
strain their representations to be locally consistent, while those attached to inputs and
outputs encourage compatibility with observation. The inter-layer factors are non-linear
to enable soft-switching behaviour. This example architecture for image classification com-
prises convolutional, max pooling and dense projection layers. The same architecture could
be trained without supervision by removing the output observation factor.

this (e.g. [1050]). An external pose measurement from a motion capture system is

considered as the ground truth against which a SLAM algorithm is compared.

We have argued that Spatial AI is about much more than pose estimation, and

more recent datasets have tried to broaden the scope of what can be evaluated.

Dense scene modelling is difficult to evaluate because it requires an expensive and

time-consuming process such as detailed laser scanning to capture a complete model

of a real scene which is accurate and complete enough to be considered ground truth.

The alternative, for this and other axes of evaluation, is to generate synthetic test

data using computer graphics, such as the ICL-NUIM dataset [436]. Recently this

approach has been extended also to provide ground truth for semantic labelling

(e.g., SceneNet RGB-D [753]), another output where it is difficult to get good

ground truth for real data. It is natural to be suspicious of the value of evalua-



536 The Computational Structure of Spatial AI Systems

tion against synthetic test data, and there are many new approaches to gathering

large scale real mapping data, such as crowdsourcing (e.g. ScanNet [247]). How-

ever, synthetic data is getting better all the time and we believe will only grow in

importance.

Stepping back to a bigger point, we can question the value of using benchmarks

at all for Spatial AI systems. It is an often heard comment that computer vision

researchers are hooked on dataset evaluation, and that far too much effort has been

spent on optimising and combining algorithms to achieve a few more percentage

points on benchmarks rather than working on new ideas and techniques. SLAM,

due to its real-time nature, and wide range of useful outputs and performance levels

for different applications, has been particularly difficult to capture by meaningful

benchmarks. We have usually felt that more can be learned about the usefulness of

a visual SLAM system by playing with it for a minute or so, adaptively and qualita-

tively checking its behaviour via live visualisations, than from its measured perfor-

mance against any benchmark available. Progress has therefore been more mean-

ingfully represented by the progress of high quality real-time open source SLAM

research systems (e.g., MonoSLAM [253, 252], PTAM [591], KinectFusion [807],

LSD-SLAM [315], ORB-SLAM [793], OKVIS [652], SVO [341], ElasticFusion [1181],

DROID-SLAM [1086], Gaussian Splatting SLAM [747], MASt3R-SLAM [795]) that

people can experiment with, rather than benchmarks.

Benchmarks for SLAM have been unsatisfactory because they make assumptions

about the scene type and shape, camera and other sensor choices and placement,

frame-rate and resolution, etc., and focus in on certain evaluation aspects such as

accuracy while downplaying other arguably more important ones such as efficiency

or robustness. For instance, many papers evaluating algorithms against accuracy

benchmarks make choices among the test sequences available in a dataset such

as [1050] and report performance only on those where they basically ‘work’.

This brings us to ask whether we should build benchmarks and aim to evaluate

and compare SLAM systems at all? We still argue yes, but the focus on broadening

what is meant by a benchmark for a Spatial AI system, and an acknowledgement

that we should not put too much faith in what they tell us.

The SLAMBench framework released by the PAMELA research project [801]

represented initial work on looking at the performance of a whole Spatial AI system.

In SLAMBench, a SLAM algorithm (specifically KinectFusion [807]) is measured in

terms of both accuracy and computational cost across a range of processor platforms

and using different language implementations. Over the longer term, we believe

that benchmarking should move towards measures which have the general ability

to predict performance on tasks that a Spatial AI might need to perform. This will

clearly be a multi-objective set of metrics, and analysis of Pareto fronts [802] will

permit choices to be made for a particular application.

A possible set of metrics includes:



18.9 Conclusions 537

1 Local pose accuracy in newly explored areas (visual odometry drift rate).

2 Long-term metric pose repeatability in well mapped areas.

3 Tracking robustness percentage.

4 Relocalisation robustness percentage.

5 SLAM system latency.

6 Dense distance prediction accuracy at every pixel.

7 Object segmentation accuracy.

8 Object classification accuracy.

9 Pixel registration accuracy for augmented reality.

10 Scene change detection accuracy.

11 Power usage.

12 On-device data movement, measured in bits×millimetres.

18.9 Conclusions

To conclude, the research area of Spatial AI and SLAM will continue to gain in

importance, and evolve towards the general 3D perception capability needed for

many different types of application with the full fruition of the combination of

hand-designed estimation and machine learning techniques. However, wide use in

real applications will require this advance in capability to be accompanied by driving

down the resources required, and this needs joined-up thinking about algorithms,

processors, and sensors. The key to efficient systems will be to identify their compu-

tational structure, and to design for sparse graph patterns in algorithms and data

storage, and to fit this as closely as possible to the new types of hardware which

will soon gain in importance.

Both hand-designed state estimation and machine learning will continue to be im-

portant, and must be fully integrated to enable flexible and continual learning. We

believe we will witnessing an interesting convergence, as state estimation systems

add more and more learned elements, and learned networks introduce increased

domain knowledge and structure. Either route should lead to the same place, and

the same research questions about computational structure will need to be tackled.





Notes



References

[1] FastTriggs. https://pypose.org/docs/main/generated/pypose.optim.
corrector.FastTriggs/.

[2] LieTensor. https://pypose.org/docs/main/generated/pypose.
LieTensor.

[3] PyPose Documents. https://pypose.org/docs/.
[4] PyPose Tutorial. https://github.com/pypose/tutorials.
[5] Reality Labs Chief Scientist Outlines a New Compute Archi-

tecture for True AR Glasses. https://www.roadtovr.com/
michael-abrash-iedm-2021-compute-architecture-for-ar-glasses/.

[6] 2015. You Only Look Once: Unified, Real-Time Object Detection.
[7] 2025 (Mar.). Meta Quest 3: Technical Specifications.
[8] A, Zeng, Attarian, M., Ichter, B., Choromanski, K., Wong, A., Welker, S.,

Tombari, F., Purohit, A., Ryoo, M., Sindhwani, V., Lee, J., Vanhoucke, V.,
and Florence, P. 2022. Socratic Models: Composing Zero-Shot Multimodal
Reasoning with Language. arXiv.

[9] Abadi, Mart́ın, Barham, Paul, Chen, Jianmin, Chen, Zhifeng, Davis, Andy,
Dean, Jeffrey, Devin, Matthieu, Ghemawat, Sanjay, Irving, Geoffrey, Isard,
Michael, et al. 2016. TensorFlow: a system for Large-Scale machine learning.
Pages 265–283 of: 12th USENIX symposium on operating systems design and
implementation (OSDI 16).

[10] Abate, M., Chang, Y., Hughes, N., and Carlone, L. 2023a. Kimera2: Robust
and Accurate Metric-Semantic SLAM in the Real World. In: Intl. Sym. on
Experimental Robotics (ISER).

[11] Abate, M., Schwartz, A., Wong, X.I., Luo, W., Littman, R., Klinger, M.,
Kuhnert, L., Blue, D., and Carlone, L. 2023b. Multi-Camera Visual-Inertial
Simultaneous Localization and Mapping for Autonomous Valet Parking. In:
Intl. Sym. on Experimental Robotics (ISER). ,.

[12] Achiam, Josh, Adler, Steven, Agarwal, Sandhini, Ahmad, Lama, Akkaya,
Ilge, Aleman, Florencia Leoni, Almeida, Diogo, Altenschmidt, Janko, Alt-
man, Sam, Anadkat, Shyamal, et al. 2023. Gpt-4 technical report. arXiv
preprint arXiv:2303.08774.

[13] Adolfsson, Daniel, Magnusson, Martin, Alhashimi, Anas, Lilienthal,
Achim J., and Andreasson, Henrik. 2021. CFEAR Radarodometry – Con-
servative Filtering for Efficient and Accurate Radar Odometry. Pages 5462–
5469 of: IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems (IROS).

https://pypose.org/docs/main/generated/pypose.optim.corrector.FastTriggs/
https://pypose.org/docs/main/generated/pypose.optim.corrector.FastTriggs/
https://pypose.org/docs/main/generated/pypose.LieTensor
https://pypose.org/docs/main/generated/pypose.LieTensor
https://pypose.org/docs/
https://github.com/pypose/tutorials
https://www.roadtovr.com/michael-abrash-iedm-2021-compute-architecture-for-ar-glasses/
https://www.roadtovr.com/michael-abrash-iedm-2021-compute-architecture-for-ar-glasses/


References 541

[14] Adolfsson, Daniel, Castellano-Quero, Manuel, Magnusson, Martin, Lilien-
thal, Achim J., and Andreasson, Henrik. 2022. CorAl: Introspection for
robust radar and lidar perception in diverse environments using differential
entropy. Robotics and Autonomous Systems, May, 104136.

[15] Adolfsson, Daniel, Magnusson, Martin, Alhashimi, Anas, Lilienthal,
Achim J., and Andreasson, Henrik. 2023a. Lidar-Level Localization With
Radar? The CFEAR Approach to Accurate, Fast, and Robust Large-Scale
Radar Odometry in Diverse Environments. IEEE Trans. Robotics, 39(2),
1476–1495.

[16] Adolfsson, Daniel, Karlsson, Mattias, Kubelka, Vladimı́r, Magnusson, Mar-
tin, and Andreasson, Henrik. 2023b. TBV Radar SLAM – trust but verify
loop candidates. IEEE Robotics and Automation Letters, 8, 3613–3620.

[17] Aftab, Khurrum, and Hartley, Richard. 2015. Convergence of iteratively
re-weighted least squares to robust m-estimators. Pages 480–487 of: 2015
IEEE Winter Conference on Applications of Computer Vision. IEEE.

[18] Agarwal, P., Grisetti, G., Tipaldi, G. D., Spinello, L., Burgard, W., and
Stachniss, C. 2014. Experimental Analysis of Dynamic Covariance Scaling
for Robust Map Optimization Under Bad Initial Estimates. In: IEEE Intl.
Conf. on Robotics and Automation (ICRA).

[19] Agarwal, Pratik, Tipaldi, Gian Diego, Spinello, Luciano, Stachniss, Cyrill,
and Burgard, Wolfram. 2013. Robust map optimization using dynamic co-
variance scaling. In: IEEE Intl. Conf. on Robotics and Automation (ICRA).

[20] Agarwal, Sameer, Snavely, Noah, Simon, Ian, Seitz, Steven M, and Szeliski,
Richard. 2009. Building Rome in a day. Pages 72–79 of: Intl. Conf. on
Computer Vision (ICCV). IEEE.

[21] Agarwal, Sameer, Furukawa, Yasutaka, Snavely, Noah, Simon, Ian, Curless,
Brian, Seitz, Steven M, and Szeliski, Richard. 2011. Building Rome in a day.
Communications of the ACM, 54(10), 105–112.

[22] Agarwal, Sameer, Mierle, Keir, and Team, The Ceres Solver. 2022 (3). Ceres
Solver.

[23] Agate, M., Grimsdale, R. L., and Lister, P. F. 1991. The HERO Algorithm
for Ray-tracing Octrees. Pages 61–73 of: Advances in Computer Graphics
Hardware IV.

[24] Agia, Christopher, Jatavallabhula, Krishna Murthy, Khodeir, Mohamed,
Miksik, Ondrej, Vineet, Vibhav, Mukadam, Mustafa, Paull, Liam, and
Shkurti, Florian. 2022. Taskography: Evaluating Robot Task Planning over
Large 3D Scene Graphs. Pages 46–58 of: Conf. on Robot Learning (CoRL).

[25] Agrawal, A., Amos, B., Barratt, S., Boyd, S., Diamond, S., and Kolter, Z.
2019. Differentiable Convex Optimization Layers. In: Advances in Neural
Information Processing Systems.

[26] Agrawal, Varun, Bertrand, Sylvain, Griffin, Robert J., and Dellaert, Frank.
2022. Proprioceptive State Estimation of Legged Robots with Kinematic
Chain Modeling. Pages 178–185 of: IEEE Intl. Conf. on Humanoid Robots.

[27] Agudo, Antonio, and Moreno-Noguer, Francesc. 2015. Simultaneous pose
and non-rigid shape with particle dynamics. In: CVPR.

[28] Agudo, Antonio, Agapito, Lourdes, Calvo, Begona, and Montiel, J.M.M.
2014. Good vibrations: A modal analysis approach for sequential non-rigid
structure from motion. In: CVPR.



542 References

[29] Agudo, Antonio, Moreno-Noguer, Francesc, Calvo, Begoña, and Montiel,
José Maŕıa Mart́ınez. 2015. Sequential non-rigid structure from motion us-
ing physical priors. IEEE transactions on pattern analysis and machine
intelligence, 38(5), 979–994.

[30] Akhter, Ijaz, Sheikh, Yaser, Khan, Sohaib, and Kanade, Takeo. 2011. Tra-
jectory space: A dual representation for nonrigid structure from motion.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 33(7),
1442–1456.

[31] Al-Rfou, Rami, Alain, Guillaume, Almahairi, Amjad, Angermueller,
Christof, Bahdanau, Dzmitry, Ballas, Nicolas, Bastien, Frédéric, Bayer,
Justin, Belikov, Anatoly, Belopolsky, Alexander, et al. 2016. Theano: A
Python framework for fast computation of mathematical expressions. arXiv
e-prints, arXiv–1605.

[32] Alhashimi, Anas, Adolfsson, Daniel, Andreasson, Henrik, Lilienthal,
Achim J., and Magnusson, Martin. 2024. BFAR: improving radar odom-
etry estimation using a bounded false alarm rate detector. Autonomous
Robots, 48(29).

[33] Alismail, Hatem, Browning, Brett, and Lucey, Simon. 2016. Photometric
Bundle Adjustment for Vision-Based SLAM. Pages 324–341 of: Asian Conf.
on Computer Vision (ACCV).

[34] Alizadeh, F., Haeberly, JP.A., and Overton, M.L. 1997. Complementarity
and nondegeneracy in semidefinite programming. Mathematical Program-
ming, 77, 111–128.

[35] Ambruş, Rareş, Bore, Nils, Folkesson, John, and Jensfelt, Patric. 2014. Meta-
rooms: Building and maintaining long term spatial models in a dynamic
world. Pages 1854–1861 of: IEEE/RSJ Intl. Conf. on Intelligent Robots and
Systems (IROS). IEEE.

[36] Amestoy, P.R., Davis, T., and Duff, I.S. 1996. An approximate minimum
degree ordering algorithm. SIAM Journal on Matrix Analysis and Applica-
tions, 17(4), 886–905.

[37] Amini, Alexander, Wang, Tsun-Hsuan, Gilitschenski, Igor, Schwarting,
Wilko, Liu, Zhijian, Han, Song, Karaman, Sertac, and Rus, Daniela. 2022.
VISTA 2.0: An Open, Data-driven Simulator for Multimodal Sensing and
Policy Learning for Autonomous Vehicles. In: IEEE Intl. Conf. on Robotics
and Automation (ICRA). IEEE.

[38] Amir, Arnon, Taba, Brian, Berg, David, Melano, Timothy, McKinstry, Jef-
frey, Nolfo, Carmelo Di, Nayak, Tapan, Andreopoulos, Alexander, Garreau,
Guillaume, Mendoza, Marcela, Kusnitz, Jeff, Debole, Michael, Esser, Steve,
Delbruck, Tobi, Flickner, Myron, and Modha, Dharmendra. 2017. A Low
Power, Fully Event-Based Gesture Recognition System. Pages 7388–7397 of:
IEEE Conf. on Computer Vision and Pattern Recognition (CVPR).

[39] Andersson, Joel AE, Gillis, Joris, Horn, Greg, Rawlings, James B, and Diehl,
Moritz. 2019. CasADi: a software framework for nonlinear optimization and
optimal control. Mathematical Programming Computation, 11(1), 1–36.

[40] Ankenbauer, Jacqueline, Lusk, Parker C., and How, Jonathan P. 2023
(Mar.). Global Localization in Unstructured Environments Using Semantic
Object Maps Built from Various Viewpoints.



References 543

[41] Antonante, P., Tzoumas, V., Yang, H., and Carlone, L. 2021. Outlier-
Robust Estimation: Hardness, Minimally Tuned Algorithms, and Applica-
tions. IEEE Trans. Robotics, 38(1), 281–301. .

[42] Arandjelovic, Relja, Gronat, Petr, Torii, Akihiko, Pajdla, Tomas, and Sivic,
Josef. 2016. NetVLAD: CNN architecture for weakly supervised place recog-
nition. Pages 5297–5307 of: IEEE Conf. on Computer Vision and Pattern
Recognition (CVPR).

[43] Armeni, Iro, He, Zhi-Yang, Gwak, JunYoung, Zamir, Amir R, Fischer, Mar-
tin, Malik, Jitendra, and Savarese, Silvio. 2019. 3D Scene Graph: A Struc-
ture for Unified Semantics, 3D Space, and Camera. Pages 5664–5673 of: Intl.
Conf. on Computer Vision (ICCV).

[44] Asgharivaskasi, Arash, and Atanasov, Nikolay. 2023. Semantic OcTree Map-
ping and Shannon Mutual Information Computation for Robot Exploration.
IEEE Trans. Robotics, 39(3), 1910–1928.

[45] Asgharivaskasi, Arash, Girke, Fritz, and Atanasov, Nikolay. 2025. Rieman-
nian Optimization for Active Mapping With Robot Teams. IEEE Trans.
Robotics, 41, 1077–1097.

[46] Asokan, Anju, and Anitha, JJESI. 2019. Change detection techniques for
remote sensing applications: A survey. Earth Science Informatics, 12, 143–
160.

[47] Atanasov, Nikolay, Zhu, Menglong, Daniilidis, Kostas, and Pappas, George J.
2014. Semantic Localization Via the Matrix Permanent. In: Robotics: Sci-
ence and Systems.

[48] Atanasov, Nikolay, Zhu, Menglong, Daniilidis, Kostas, and Pappas, George J.
2016. Localization from semantic observations via the matrix permanent.
Intl. J. of Robotics Research, 35(1-3), 73–99.

[49] Bae, Gwangtak, Choi, Changwoon, Heo, Hyeongjun, Kim, Sang Min, and
Kim, Young Min. 2024. I2-SLAM: Inverting Imaging Process for Ro-
bust Photorealistic Dense SLAM. In: European Conf. on Computer Vision
(ECCV).

[50] Bahdanau, Dzmitry, Cho, Kyunghyun, and Bengio, Yoshua. 2015. Neural
machine translation by jointly learning to align and translate. In: ICLR.

[51] Ballester, Irene, Fontán, Alejandro, Civera, Javier, Strobl, Klaus H, and
Triebel, Rudolph. 2021. DOT: Dynamic object tracking for visual SLAM.
Pages 11705–11711 of: 2021 IEEE international conference on robotics and
automation (ICRA). IEEE.

[52] Banani, M. El, Raj, A., Maninis, K., Kar, A., Li, Y., Rubinstein, M., Sun, D.,
Guibas, L., Johnson, J., and Jampani, V. 2024. Probing the 3D Awareness
of Visual Foundation Models. In: IEEE Conf. on Computer Vision and
Pattern Recognition (CVPR).

[53] Barath, Daniel, Noskova, Jana, Ivashechkin, Maksym, and Matas, Jiri. 2020.
MAGSAC++, a fast, reliable and accurate robust estimator. Pages 1304–
1312 of: IEEE Conf. on Computer Vision and Pattern Recognition (CVPR).

[54] Barfoot, T D. 2024. State Estimation for Robotics. 2nd edn. Cambridge
University Press.

[55] Barfoot, T. D., and Furgale, P. T. 2014. Associating Uncertainty with Three-
Dimensional Poses for use in Estimation Problems. IEEE Trans. Robotics,
30(3), 679–693.



544 References

[56] Barfoot, T D, Forbes, J R, and D’Eleuterio, G M T. 2022. Vectorial Param-
eterizations of Pose. Robotica, 40(7), 2409–2427.

[57] Barfoot, Tim D, Tong, Chi Hay, and Särkkä, Simo. 2014. Batch Continuous-
Time Trajectory Estimation as Exactly Sparse Gaussian Process Regression.
Pages 1–10 of: Robotics: Science and Systems (RSS), vol. 10. Citeseer.

[58] Barfoot, Timothy D. 2017. State estimation for robotics. Cambridge Uni-
versity Press.

[59] Barnes, Dan, and Posner, Ingmar. 2020. Under the Radar: Learning to
Predict Robust Keypoints for Odometry Estimation and Metric Localisation
in Radar. Pages 9484–9490 of: IEEE Intl. Conf. on Robotics and Automation
(ICRA).

[60] Barnes, Dan, Weston, Rob, and Posner, Ingmar. 2019. Masking by Mov-
ing: Learning Distraction-Free Radar Odometry from Pose Information. In:
Conference on Robot Learning.

[61] Barnes, Dan, Gadd, Matthew, Murcutt, Paul, Newman, Paul, and Posner,
Ingmar. 2020. The Oxford radar robotcar dataset: A radar extension to the
Oxford robotcar dataset. Pages 6433–6438 of: IEEE Intl. Conf. on Robotics
and Automation (ICRA).

[62] Barranco, Francisco, Fermuller, Cornelia, Aloimonos, Yiannis, and Delbruck,
Tobi. 2016. A Dataset for Visual Navigation with Neuromorphic Methods.
Front. Neurosci., 10, 49.

[63] Barrau, A., and Bonnabel, S. 2017. The Invariant Extended Kalman Filter
as a Stable Observer. IEEE Trans. on Automatic Control, 62(4), 1797–1812.

[64] Barron, Jonathan T. 2019. A general and adaptive robust loss function.
Pages 4331–4339 of: IEEE Conf. on Computer Vision and Pattern Recogni-
tion (CVPR).

[65] Barron, Jonathan T., Mildenhall, Ben, Verbin, Dor, Srinivasan, Pratul P.,
and Hedman, Peter. 2022. Mip-NeRF 360: Unbounded Anti-Aliased Neural
Radiance Fields. IEEE Conf. on Computer Vision and Pattern Recognition
(CVPR).

[66] Bartoli, Adrien, Gérard, Yan, Chadebecq, François, Collins, Toby, and
Pizarro, Daniel. 2015. Shape-from-template. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, 37(10), 2099–2118.

[67] Bauernfeind, Carl Max v. 1856. Elemente der Vermessungskunde: ein
Lehrbuch der praktischen Geometrie. Cotta.

[68] Bavle, Hriday, Sanchez-Lopez, Jose Luis, Shaheer, Muhammad, Civera,
Javier, and Voos, Holger. 2022. Situational Graphs for Robot Navigation in
Structured Indoor Environments. IEEE Robotics and Automation Letters,
7(4), 9107–9114.

[69] Bay, Herbert, Tuytelaars, Tinne, and Van Gool, Luc. 2006. Surf: Speeded
up robust features. Pages 404–417 of: European Conf. on Computer Vision
(ECCV). Springer.

[70] Bay, Herbert, Ess, Andreas, Tuytelaars, Tinne, and Van Gool, Luc. 2008.
Speeded-Up Robust Features (SURF). Computer Vision and Image Under-
standing (CVIU), 110(3), 346–359.

[71] Bazin, J.C., Seo, Y., Hartley, R.I., and Pollefeys, M. 2014. Globally optimal
inlier set maximization with unknown rotation and focal length. Pages 803–
817 of: European Conf. on Computer Vision (ECCV).



References 545

[72] Beeson, Patrick, Modayil, Joseph, and Kuipers, Benjamin. 2010. Factor-
ing the mapping problem: Mobile robot map-building in the hybrid spatial
semantic hierarchy. Intl. J. of Robotics Research, 29(4), 428–459.

[73] Behley, J., and Stachniss, C. 2018. Efficient Surfel-Based SLAM using 3D
Laser Range Data in Urban Environments. In: Robotics: Science and Systems
(RSS).

[74] Behley, J., Steinhage, V., and Cremers, A. B. 2012. Performance of His-
togram Descriptors for the Classification of 3D Laser Range Data in Urban
Environments. In: IEEE Intl. Conf. on Robotics and Automation (ICRA).

[75] Behley, J., Garbade, M., Milioto, A., Quenzel, J., Behnke, S., Stachniss, C.,
and Gall, J. 2019. SemanticKITTI: A Dataset for Semantic Scene Under-
standing of LiDAR Sequences. In: Intl. Conf. on Computer Vision (ICCV).

[76] Behley, J., Milioto, A., and Stachniss, C. 2021. A Benchmark for LiDAR-
based Panoptic Segmentation based on KITTI. In: IEEE Intl. Conf. on
Robotics and Automation (ICRA).

[77] Behley, Jens, Steinhage, Volker, and Cremers, Armin B. 2015. Efficient
Radius Neighbor Search in Three-dimensional Point Clouds. In: IEEE Intl.
Conf. on Robotics and Automation (ICRA).

[78] Bennett, M. S. 2024. A Brief History of Intelligence. Harper Collins.
[79] Bentley, J.L. 1975. Multidimensional Binary Search Trees Used for Associa-

tive Searching. Communications of the ACM, 18(9), 509–517.
[80] Berg, Matthew, Konidaris, George, and Tellex, Stefanie. 2022. Using Lan-

guage to Generate State Abstractions for Long-Range Planning in Outdoor
Environments. Pages 1888–1895 of: IEEE Intl. Conf. on Robotics and Au-
tomation (ICRA).

[81] Bernreiter, Lukas, Gawel, Abel, Sommer, Hannes, Nieto, Juan, Siegwart,
Roland, and Lerma, Cesar Cadena. 2019. Multiple Hypothesis Semantic
Mapping for Robust Data Association. IEEE Robotics and Automation Let-
ters, 4(4), 3255–3262.

[82] Bescós, Berta, Civera, Javier, and Neira, José. 2017. Removing dynamic
objects from 3d maps using geometry and learning.

[83] Bescos, Berta, Campos, Carlos, Tardós, Juan D., and Neira, José. 2021.
DynaSLAM II: Tightly-Coupled Multi-Object Tracking and SLAM. IEEE
Robotics and Automation Letters, 6(3), 5191–5198.

[84] Bescós, Berta, Cadena, César, and Neira, José. 2021. Empty Cities: A
Dynamic-Object-Invariant Space for Visual SLAM. IEEE Transactions on
Robotics, 37(2), 433–451.

[85] Besl, Paul J, and McKay, Neil D. 1992a. Method for registration of 3-D
shapes. Pages 586–606 of: Sensor fusion IV: control paradigms and data
structures, vol. 1611. Spie.

[86] Besl, Paul J, and McKay, Neil D. 1992b. Method for registration of 3-D
shapes. IEEE Trans. Pattern Anal. Machine Intell., 14(2), 239–256.

[87] Bezdek, James C, and Hathaway, Richard J. 2003. Convergence of alternat-
ing optimization. Neural, Parallel & Scientific Computations, 11(4), 351–
368.

[88] Bhardwaj, Mohak, Boots, Byron, and Mukadam, Mustafa. 2020. Differen-
tiable gaussian process motion planning. Pages 10598–10604 of: IEEE Intl.
Conf. on Robotics and Automation (ICRA). IEEE.



546 References

[89] Biber, Peter, and Straßer, Wolfgang. 2003. The normal distributions
transform: A new approach to laser scan matching. Pages 2743–2748 of:
IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems (IROS), vol. 3.
IEEE.

[90] Bierman, G.J. 1977. Factorization methods for discrete sequential estima-
tion. Mathematics in Science and Engineering, vol. 128. New York: Academic
Press.

[91] Black, Kevin, Brown, Noah, Driess, Danny, Esmail, Adnan, Equi, Michael,
Finn, Chelsea, Fusai, Niccolo, Groom, Lachy, Hausman, Karol, Ichter, Brian,
Jakubczak, Szymon, Jones, Tim, Ke, Liyiming, Levine, Sergey, Li-Bell,
Adrian, Mothukuri, Mohith, Nair, Suraj, Pertsch, Karl, Shi, Lucy Xiaoyang,
Tanner, James, Vuong, Quan, Walling, Anna, Wang, Haohuan, and Zhilin-
sky, Ury. 2024. π0: A Vision-Language-Action Flow Model for General Robot
Control.

[92] Black, Michael J., and Rangarajan, Anand. 1996. On the unification of line
processes, outlier rejection, and robust statistics with applications in early
vision. Intl. J. of Computer Vision, 19(1), 57–91.

[93] Blake, Andrew, and Zisserman, Andrew. 1987. Visual reconstruction. MIT
Press.

[94] Bloesch, Michael, Hutter, Marco, Hoepflinger, Mark, Leutenegger, Stefan,
Gehring, Christian, Remy, C. David, and Siegwart, Roland. 2012. State
Estimation for Legged Robots - Consistent Fusion of Leg Kinematics and
IMU. In: Robotics: Science and Systems (RSS).

[95] Bloesch, Michael, Gehring, Christian, Fankhauser, Péter, Hutter, Marco,
Hoepflinger, Mark A., and Siegwart, Roland. 2013. State estimation for
legged robots on unstable and slippery terrain. Pages 6058–6064 of:
IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems (IROS).

[96] Bloesch, Michael, Omari, Sammy, Hutter, Marco, and Siegwart, Roland.
2015. Robust visual inertial odometry using a direct EKF-based approach.
Pages 298–304 of: IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems
(IROS). IEEE.

[97] Bloesch, Michael, Czarnowski, Jan, Clark, Ronald, Leutenegger, Stefan, and
Davison, Andrew J. 2018a. CodeSLAM—learning a compact, optimisable
representation for dense visual SLAM. Pages 2560–2568 of: IEEE Conf. on
Computer Vision and Pattern Recognition (CVPR).

[98] Bloesch, Michael, Burri, Michael, Sommer, Hannes, Siegwart, Roland, and
Hutter, Marco. 2018b. The Two-State Implicit Filter Recursive Estimation
for Mobile Robots. IEEE Robotics and Automation Letters, 3(1), 573–580.

[99] Bodlaender, Hans L. 2006. Treewidth: Characterizations, Applications, and
Computations. Pages 1–14 of: Graph-Theoretic Concepts in Computer Sci-
ence. Springer Berlin Heidelberg.

[100] Bohren, Jonathan, Foote, Tully, Keller, Jim, Kushleyev, Alex, Lee, Daniel,
Stewart, Alex, Vernaza, Paul, Derenick, Jason, Spletzer, John, and Satter-
field, Brian. 2008. Little Ben: The Ben Franklin Racing Team’s entry in the
2007 DARPA Urban Challenge. J. of Field Robotics, 25(9), 598–614.

[101] Bonnabel, Silvère, and Barrau, Axel. 2015. An intrinsic Cramér-Rao bound
on Lie groups. Pages 664–672 of: International Conference on Geometric
Science of Information. Springer.



References 547

[102] Bore, Nils, Ekekrantz, Johan, Jensfelt, Patric, and Folkesson, John. 2018.
Detection and tracking of general movable objects in large three-dimensional
maps. IEEE Transactions on Robotics, 35(1), 231–247.

[103] Borrmann, Dorit, Nüchter, Andreas, Dakulović, Marija, Maurović, Ivan,
Petrović, Ivan, Osmanković, Dinko, and Velagić, Jasmin. 2014. A mobile
robot based system for fully automated thermal 3D mapping. Advanced
Engineering Informatics, 28(4), 425–440.

[104] Borts, David, Liang, Erich, Broedermann, Tim, Ramazzina, Andrea, Walz,
Stefanie, Palladin, Edoardo, Sun, Jipeng, Brueggemann, David, Sakaridis,
Christos, Van Gool, Luc, Bijelic, Mario, and Heide, Felix. 2024. Radar
Fields: Frequency-Space Neural Scene Representations for FMCW Radar.
In: Intl. Conf. on Computer Graphics and Interactive Techniques (SIG-
GRAPH). SIGGRAPH ’24. New York, NY, USA: Association for Computing
Machinery.

[105] Bosse, M., Agamennoni, G., and Gilitschenski, I. 2016. Robust Estimation
and Applications in Robotics. Foundations and Trends in Robotics, 4(4),
225–269.

[106] Bosse, Michael, and Zlot, Robert. 2009. Continuous 3D scan-matching with
a spinning 2D laser. Pages 4312–4319 of: IEEE Intl. Conf. on Robotics and
Automation (ICRA).

[107] Bosse, Michael, and Zlot, Robert. 2013. Place recognition using keypoint
voting in large 3D lidar datasets. Pages 2677–2684 of: IEEE Intl. Conf. on
Robotics and Automation (ICRA). IEEE.

[108] Bosse, Michael, Zlot, Robert, and Flick, Paul. 2012. Zebedee: Design of a
spring-mounted 3-d range sensor with application to mobile mapping. IEEE
Trans. Robotics, 28(5), 1104–1119.

[109] Botsch, M., Spernat, M., and Kobbelt, L. 2004. Phong splatting. In: Sym-
posium on Point-Based Graphics (PBG).

[110] Botsch, Mario, Hornung, Alexander, Zwicker, Matthias, and Kobbelt, Leif.
2005. High-Quality Surface Splatting on Today’s GPUs. In: Symposium on
Point-Based Graphics (PBG).

[111] Boumal, N., Voroninski, V., and Bandeira, A. 2016. The non-convex Burer–
Monteiro approach works on smooth semidefinite programs. Pages 2757–
2765 of: Conf. Neural Information Processing Systems (NIPS).

[112] Boumal, Nicolas. 2013. On intrinsic Cramér-Rao bounds for Riemannian
submanifolds and quotient manifolds. IEEE transactions on signal process-
ing, 61(7), 1809–1821.

[113] Boumal, Nicolas. 2023. An introduction to optimization on smooth mani-
folds.

[114] Bowman, S.L., Atanasov, N., Daniilidis, K., and Pappas, G.J. 2017. Proba-
bilistic data association for semantic SLAM. Pages 1722–1729 of: IEEE Intl.
Conf. on Robotics and Automation (ICRA).

[115] Boyle, Michael. 2017. The Integration of Angular Velocity. Advances in
Applied Clifford Algebras, 27(3), 2345–2374.

[116] Bradbury, James, Frostig, Roy, Hawkins, Peter, Johnson, Matthew James,
Leary, Chris, Maclaurin, Dougal, Necula, George, Paszke, Adam, Vander-
Plas, Jake, Wanderman-Milne, Skye, and Zhang, Qiao. 2018. JAX: compos-
able transformations of Python+NumPy programs.



548 References

[117] Brandli, Christian, Berner, Raphael, Yang, Minhao, Liu, Shih-Chii, and Del-
bruck, Tobi. 2014. A 240x180 130dB 3µs Latency Global Shutter Spatiotem-
poral Vision Sensor. IEEE J. Solid-State Circuits, 49(10), 2333–2341.

[118] Brandão, Martim, Aladag, Omer Burak, and Havoutis, Ioannis. 2020.
GaitMesh: Controller-Aware Navigation Meshes for Long-Range Legged Lo-
comotion Planning in Multi-Layered Environments. IEEE Robotics and Au-
tomation Letters, 5(2), 3596–3603.

[119] Bregler, Christoph, Hertzmann, Aaron, and Biermann, Henning. 2000. Re-
covering non-rigid 3D shape from image streams. In: CVPR.

[120] Briales, J., and Gonzalez-Jimenez, J. 2016 (Oct). Fast global optimality
verification in 3D SLAM. Pages 4630–4636 of: IEEE/RSJ Intl. Conf. on
Intelligent Robots and Systems (IROS).

[121] Briales, Jesus, and Gonzalez-Jimenez, Javier. 2017. Convex Global 3D Reg-
istration with Lagrangian Duality. In: IEEE Conf. on Computer Vision and
Pattern Recognition (CVPR).

[122] Briales, Jesus, Kneip, Laurent, and Gonzalez-Jimenez, Javier. 2018. A Certi-
fiably Globally Optimal Solution to the Non-Minimal Relative Pose Problem.
In: IEEE Conf. on Computer Vision and Pattern Recognition (CVPR).

[123] Brogan, William L. 1991. Modern Control Theory. Upper Saddle River, NJ:
Prentice Hall.

[124] Brohan, Anthony, Brown, Noah, Carbajal, Justice, Chebotar, Yevgen, Dabis,
Joseph, Finn, Chelsea, Gopalakrishnan, Keerthana, Hausman, Karol, Her-
zog, Alex, Hsu, Jasmine, Ibarz, Julian, Ichter, Brian, Irpan, Alex, Jackson,
Tomas, Jesmonth, Sally, Joshi, Nikhil, Julian, Ryan, Kalashnikov, Dmitry,
Kuang, Yuheng, Leal, Isabel, Lee, Kuang-Huei, Levine, Sergey, Lu, Yao,
Malla, Utsav, Manjunath, Deeksha, Mordatch, Igor, Nachum, Ofir, Parada,
Carolina, Peralta, Jodilyn, Perez, Emily, Pertsch, Karl, Quiambao, Jornell,
Rao, Kanishka, Ryoo, Michael, Salazar, Grecia, Sanketi, Pannag, Sayed,
Kevin, Singh, Jaspiar, Sontakke, Sumedh, Stone, Austin, Tan, Clayton,
Tran, Huong, Vanhoucke, Vincent, Vega, Steve, Vuong, Quan, Xia, Fei, Xiao,
Ted, Xu, Peng, Xu, Sichun, Yu, Tianhe, and Zitkovich, Brianna. 2022. RT-1:
Robotics Transformer for Real-World Control at Scale. In: arXiv preprint
arXiv:2212.06817.

[125] Brohan, Anthony, Brown, Noah, Carbajal, Justice, Chebotar, Yevgen, Chen,
Xi, Choromanski, Krzysztof, Ding, Tianli, Driess, Danny, Dubey, Avinava,
Finn, Chelsea, Florence, Pete, Fu, Chuyuan, Arenas, Montse Gonzalez,
Gopalakrishnan, Keerthana, Han, Kehang, Hausman, Karol, Herzog, Alex,
Hsu, Jasmine, Ichter, Brian, Irpan, Alex, Joshi, Nikhil, Julian, Ryan,
Kalashnikov, Dmitry, Kuang, Yuheng, Leal, Isabel, Lee, Lisa, Lee, Tsang-
Wei Edward, Levine, Sergey, Lu, Yao, Michalewski, Henryk, Mordatch, Igor,
Pertsch, Karl, Rao, Kanishka, Reymann, Krista, Ryoo, Michael, Salazar,
Grecia, Sanketi, Pannag, Sermanet, Pierre, Singh, Jaspiar, Singh, Anikait,
Soricut, Radu, Tran, Huong, Vanhoucke, Vincent, Vuong, Quan, Wahid,
Ayzaan, Welker, Stefan, Wohlhart, Paul, Wu, Jialin, Xia, Fei, Xiao, Ted,
Xu, Peng, Xu, Sichun, Yu, Tianhe, and Zitkovich, Brianna. 2023. RT-2:
Vision-Language-Action Models Transfer Web Knowledge to Robotic Con-
trol. In: arXiv preprint arXiv:2307.15818.

[126] Brossard, Martin, Barrau, Axel, Chauchat, Paul, and Bonnabel, Silvére.
2022. Associating Uncertainty to Extended Poses for on Lie Group IMU



References 549

Preintegration With Rotating Earth. IEEE Trans. Robotics, 38(2), 998–
1015.

[127] Brune, Marvin, Meisen, Tobias, and Pomp, André. 2024. Survey of
Deep Learning-Based Methods for FMCW Radar Odometry and Ego-
Localization. Applied Sciences, 14(6).

[128] Brynte, Lucas, Larsson, Viktor, Iglesias, José Pedro, Olsson, Carl, and Kahl,
Fredrik. 2021. On the Tightness of Semidefinite Relaxations for Rotation
Estimation. Journal of Mathematical Imaging and Vision, 64(1), 57–67.

[129] Buchanan, Russell, Agrawal, Varun, Camurri, Marco, Dellaert, Frank, and
Fallon, Maurice. 2023. Deep IMU Bias Inference for Robust Visual-Inertial
Odometry With Factor Graphs. IEEE Robotics and Automation Letters,
8(1), 41–48.

[130] Burer, S., and Monteiro, R. 2004. Local Minima and Convergence in Low-
Rank Semidefinite Programming. Mathematical Programming, 103(3), 427–
444.

[131] Burer, Samuel, and Monteiro, Renato D C. 2003. A nonlinear program-
ming algorithm for solving semidefinite programs via low-rank factorization.
Mathematical Programming, 95(2), 329–357.

[132] Burner, Levi, Mitrokhin, Anton, Fermüller, Cornelia, and Aloimonos, Yian-
nis. 2022. EVIMO2: An Event Camera Dataset for Motion Segmentation,
Optical Flow, Structure from Motion, and Visual Inertial Odometry in In-
door Scenes with Monocular or Stereo Algorithms. arXiv preprint, May.

[133] Burnett, Keenan, Wu, Yuchen, Yoon, David J., Schoellig, Angela P., and
Barfoot, Timothy D. 2022. Are We Ready for Radar to Replace Lidar in
All-Weather Mapping and Localization? IEEE Robotics and Automation
Letters, 7(4), 10328–10335.

[134] Burnett, Keenan, Yoon, David J, Wu, Yuchen, Li, Andrew Zou, Zhang,
Haowei, Lu, Shichen, Qian, Jingxing, Tseng, Wei-Kang, Lambert, Andrew,
Leung, Keith YK, Schoellig, Angela P, and Barfoot, Timothy D. 2023.
Boreas: A Multi-Season Autonomous Driving Dataset. Intl. J. of Robotics
Research, 42(12), 33–42.

[135] Burnett, Keenan, Schoellig, Angela P., and Barfoot, Timothy D. 2024.
Continuous-Time Radar-Inertial and Lidar-Inertial Odometry using a Gaus-
sian Process Motion Prior.

[136] Burnett, Keenan, Schoellig, Angela P., and Barfoot, Timothy D. 2025. IMU
as an input versus a measurement of the state in inertial-aided state estima-
tion. Robotica, 1–21.

[137] Burri, Michael, Nikolic, Janosch, Gohl, Pascal, Schneider, Thomas, Rehder,
Joern, Omari, Sammy, Achtelik, Markus W, and Siegwart, Roland. 2016.
The EuRoC micro aerial vehicle datasets. Intl. J. of Robotics Research,
35(10), 1157–1163.

[138] Bustos, Á. P., and Chin, T. J. 2018. Guaranteed outlier removal for point
cloud registration with correspondences. IEEE Trans. Pattern Anal. Ma-
chine Intell., 40(12), 2868–2882.

[139] Bustos, Alvaro Parra, Chin, Tat-Jun, Neumann, Frank, Friedrich, Tobias,
and Katzmann, Maximilian. 2019. A Practical Maximum Clique Algorithm
for Matching with Pairwise Constraints. arXiv preprint arXiv:1902.01534.

[140] Bylow, Erik, Sturm, Jürgen, Kerl, Christian, Kahl, Fredrik, and Cremers,



550 References

Daniel. 2013. Real-time camera tracking and 3D reconstruction using signed
distance functions. Page 2 of: Robotics: Science and Systems (RSS), vol. 2.

[141] Cabon, Yohann, Stoffl, Lucas, Antsfeld, Leonid, Csurka, Gabriela,
Chidlovskii, Boris, Revaud, Jérôme, and Leroy, Vincent. 2025. MUSt3R:
Multi-view Network for Stereo 3D Reconstruction.

[142] Cadena, Cesar, Carlone, Luca, Carrillo, Henry, Latif, Yasir, Scaramuzza,
Davide, Neira, José, Reid, Ian, and Leonard, John J. 2016. Past, present,
and future of simultaneous localization and mapping: Toward the robust-
perception age. IEEE Trans. Robotics, 32(6), 1309–1332.

[143] Caesar, Holger, Bankiti, Varun, Lang, Alex H, Vora, Sourabh, Liong,
Venice Erin, Xu, Qiang, Krishnan, Anush, Pan, Yu, Baldan, Giancarlo, and
Beijbom, Oscar. 2020. nuscenes: A multimodal dataset for autonomous driv-
ing. Pages 11621–11631 of: IEEE Conf. on Computer Vision and Pattern
Recognition (CVPR).

[144] Cai, Hongrui, Feng, Wanquan, Feng, Xuetao, Wang, Yan, and Zhang, Juy-
ong. 2022a. Neural Surface Reconstruction of Dynamic Scenes with Monocu-
lar RGB-D Camera. In: Advances in Neural Information Processing Systems
(NIPS).

[145] Cai, Kaiwen, Wang, Bing, and Lu, Chris Xiaoxuan. 2022b. AutoPlace: Ro-
bust Place Recognition with Single-chip Automotive Radar. Pages 2222–
2228 of: IEEE Intl. Conf. on Robotics and Automation (ICRA).

[146] Callmer, Jonas, Törnqvist, David, Gustafsson, Fredrik, Svensson, Henrik,
and Carlbom, Pelle. 2011. Radar SLAM using visual features. EURASIP
Journal on Advances in Signal Processing, 2011(09), 1–11.

[147] Calonder, Michael, Lepetit, Vincent, Strecha, Christoph, and Fua, Pascal.
2010. BRIEF: Binary Robust Independent Elementary Features. Pages
778–792 of: European Conference on Computer Vision (ECCV).

[148] Campos, Carlos, Elvira, Richard, Rodŕıguez, Juan J Gómez, Montiel,
José MM, and Tardós, Juan D. 2021. Orb-slam3: An accurate open-source
library for visual, visual–inertial, and multimap slam. IEEE Trans. Robotics,
37(6), 1874–1890.

[149] Camurri, Marco, Fallon, Maurice, Bazeille, Stéphane, Radulescu, Andreea,
Barasuol, Victor, Caldwell, Darwin G., and Semini, Claudio. 2017. Prob-
abilistic Contact Estimation and Impact Detection for State Estimation of
Quadruped Robots. IEEE Robotics and Automation Letters, 2(2), 1023–
1030.

[150] Camurri, Marco, Ramezani, Milad, Nobili, Simona, and Fallon, Maurice.
2020. Pronto: A Multi-Sensor State Estimator for Legged Robots in Real-
World Scenarios. Frontiers in Robotics and AI, 7.

[151] Cao, Shaozu, Lu, Xiuyuan, and Shen, Shaojie. 2022. GVINS: Tightly Cou-
pled GNSS–Visual–Inertial Fusion for Smooth and Consistent State Estima-
tion. IEEE Trans. Robotics, 38(4), 2004–2021.

[152] Carion, Nicolas, Massa, Francisco, Synnaeve, Gabriel, Usunier, Nicolas, Kir-
illov, Alexander, and Zagoruyko, Sergey. 2020. End-to-End Object Detection
with Transformers. In: ECCV.

[153] Carlone, L. 2023. Estimation Contracts for Outlier-Robust Geometric
Perception. Foundations and Trends (FnT) in Robotics, arXiv preprint:
2208.10521. .



References 551

[154] Carlone, L., and Censi, A. 2014. From Angular Manifolds to the Integer Lat-
tice: Guaranteed Orientation Estimation With Application to Pose Graph
Optimization. IEEE Trans. Robotics, 30(2), 475–492. (datasets: ).

[155] Carlone, L., and Dellaert, F. 2015. Duality-based Verification Techniques
for 2D SLAM. Pages 4589–4596 of: IEEE Intl. Conf. on Robotics and Au-
tomation (ICRA). .

[156] Carlone, L., and Karaman, S. 2018. Attention and Anticipation in
Fast Visual-Inertial Navigation. IEEE Trans. Robotics. arxiv preprint:
1610.03344, .

[157] Carlone, L., Rosen, D.M., Calafiore, G.C., Leonard, J.J., and Dellaert, F.
2015a. Lagrangian Duality in 3D SLAM: Verification Techniques and Opti-
mal Solutions. Pages 125–132 of: IEEE/RSJ Intl. Conf. on Intelligent Robots
and Systems (IROS). (datasets: ) (supplemental material: ).

[158] Carlone, L., Calafiore, G., and Dellaert, F. 2015b. Pose Graph Optimiza-
tion in the Complex Domain: Lagrangian Duality and Optimal Solutions.
In: Robotics: Science and Systems (RSS), Workshop “Reviewing the review
process”. .

[159] Carlone, Luca, and Calafiore, Giuseppe C. 2018. Convex relaxations for pose
graph optimization with outliers. IEEE Robotics and Automation Letters,
3(2), 1160–1167.

[160] Caron, Mathilde, Touvron, Hugo, Misra, Ishan, Jégou, Hervé, Mairal, Julien,
Bojanowski, Piotr, and Joulin, Armand. 2021. Emerging properties in self-
supervised vision transformers. Pages 9650–9660 of: Intl. Conf. on Computer
Vision (ICCV).

[161] Carr, J. C., Beatson, R. K., Cherrie, J. B., Mitchell, T. J., Fright, W. R.,
McCallum, B. C., and Evans, T. R. 2001. Reconstruction and representation
of 3D objects with radial basis functions. Pages 67–76 of: Intl. Conf. on
Computer Graphics and Interactive Techniques (SIGGRAPH). Association
for Computing Machinery.

[162] Cattaneo, Daniele, Vaghi, Matteo, and Valada, Abhinav. 2022. Lcdnet: Deep
loop closure detection and point cloud registration for lidar slam. IEEE
Trans. Robotics, 38(4), 2074–2093.

[163] Cazals, Frédéric, and Giesen, Joachim. 2006. Delaunay Triangulation Based
Surface Reconstruction. Springer Berlin Heidelberg. Pages 231–276.

[164] Cen, Sarah H., and Newman, Paul. 2018. Precise Ego-Motion Estimation
with Millimeter-Wave Radar Under Diverse and Challenging Conditions.
Pages 6045–6052 of: IEEE Intl. Conf. on Robotics and Automation (ICRA).
IEEE.

[165] Censi, A. 2007. An accurate closed-form estimate of ICP’s covariance. In:
IEEE Intl. Conf. on Robotics and Automation (ICRA).

[166] Censi, Andrea, and Scaramuzza, Davide. 2014. Low-Latency Event-Based
Visual Odometry. Pages 703–710 of: IEEE Intl. Conf. on Robotics and Au-
tomation (ICRA).

[167] Chadwick, Jeffrey N, and Bindel, David S. 2015. An efficient solver for
sparse linear systems based on rank-structured Cholesky factorization. arXiv
preprint arXiv:1507.05593.

[168] Chakravarthi, Bharatesh, Verma, Aayush Atul, Daniilidis, Kostas, Fer-
muller, Cornelia, and Yang, Yezhou. 2024. Recent Event Camera Innova-
tions: A Survey. In: European Conf. on Computer Vision Workshops.



552 References

[169] Chaney, Kenneth, Cladera, Fernando, Wang, Ziyun, Bisulco, Anthony,
Hsieh, M. Ani, Korpela, Christopher, Kumar, Vijay, Taylor, Camillo J.,
and Daniilidis, Kostas. 2023. M3ED: Multi-Robot, Multi-Sensor, Multi-
Environment Event Dataset. Pages 4016–4023 of: IEEE/CVF Conf. on
Computer Vision and Pattern Recognition Workshops.

[170] Chang, Haonan, Boyalakuntla, Kowndinya, Lu, Shiyang, Cai, Siwei, Jing,
Eric Pu, Keskar, Shreesh, Geng, Shijie, Abbas, Adeeb, Zhou, Lifeng, Bekris,
Kostas, and Boularious, Abdeslam. 2023a. Context-Aware Entity Grounding
with Open-Vocabulary 3D Scene Graphs. In: 7th Annual Conference on
Robot Learning.

[171] Chang, Y., Ebadi, K., Denniston, C., Ginting, M. Fadhil, Rosinol, A., Reinke,
A., Palieri, M., Shi, J., A, Chatterjee, Morrell, B., Agha-mohammadi, A.,
and Carlone, L. 2022. LAMP 2.0: A Robust Multi-Robot SLAM System for
Operation in Challenging Large-Scale Underground Environments. IEEE
Robotics and Automation Letters, 7(4), 9175–9182. .

[172] Chang, Y., Ballotta, L., and Carlone, L. 2023b. D-Lite: Navigation-Oriented
Compression of 3D Scene Graphs under Communication Constraints. IEEE
Robotics and Automation Letters.

[173] Chang, Y., Hughes, N., Ray, A., and Carlone, L. 2023c. Hydra-Multi: Collab-
orative Online Construction of 3D Scene Graphs with Multi-Robot Teams.
In: IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems (IROS).

[174] Chang, Y., Fermoselle, L., Ta, D., Bucher, B., Carlone, L., and Wang, J.
2025. ASHiTA: Automatic Scene-grounded HIerarchical Task Analysis. In:
IEEE Conf. on Computer Vision and Pattern Recognition (CVPR).

[175] Charatan, David, Li, Sizhe, Tagliasacchi, Andrea, and Sitzmann, Vincent.
2024. pixelSplat: 3D Gaussian Splats from Image Pairs for Scalable General-
izable 3D Reconstruction. In: IEEE Conf. on Computer Vision and Pattern
Recognition (CVPR).

[176] Charrow, Benjamin, Kahn, Gregory, Patil, Sachin, Liu, Sikang, Goldberg,
Ken, Abbeel, Pieter, Michael, Nathan, and Kumar, Vijay. 2015. Information-
Theoretic Planning with Trajectory Optimization for Dense 3D Mapping. In:
Robotics: Science and Systems (RSS).

[177] Chatfield, Averil B. 1997. Fundamentals of High Accuracy Inertial Naviga-
tion. AIAA.

[178] Chatila, Raja, and Laumond, Jean-Paul. 1985. Position referencing and
consistent world modeling for mobile robots. Pages 138–145 of: IEEE Intl.
Conf. on Robotics and Automation (ICRA).

[179] Chatterjee, A., and Govindu, V. M. 2013. Efficient and Robust Large-Scale
Rotation Averaging. Pages 521–528 of: Intl. Conf. on Computer Vision
(ICCV).

[180] Chebrolu, Nived, Läbe, Thomas, Vysotska, Olga, Behley, Jens, and Stach-
niss, Cyrill. 2020. Adaptive Robust Kernels for Non-Linear Least Squares
Problems. arXiv preprint arXiv:2004.14938.

[181] Chebrolu, Nived, Magistri, Federico, Läbe, Thomas, and Stachniss, Cyrill.
2021. Registration of spatio-temporal point clouds of plants for phenotyping.
PLOS ONE, 16(2), e0247243.

[182] Checchin, Paul, Gérossier, Franck, Blanc, Christophe, Chapuis, Roland,
and Trassoudaine, Laurent. 2010. Radar Scan Matching SLAM Using the
Fourier-Mellin Transform. Pages 151–161 of: Howard, Andrew, Iagnemma,



References 553

Karl, and Kelly, Alonzo (eds), Field and Service Robotics. Berlin, Heidelberg:
Springer Berlin Heidelberg.

[183] Chen, B., Xu, Z., Kirmani, S., Ichter, B., Sadigh, D., Guibas, L., and Xia,
F. 2024a. SpatialVLM: Endowing Vision-Language Models with Spatial
Reasoning Capabilities. Pages 14455–14465 of: IEEE Conf. on Computer
Vision and Pattern Recognition (CVPR).

[184] Chen, Boyuan, Xia, Fei, Ichter, Brian, Rao, Kanishka, Gopalakrishnan,
Keerthana, Ryoo, Michael S, Stone, Austin, and Kappler, Daniel. 2023a.
Open-vocabulary queryable scene representations for real world planning.
Pages 11509–11522 of: 2023 IEEE International Conference on Robotics and
Automation (ICRA). IEEE.

[185] Chen, Changhao, Lu, Xiaoxuan, Markham, Andrew, and Trigoni, Niki. 2018.
Ionet: Learning to cure the curse of drift in inertial odometry. In: Proceedings
of the AAAI Conference on Artificial Intelligence, vol. 32.

[186] Chen, Chuchu, Geneva, Patrick, Peng, Yuxiang, Lee, Woosik, and Huang,
Guoquan. 2023b. Optimization-Based VINS: Consistency, Marginalization,
and FEJ. Pages 1517–1524 of: 2023 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS).

[187] Chen, Chuchu, Peng, Yuxiang, and Huang, Guoquan. 2024b (May). Fast
and Consistent Covariance Recovery for Sliding-window Optimization-based
VINS. In: Proc. International Conference on Robotics and Automation.

[188] Chen, Hansheng, Wang, Pichao, Wang, Fan, Tian, Wei, Xiong, Lu, and Li,
Hao. 2022a. EPro-PnP: Generalized End-to-End Probabilistic Perspective-
n-Points for Monocular Object Pose Estimation. Pages 2781–2790 of: IEEE
Conf. on Computer Vision and Pattern Recognition (CVPR).

[189] Chen, Peiyu, Guan, Weipeng, and Lu, Peng. 2023c. ESVIO: Event-based
Stereo Visual Inertial Odometry. IEEE Robotics and Automation Letters,
8(6), 3661–3668.

[190] Chen, Tianqi, Li, Mu, Li, Yutian, Lin, Min, Wang, Naiyan, Wang, Minjie,
Xiao, Tianjun, Xu, Bing, Zhang, Chiyuan, and Zhang, Zheng. 2015. Mxnet:
A flexible and efficient machine learning library for heterogeneous distributed
systems. arXiv preprint arXiv:1512.01274.

[191] Chen, Ting, Kornblith, Simon, Norouzi, Mohammad, and Hinton, Geoffrey.
2020. A Simple Framework for Contrastive Learning of Visual Representa-
tions. Pages 1597–1607 of: Proceedings of the 37th International Conference
on Machine Learning, vol. 119. PMLR.

[192] Chen, X., Milioto, A., Palazzolo, E., Giguère, P., Behley, J., and Stachniss,
C. 2019a. SuMa++: Efficient LiDAR-based Semantic SLAM. In: IEEE/RSJ
Intl. Conf. on Intelligent Robots and Systems (IROS).

[193] Chen, Xiangyu, Yang, Fan, and Wang, Chen. 2024c. iA*: Imperative
Learning-based A* Search for Pathfinding. arXiv preprint arXiv:2403.15870.

[194] Chen, Xieyuanli, Milioto, Andres, Palazzolo, Emanuele, Giguere, Philippe,
Behley, Jens, and Stachniss, Cyrill. 2019b. Suma++: Efficient lidar-based se-
mantic slam. Pages 4530–4537 of: 2019 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS). IEEE.

[195] Chen, Xieyuanli, Läbe, Thomas, Milioto, Andres, Röhling, Timo, Behley,
Jens, and Stachniss, Cyrill. 2022b. OverlapNet: A siamese network for com-
puting LiDAR scan similarity with applications to loop closing and localiza-
tion. Autonomous Robots, 1–21.



554 References

[196] Chen, Y., Davis, T.A., Hager, W.W., and Rajamanickam, S. 2008. Algorithm
887: CHOLMOD, Supernodal Sparse Cholesky Factorization and Update/-
Downdate. ACM Trans. Math. Softw., 35(3), 22:1–22:14.

[197] Chen, Yongbo, Huang, Shoudong, Zhao, Liang, and Dissanayake, Gamini.
2021. Cramér–Rao bounds and optimal design metrics for pose-graph SLAM.
IEEE Trans. Robotics, 37(2), 627–641.

[198] Chen, Yuedong, Xu, Haofei, Zheng, Chuanxia, Zhuang, Bohan, Pollefeys,
Marc, Geiger, Andreas, Cham, Tat-Jen, and Cai, Jianfei. 2024d. MVSplat:
Efficient 3D Gaussian Splatting from Sparse Multi-View Images. European
Conf. on Computer Vision (ECCV).

[199] Chen, Zhiqin, and Zhang, Hao. 2019. Learning implicit fields for generative
shape modeling. In: IEEE Conf. on Computer Vision and Pattern Recogni-
tion (CVPR).

[200] Cheng, Q, Zeller, N, and Cremers, D. 2022a. Vision-Based Large-scale 3D
Semantic Mapping for Autonomous Driving Applications. Pages 9235–9242
of: International Conference on Robotics and Automation (ICRA).

[201] Cheng, Q., Zeller, N., and Cremers, D. 2022b. Vision-Based Large-scale 3D
Semantic Mapping for Autonomous Driving Applications. In: IEEE Intl.
Conf. on Robotics and Automation (ICRA).

[202] Cheng, Tianheng, Song, Lin, Ge, Yixiao, Liu, Wenyu, Wang, Xinggang, and
Shan, Ying. 2024. YOLO-World: Real-Time Open-Vocabulary Object De-
tection. In: Proc. IEEE Conf. Computer Vision and Pattern Recognition
(CVPR).

[203] Cheng, Yuwei, Su, Jingran, Jiang, Mengxin, and Liu, Yimin. 2022c. A Novel
Radar Point Cloud Generation Method for Robot Environment Perception.
IEEE Trans. Robotics.

[204] Chhatkuli, Ajad, Pizarro, Daniel, and Bartoli, Adrien. 2014. Non-Rigid
Shape-from-Motion for Isometric Surfaces using Infinitesimal Planarity. In:
BMVC.

[205] Chhatkuli, Ajad, Pizarro, Daniel, Collins, Toby, and Bartoli, Adrien. 2016.
Inextensible Non-Rigid Shape-from-Motion by second-order cone program-
ming. In: CVPR.

[206] Chhatkuli, Ajad, Pizarro, Daniel, Bartoli, Adrien, and Collins, Toby. 2017.
A stable analytical framework for isometric shape-from-template by surface
integration. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 39(5), 833–850.

[207] Chi, Cheng, Xu, Zhenjia, Feng, Siyuan, Cousineau, Eric, Du, Yilun, Burch-
fiel, Benjamin, Tedrake, Russ, and Song, Shuran. 2024a. Diffusion Policy:
Visuomotor Policy Learning via Action Diffusion. The International Journal
of Robotics Research.

[208] Chi, Cheng, Xu, Zhenjia, Pan, Chuer, Cousineau, Eric, Burchfiel, Benjamin,
Feng, Siyuan, Tedrake, Russ, and Song, Shuran. 2024b. Universal Manipula-
tion Interface: In-The-Wild Robot Teaching Without In-The-Wild Robots.
In: Proceedings of Robotics: Science and Systems (RSS).

[209] Chiang, Hao-Tien Lewis, Xu, Zhuo, Fu, Zipeng, Jacob, Mithun George,
Zhang, Tingnan, Lee, Tsang-Wei Edward, Yu, Wenhao, Schenck, Connor,
Rendleman, David, Shah, Dhruv, et al. 2024. Mobility vla: Multimodal in-
struction navigation with long-context vlms and topological graphs. arXiv
preprint arXiv:2407.07775.



References 555

[210] Chilian, Annett, Hirschmüller, Heiko, and Görner, Martin. 2011. Multisen-
sor data fusion for robust pose estimation of a six-legged walking robot.
Pages 2497–2504 of: IEEE/RSJ Intl. Conf. on Intelligent Robots and Sys-
tems (IROS).

[211] Chin, T., Kee, Y. H., Eriksson, A., and Neumann, F. 2016 (June). Guaran-
teed Outlier Removal with Mixed Integer Linear Programs. Pages 5858–5866
of: IEEE Conf. on Computer Vision and Pattern Recognition (CVPR).

[212] Chin, Tat-Jun, Bagchi, Samya, Eriksson, Anders P., and van Schaik, André.
2019. Star Tracking using an Event Camera. Pages 1646–1655 of: IEEE/CVF
Conf. on Computer Vision and Pattern Recognition Workshops.

[213] Chirikjian, G. S. 2009. Stochastic Models, Information Theory, and Lie
Groups, Volume 1: Classical Results and Geometric Methods (Applied and
Numerical Harmonic Analysis). Birkhauser.

[214] Chirikjian, G. S. 2012. Stochastic Models, Information Theory, and Lie
Groups, Volume 2: Analytic Methods and Modern Applications (Applied and
Numerical Harmonic Analysis). Birkhauser.

[215] Chirikjian, G. S., and Kyatkin, A. B. 2001. Engineering Applications of Non-
commutative Harmonic Analysis: With Emphasis on Rotation and Motion
Groups. Boca Raton: CRC Press.

[216] Chitta, Sachin, Vemaza, Paul, Geykhman, Roman, and Lee, Daniel D. 2007.
Proprioceptive localization for a quadrupedal robot on known terrain. Pages
4582–4587 of: IEEE Intl. Conf. on Robotics and Automation (ICRA).

[217] Chiuso, A., Favaro, P., Jin, Hailin, and Soatto, S. 2002. Structure from
motion causally integrated over time. IEEE Trans. Pattern Anal. Machine
Intell., 24(4), 523–535.

[218] Cho, Younggun, Kim, Giseop, and Kim, Ayoung. 2020. Unsupervised
Geometry-Aware Deep LiDAR Odometry. Pages 2145–2152 of: IEEE Intl.
Conf. on Robotics and Automation (ICRA).

[219] Cho, Younghun, Kim, Giseop, Lee, Sangmin, and Ryu, Jee-Hwan. 2022.
Openstreetmap-based lidar global localization in urban environment without
a prior lidar map. IEEE Robotics and Automation Letters, 7(2), 4999–5006.

[220] Choi, Minseong, Yang, Seunghoon, Han, Seungho, Lee, Yeongseok, Lee,
Minyoung, Choi, Keun Ha, and Kim, Kyung-Soo. 2023. MSC-RAD4R: ROS-
Based Automotive Dataset With 4D Radar. IEEE Robotics and Automation
Letters, 8(11), 7194–7201.

[221] Choset, Howie, and Nagatani, Keiji. 2001. Topological simultaneous local-
ization and mapping (SLAM): toward exact localization without explicit
localization. IEEE Trans. Robot. Automat., 17(2), 125 – 137.

[222] Choy, Christopher B, Gwak, JunYoung, Savarese, Silvio, and Chandraker,
Manmohan. 2016. Universal correspondence network. Advances in neural
information processing systems, 29.

[223] Chum, O., and Matas, J. 2005. Matching with PROSAC - Progressive Sam-
ple Consensus. In: IEEE Conf. on Computer Vision and Pattern Recognition
(CVPR).

[224] Chum, Ondřej, Matas, Jǐŕı, and Kittler, Josef. 2003. Locally optimized
RANSAC. Pages 236–243 of: Joint Pattern Recognition Symposium.
Springer.

[225] Chung, Junyoung, Gulcehre, Caglar, Cho, KyungHyun, and Bengio, Yoshua.



556 References

2014. Empirical evaluation of gated recurrent neural networks on sequence
modeling. arXiv preprint arXiv:1412.3555.

[226] Chung, Timothy H., Orekhov, Viktor, and Maio, Angela. 2023. Into the
Robotic Depths: Analysis and Insights from the DARPA Subterranean Chal-
lenge. Annual Review of Control, Robotics, and Autonomous Systems, 6(1).

[227] Churchill, Winston, and Newman, Paul. 2013. Experience-based navigation
for long-term localisation. Intl. J. of Robotics Research, 32(14), 1645–1661.

[228] Cioffi, Giovanni, Bauersfeld, Leonard, Kaufmann, Elia, and Scaramuzza, Da-
vide. 2023. Learned inertial odometry for autonomous drone racing. IEEE
Robotics and Automation Letters, 8(5), 2684–2691.

[229] Cipolla, Roberto, Gal, Yarin, and Kendall, Alex. 2018. Multi-task Learn-
ing Using Uncertainty to Weigh Losses for Scene Geometry and Semantics.
Pages 7482–7491 of: IEEE Conf. on Computer Vision and Pattern Recogni-
tion (CVPR).

[230] Civera, Javier, Grasa, Oscar G., Davison, Andrew J., and Montiel, J. M. M.
2010. 1-Point RANSAC for extended Kalman filtering: Application to real-
time structure from motion and visual odometry. J. of Field Robotics, 27(5),
609–631.

[231] Clark, J.H. 1976. Hierarchical geometric models for visible surface algo-
rithms. Communications of the ACM, 19(1), 547–554.

[232] Clark, Steve, and Durrant-Whyte, Hugh. 1998. Autonomous land vehicle
navigation using millimeter wave radar. Pages 3697–3702 of: Proceedings.
1998 IEEE International Conference on Robotics and Automation (Cat. No.
98CH36146), vol. 4. IEEE.

[233] Cohen, Nadav, and Klein, Itzik. 2024. Inertial Navigation Meets Deep Learn-
ing: A Survey of Current Trends and Future Directions.

[234] Collaboration, Open X-Embodiment, O’Neill, Abby, Rehman, Abdul,
Gupta, Abhinav, Maddukuri, Abhiram, Gupta, Abhishek, Padalkar, Ab-
hishek, Lee, Abraham, Pooley, Acorn, Gupta, Agrim, Mandlekar, Ajay, Jain,
Ajinkya, Tung, Albert, Bewley, Alex, Herzog, Alex, Irpan, Alex, Khazatsky,
Alexander, Rai, Anant, Gupta, Anchit, Wang, Andrew, Kolobov, Andrey,
Singh, Anikait, Garg, Animesh, Kembhavi, Aniruddha, Xie, Annie, Brohan,
Anthony, Raffin, Antonin, Sharma, Archit, Yavary, Arefeh, Jain, Arhan, Bal-
akrishna, Ashwin, Wahid, Ayzaan, Burgess-Limerick, Ben, Kim, Beomjoon,
Schölkopf, Bernhard, Wulfe, Blake, Ichter, Brian, Lu, Cewu, Xu, Charles,
Le, Charlotte, Finn, Chelsea, Wang, Chen, Xu, Chenfeng, Chi, Cheng,
Huang, Chenguang, Chan, Christine, Agia, Christopher, Pan, Chuer, Fu,
Chuyuan, Devin, Coline, Xu, Danfei, Morton, Daniel, Driess, Danny, Chen,
Daphne, Pathak, Deepak, Shah, Dhruv, Büchler, Dieter, Jayaraman, Di-
nesh, Kalashnikov, Dmitry, Sadigh, Dorsa, Johns, Edward, Foster, Ethan,
Liu, Fangchen, Ceola, Federico, Xia, Fei, Zhao, Feiyu, Frujeri, Felipe Vieira,
Stulp, Freek, Zhou, Gaoyue, Sukhatme, Gaurav S., Salhotra, Gautam, Yan,
Ge, Feng, Gilbert, Schiavi, Giulio, Berseth, Glen, Kahn, Gregory, Yang,
Guangwen, Wang, Guanzhi, Su, Hao, Fang, Hao-Shu, Shi, Haochen, Bao,
Henghui, Amor, Heni Ben, Christensen, Henrik I, Furuta, Hiroki, Bharad-
hwaj, Homanga, Walke, Homer, Fang, Hongjie, Ha, Huy, Mordatch, Igor,
Radosavovic, Ilija, Leal, Isabel, Liang, Jacky, Abou-Chakra, Jad, Kim, Jae-
hyung, Drake, Jaimyn, Peters, Jan, Schneider, Jan, Hsu, Jasmine, Vakil,



References 557

Jay, Bohg, Jeannette, Bingham, Jeffrey, Wu, Jeffrey, Gao, Jensen, Hu, Jia-
heng, Wu, Jiajun, Wu, Jialin, Sun, Jiankai, Luo, Jianlan, Gu, Jiayuan, Tan,
Jie, Oh, Jihoon, Wu, Jimmy, Lu, Jingpei, Yang, Jingyun, Malik, Jitendra,
Silvério, João, Hejna, Joey, Booher, Jonathan, Tompson, Jonathan, Yang,
Jonathan, Salvador, Jordi, Lim, Joseph J., Han, Junhyek, Wang, Kaiyuan,
Rao, Kanishka, Pertsch, Karl, Hausman, Karol, Go, Keegan, Gopalakrish-
nan, Keerthana, Goldberg, Ken, Byrne, Kendra, Oslund, Kenneth, Kawa-
harazuka, Kento, Black, Kevin, Lin, Kevin, Zhang, Kevin, Ehsani, Kiana,
Lekkala, Kiran, Ellis, Kirsty, Rana, Krishan, Srinivasan, Krishnan, Fang,
Kuan, Singh, Kunal Pratap, Zeng, Kuo-Hao, Hatch, Kyle, Hsu, Kyle, Itti,
Laurent, Chen, Lawrence Yunliang, Pinto, Lerrel, Fei-Fei, Li, Tan, Liam,
Fan, Linxi ”Jim”, Ott, Lionel, Lee, Lisa, Weihs, Luca, Chen, Magnum,
Lepert, Marion, Memmel, Marius, Tomizuka, Masayoshi, Itkina, Masha,
Castro, Mateo Guaman, Spero, Max, Du, Maximilian, Ahn, Michael, Yip,
Michael C., Zhang, Mingtong, Ding, Mingyu, Heo, Minho, Srirama, Mo-
han Kumar, Sharma, Mohit, Kim, Moo Jin, Kanazawa, Naoaki, Hansen,
Nicklas, Heess, Nicolas, Joshi, Nikhil J, Suenderhauf, Niko, Liu, Ning,
Palo, Norman Di, Shafiullah, Nur Muhammad Mahi, Mees, Oier, Kroe-
mer, Oliver, Bastani, Osbert, Sanketi, Pannag R, Miller, Patrick ”Tree”,
Yin, Patrick, Wohlhart, Paul, Xu, Peng, Fagan, Peter David, Mitrano,
Peter, Sermanet, Pierre, Abbeel, Pieter, Sundaresan, Priya, Chen, Qiuyu,
Vuong, Quan, Rafailov, Rafael, Tian, Ran, Doshi, Ria, Mart’in-Mart’in,
Roberto, Baijal, Rohan, Scalise, Rosario, Hendrix, Rose, Lin, Roy, Qian,
Runjia, Zhang, Ruohan, Mendonca, Russell, Shah, Rutav, Hoque, Ryan, Ju-
lian, Ryan, Bustamante, Samuel, Kirmani, Sean, Levine, Sergey, Lin, Shan,
Moore, Sherry, Bahl, Shikhar, Dass, Shivin, Sonawani, Shubham, Tulsiani,
Shubham, Song, Shuran, Xu, Sichun, Haldar, Siddhant, Karamcheti, Sid-
dharth, Adebola, Simeon, Guist, Simon, Nasiriany, Soroush, Schaal, Ste-
fan, Welker, Stefan, Tian, Stephen, Ramamoorthy, Subramanian, Dasari,
Sudeep, Belkhale, Suneel, Park, Sungjae, Nair, Suraj, Mirchandani, Suvir,
Osa, Takayuki, Gupta, Tanmay, Harada, Tatsuya, Matsushima, Tatsuya,
Xiao, Ted, Kollar, Thomas, Yu, Tianhe, Ding, Tianli, Davchev, Todor,
Zhao, Tony Z., Armstrong, Travis, Darrell, Trevor, Chung, Trinity, Jain,
Vidhi, Kumar, Vikash, Vanhoucke, Vincent, Zhan, Wei, Zhou, Wenxuan,
Burgard, Wolfram, Chen, Xi, Chen, Xiangyu, Wang, Xiaolong, Zhu, Xing-
hao, Geng, Xinyang, Liu, Xiyuan, Liangwei, Xu, Li, Xuanlin, Pang, Yan-
song, Lu, Yao, Ma, Yecheng Jason, Kim, Yejin, Chebotar, Yevgen, Zhou,
Yifan, Zhu, Yifeng, Wu, Yilin, Xu, Ying, Wang, Yixuan, Bisk, Yonatan,
Dou, Yongqiang, Cho, Yoonyoung, Lee, Youngwoon, Cui, Yuchen, Cao, Yue,
Wu, Yueh-Hua, Tang, Yujin, Zhu, Yuke, Zhang, Yunchu, Jiang, Yunfan,
Li, Yunshuang, Li, Yunzhu, Iwasawa, Yusuke, Matsuo, Yutaka, Ma, Zehan,
Xu, Zhuo, Cui, Zichen Jeff, Zhang, Zichen, Fu, Zipeng, and Lin, Zipeng.
2023. Open X-Embodiment: Robotic Learning Datasets and RT-X Models.
https://arxiv.org/abs/2310.08864.

[235] Collins, T, and Bartoli, A. 2010. Locally affine and planar deformable surface
reconstruction from video. In: International Workshop on Vision, Modeling
and Visualization.

[236] Collobert, Ronan, Bengio, Samy, and Mariéthoz, Johnny. 2002. Torch: a
modular machine learning software library. Tech. rept. Idiap.

https://arxiv.org/abs/2310.08864


558 References

[237] Cook, Matthew, Gugelmann, Luca, Jug, Florian, Krautz, Christoph, and
Steger, Angelika. 2011. Interacting maps for fast visual interpretation. Pages
770–776 of: Int. Joint Conf. Neural Netw. (IJCNN).

[238] Cooper, Gregory F. 1990. Artificial Intelligence, 42(2-3), 393–405.
[239] Cootes, Timothy F., Taylor, Christopher J., Cooper, David H., and Graham,

Jim. 1995. Active shape models - their training and application. Comput.
Vis. Image Underst., 61(1), 38–59.

[240] Crassidis, J.L. 2006. Sigma-point Kalman filtering for integrated GPS and
inertial navigation. IEEE Trans. Aerosp. Electron. Syst., 42(2), 750–756.

[241] Crowley, J.L. 1989. World modeling and position estimation for a mobile
robot using ultra-sonic ranging. Pages 674–680 of: IEEE Intl. Conf. on
Robotics and Automation (ICRA).

[242] Curless, Brian, and Levoy, Marc. 1996. A volumetric method for building
complex models from range images. Pages 303–312 of: Intl. Conf. on Com-
puter Graphics and Interactive Techniques (SIGGRAPH).

[243] Czarnowski, J., Leutenegger, S., and Davison, A. J. 2017. Semantic Texture
for Robust Dense Tracking. In: Proceedings of the International Conference
on Computer Vision Workshops (ICCVW).

[244] Czarnowski, Jan, Laidlow, Tristan, Clark, Ronald, and Davison, Andrew J.
2020. Deepfactors: Real-time probabilistic dense monocular slam. IEEE
Robotics and Automation Letters, 5(2), 721–728.

[245] Dai, A., Chang, A. X., Savva, M., Halber, M., Funkhouser, T., and Niessner,
M. 2017a (Jul.). ScanNet: Richly-Annotated 3D Reconstructions of Indoor
Scenes. Pages 2432–2443 of: IEEE Conf. on Computer Vision and Pattern
Recognition (CVPR).

[246] Dai, Angela, Nießner, Matthias, Zollhöfer, Michael, Izadi, Shahram, and
Theobalt, Christian. 2017b. BundleFusion: Real-Time Globally Consistent
3D Reconstruction Using On-the-Fly Surface Reintegration. ACM Trans. on
Graphics, 36(3).

[247] Dai, Angela, Chang, Angel X., Savva, Manolis, Halber, Maciej, Funkhouser,
Thomas, and Nießner, Matthias. 2017c. ScanNet: Richly-annotated 3D Re-
constructions of Indoor Scene. In: IEEE Conf. on Computer Vision and
Pattern Recognition (CVPR).

[248] Dai, Yuchao, Li, Hongdong, and He, Mingyi. 2014. A simple prior-free
method for non-rigid structure-from-motion factorization. International
Journal of Computer Vision, 107(2), 101–122.

[249] Davis, T.A. 2011. Algorithm 915: SuiteSparseQR, A multifrontal multi-
threaded sparse QR factorization package. ACM Trans. Math. Softw., 38(1),
8:1–8:22.

[250] Davis, T.A., Gilbert, J.R., Larimore, S.I., and Ng, E.G. 2004. A column ap-
proximate minimum degree ordering algorithm. ACM Trans. Math. Softw.,
30(3), 353–376.

[251] Davison, A. J., and Ortiz, J. 2019. FutureMapping 2: Gaussian Belief Prop-
agation for Spatial AI. arXiv preprint arXiv:1910.14139.

[252] Davison, A. J., Molton, N. D., Reid, I., and Stasse, O. 2007. MonoSLAM:
Real-Time Single Camera SLAM. IEEE Trans. Pattern Anal. Machine In-
tell., 29(6), 1052–1067.

[253] Davison, Andrew J. 2003 (Oct). Real-time simultaneous localisation and



References 559

mapping with a single camera. Pages 1403–1410, vol. 2 of: Intl. Conf. on
Computer Vision (ICCV).

[254] Davison, Andrew J. 2018. FutureMapping: The computational structure of
spatial AI systems. arXiv preprint arXiv:1803.11288.

[255] De Martini, Daniele, Gadd, Matthew, and Newman, Paul. 2020. kRadar++:
Coarse-to-Fine FMCW Scanning Radar Localisation. Sensors, 20(21).

[256] Dechter, Rina, and Mateescu, Robert. 2007. AND/OR Search Spaces for
Graphical Models. Artificial Intelligence, 171(2-3), 73–106.

[257] Deems, Jeffrey S., Painter, Thomas H., and Finnegan, David C. 2013. Lidar
measurement of snow depth: a review. Journal of Glaciology, 59(215), 467–
479.

[258] Dellaert, F. 2005. Square Root SAM: Simultaneous Location and Mapping
via Square Root Information Smoothing. In: Robotics: Science and Systems
(RSS).

[259] Dellaert, F. 2021. Factor Graphs: Exploiting Structure in Robotics. Annual
Review of Control, Robotics, and Autonomous Systems, 4, 141–166.

[260] Dellaert, Frank. 2012. Factor graphs and GTSAM: A hands-on introduction.
Tech. rept. Georgia Institute of Technology.

[261] Dellaert, Frank, and Contributors, GTSAM. 2022 (May). GTSAM: Georgia
Tech Smoothing and Mapping Library. Georgia Tech Borg Lab.

[262] Dellaert, Frank, and Kaess, Michael. 2006. Square Root SAM: Simultane-
ous localization and mapping via square root information smoothing. The
International Journal of Robotics Research, 25(12), 1181–1203.

[263] Dellaert, Frank, Kaess, Michael, et al. 2017. Factor graphs for robot percep-
tion. Foundations and Trends® in Robotics, 6(1-2), 1–139.

[264] Dellenbach, P., Deschaud, J., Jacquet, B., and Goulette, F. 2022. CT-ICP
Real-Time Elastic LiDAR Odometry with Loop Closure. In: IEEE Intl.
Conf. on Robotics and Automation (ICRA).

[265] Delmerico, Jeffrey, Cieslewski, Titus, Rebecq, Henri, Faessler, Matthias, and
Scaramuzza, Davide. 2019. Are We Ready for Autonomous Drone Racing?
The UZH-FPV Drone Racing Dataset. Pages 6713–6719 of: IEEE Intl. Conf.
on Robotics and Automation (ICRA).

[266] Demmel, N, Sommer, C, Cremers, D, and Usenko, V. 2021a. Square Root
Bundle Adjustment for Large-Scale Reconstruction. In: IEEE Conference
on Computer Vision and Pattern Recognition (CVPR).

[267] Demmel, N, Schubert, D, Sommer, C, Cremers, D, and Usenko, V. 2021b.
Square Root Marginalization for Sliding-Window Bundle Adjustment. In:
IEEE International Conference on Computer Vision (ICCV).

[268] Deng, Jia, Dong, Wei, Socher, Richard, Li, Li-Jia, Li, Kai, and Fei-Fei, Li.
2009. Imagenet: A large-scale hierarchical image database. Pages 248–255
of: IEEE Conf. on Computer Vision and Pattern Recognition (CVPR). Ieee.

[269] Deng, Junyuan, Chen, Xieyuanli, Xia, Songpengcheng, Sun, Zhen, Liu, Guo-
qing, Yu, Wenxian, and Pei, Ling. 2023a. NeRF-LOAM: Neural Implicit Rep-
resentation for Large-Scale Incremental LiDAR Odometry and Mapping. In:
Intl. Conf. on Computer Vision (ICCV).

[270] Deng, Tianchen, Xie, Hongle, Wang, Jingchuan, and Chen, Weidong. 2023b.
Long-term visual simultaneous localization and mapping: Using a bayesian
persistence filter-based global map prediction. IEEE Robotics & Automation
Magazine, 30(1), 36–49.



560 References

[271] Deng, Yinan, Wang, Jiahui, Zhao, Jingyu, Tian, Xinyu, Chen, Guangyan,
Yang, Yi, and Yue, Yufeng. 2024. OpenGraph: Open-Vocabulary Hierarchi-
cal 3D Graph Representation in Large-Scale Outdoor Environments. IEEE
Robotics and Automation Letters, 9(10), 8402–8409.

[272] Dennis, J.E., and Schnabel, R.B. 1983. Numerical methods for unconstrained
optimization and nonlinear equations. Prentice-Hall.

[273] Deschaud, J.-E. 2018. IMLS-SLAM: Scan-to-Model Matching Based on 3D
Data. In: IEEE Intl. Conf. on Robotics and Automation (ICRA).

[274] Deschênes, S.-P., Baril, D., Boxan, M., Laconte, J., Giguère, P., and Pomer-
leau, F. 2024. Saturation-Aware Angular Velocity Estimation: Extending
the Robustness of SLAM to Aggressive Motions. In: IEEE Intl. Conf. on
Robotics and Automation (ICRA).

[275] DeTone, Daniel, Malisiewicz, Tomasz, and Rabinovich, Andrew. 2018. Su-
perpoint: Self-supervised interest point detection and description. Pages
224–236 of: IEEE/CVF Conf. on Computer Vision and Pattern Recognition
Workshops.

[276] Devlin, Jacob, Chang, Ming-Wei, Lee, Kenton, and Toutanova, Kristina.
2019. BERT: Pre-training of deep bidirectional transformers for language
understanding. Pages 4171–4186 of: Proceedings of the 2019 conference of
the North American chapter of the association for computational linguistics:
human language technologies, volume 1 (long and short papers).

[277] Dexheimer, E., and Davison, A. J. 2024. COMO: Compact Mapping and
Odometry. In: European Conf. on Computer Vision (ECCV).

[278] Diebel, James. 2006. Representing Attitude: Euler Angles, Unit Quaternions,
and Rotation Vectors. Tech. rept. Stanford University.

[279] Dissanayake, MWM Gamini, Newman, Paul, Clark, Steve, Durrant-Whyte,
Hugh F, and Csorba, Michael. 2001. A solution to the simultaneous local-
ization and map building (SLAM) problem. IEEE Transactions on robotics
and automation, 17(3), 229–241.

[280] Doer, Christopher, and Trommer, Gert F. 2020. An EKF Based Approach
to Radar Inertial Odometry. Pages 152–159 of: 2020 IEEE International
Conference on Multisensor Fusion and Integration for Intelligent Systems
(MFI).

[281] Doer, Christopher, and Trommer, Gert F. 2021. Radar Visual Inertial Odom-
etry and Radar Thermal Inertial Odometry: Robust Navigation even in
Challenging Visual Conditions. Pages 331–338 of: IEEE/RSJ Intl. Conf.
on Intelligent Robots and Systems (IROS).

[282] Doherty, Kevin, Fourie, Dehann, and Leonard, John J. 2019. Multimodal
Semantic SLAM with Probabilistic Data Association. In: IEEE Intl. Conf.
on Robotics and Automation (ICRA).

[283] Doherty, Kevin, Papalia, Alan, Huang, Yewei, Rosen, David, Englot, Bren-
dan, and Leonard, John. 2024. MAC: Graph Sparsification by Maximizing
Algebraic Connectivity. arXiv preprint arXiv:2403.19879.

[284] Doherty, Kevin J, Lu, Ziqi, Singh, Kurran, and Leonard, John J. 2022.
Discrete-Continuous Smoothing and Mapping. IEEE Robotics and Automa-
tion Letters, October.

[285] Dong, Hang, and Barfoot, Timothy D. 2013. Lighting-invariant visual odom-
etry using lidar intensity imagery and pose interpolation. Pages 327–342



References 561

of: Field and Service Robotics: Results of the 8th International Conference.
Springer.

[286] Dosovitskiy, Alexey, Fischer, Philipp, Ilg, Eddy, Hausser, Philip, Hazirbas,
Caner, Golkov, Vladimir, Van Der Smagt, Patrick, Cremers, Daniel, and
Brox, Thomas. 2015. Flownet: Learning optical flow with convolutional
networks. Pages 2758–2766 of: Intl. Conf. on Computer Vision (ICCV).

[287] Dosovitskiy, Alexey, Ros, German, Codevilla, Felipe, Lopez, Antonio, and
Koltun, Vladlen. 2017. CARLA: An Open Urban Driving Simulator. In:
Conf. on Robot Learning (CoRL).

[288] Dosovitskiy, Alexey, Beyer, Lucas, Kolesnikov, Alexander, Weissenborn,
Dirk, Zhai, Xiaohua, Unterthiner, Thomas, Dehghani, Mostafa, Minderer,
Matthias, Heigold, Georg, Gelly, Sylvain, Uszkoreit, Jakob, and Houlsby,
Neil. 2021. An Image is Worth 16x16 Words: Transformers for Image Recog-
nition at Scale. Intl. Conf. on Learning Representations (ICLR).

[289] Driess, Danny, Xia, Fei, Sajjadi, Mehdi S. M., Lynch, Corey, Chowdh-
ery, Aakanksha, Ichter, Brian, Wahid, Ayzaan, Tompson, Jonathan, Vuong,
Quan, Yu, Tianhe, Huang, Wenlong, Chebotar, Yevgen, Sermanet, Pierre,
Duckworth, Daniel, Levine, Sergey, Vanhoucke, Vincent, Hausman, Karol,
Toussaint, Marc, Greff, Klaus, Zeng, Andy, Mordatch, Igor, and Florence,
Pete. 2023. PaLM-E: An Embodied Multimodal Language Model. In: arXiv
preprint arXiv:2303.03378.

[290] Droeschel, D., and Behnke, S. 2018. Efficient Continuous-Time SLAM for
3D Lidar-Based Online Mapping. In: IEEE Intl. Conf. on Robotics and
Automation (ICRA).

[291] Duane, C Brown. 1971. Close-range camera calibration. Photogramm. Eng,
37(8), 855–866.

[292] Dubé, Renaud, Gawel, Abel, Sommer, Hannes, Nieto, Juan, Siegwart,
Roland, and Cadena, Cesar. 2017. An online multi-robot SLAM system
for 3D LiDARs. Pages 1004–1011 of: IEEE/RSJ Intl. Conf. on Intelligent
Robots and Systems (IROS).

[293] Dubé, Renaud, Cramariuc, Andrei, Dugas, Daniel, Sommer, Hannes, Dym-
czyk, Marcin, Nieto, Juan, Siegwart, Roland, and Cadena, Cesar. 2020.
SegMap: Segment-based mapping and localization using data-driven descrip-
tors. Intl. J. of Robotics Research, 39(2-3), 339–355.

[294] Duberg, D., and Jensfelt, P. 2020. UFOMap: An Efficient Probabilistic 3D
Mapping Framework That Embraces the Unknown. IEEE Robotics and
Automation Letters, 5(4), 6411–6418.

[295] Duckett, T., Marsland, S., and Shapiro, J. 2002. Fast, On-line Learning of
Globally Consistent Maps. Autonomous Robots, 12(3), 287–300.

[296] Duff, I. S., and Reid, J. K. 1983. The Multifrontal Solution of Indefinite
Sparse Symmetric Linear Systems. ACM Trans. Math. Softw., 9(3), 302–
325.

[297] Duisterhof, Bardienus, Zust, Lojze, Weinzaepfel, Philippe, Leroy, Vin-
cent, Cabon, Yohann, and Revaud, Jérôme. 2025. MASt3R-SfM: a
Fully-Integrated Solution for Unconstrained Structure-from-Motion. In:
Intl. Conf. on 3D Vision (3DV).

[298] Dumbgen, F., Holmes, C., Agro, B., and Barfoot, T. 2024. Toward Glob-
ally Optimal State Estimation Using Automatically Tightened Semidefinite
Relaxations. IEEE Trans. Robotics, 40, 4338–4358.



562 References

[299] Dunkley, O., Engel, J., Sturm, J., and Cremers, D. 2014. Visual-Inertial Nav-
igation for a Camera-Equipped 25g Nano-Quadrotor. In: IROS2014 Aerial
Open Source Robotics Workshop.

[300] Dunning, Iain, Huchette, Joey, and Lubin, Miles. 2017. JuMP: A modeling
language for mathematical optimization. SIAM review, 59(2), 295–320.

[301] Durrant-Whyte, H.F. 1988. Uncertain geometry in robotics. IEEE Trans.
Robot. Automat., 4(1), 23–31.

[302] Durrant-Whyte, H.F., Rye, D., and Nebot, E. 1996. Localisation of auto-
matic guided vehicles. Pages 613–625 of: Giralt, G., and Hirzinger, G. (eds),
Robotics Research: The 7th International Symposium (ISRR 95). Springer-
Verlag.

[303] Dusmanu, Mihai, Rocco, Ignacio, Pajdla, Tomás, Pollefeys, Marc, Sivic,
Josef, Torii, Akihiko, and Sattler, Torsten. 2019. D2-Net: A Trainable CNN
for Joint Description and Detection of Local Features. Pages 8092–8101 of:
IEEE Conf. on Computer Vision and Pattern Recognition (CVPR).

[304] Dymczyk, Marcin, Lynen, Simon, Cieslewski, Titus, Bosse, Michael, Sieg-
wart, Roland, and Furgale, Paul. 2015. The gist of maps-summarizing expe-
rience for lifelong localization. Pages 2767–2773 of: 2015 IEEE international
conference on robotics and automation (ICRA). IEEE.

[305] Dziri, Nouha, Lu, Ximing, Sclar, Melanie, Li, Xiang Lorraine, Jian, Li-
wei, Lin, Bill Yuchen, West, Peter, Bhagavatula, Chandra, Bras, Ronan Le,
Hwang, Jena D, et al. 2023. Faith and Fate: Limits of Transformers on
Compositionality. arXiv preprint arXiv:2305.18654.

[306] Ebadi, K., Chang, Y., Palieri, M., Stephens, A., Hatteland, A., Heiden,
E., Thakur, A., Morrell, B., Carlone, L., and Aghamohammadi, A. 2020.
LAMP: Large-Scale Autonomous Mapping and Positioning for Exploration
of Perceptually-Degraded Subterranean Environments. In: IEEE Intl. Conf.
on Robotics and Automation (ICRA).

[307] Ebadi, Kamak, Bernreiter, Lukas, Biggie, Harel, Catt, Gavin, Chang, Yun,
Chatterjee, Arghya, Denniston, Christopher E, Deschênes, Simon-Pierre,
Harlow, Kyle, Khattak, Shehryar, et al. 2023. Present and future of slam
in extreme environments: The darpa subt challenge. IEEE Trans. Robotics,
40, 936–959.

[308] Eckenhoff, Kevin, Geneva, Patrick, and Huang, Guoquan. 2019. Closed-form
preintegration methods for graph-based visual–inertial navigation. Intl. J.
of Robotics Research, 38(5), 563–586.

[309] Eckenhoff, Kevin, Geneva, Patrick, and Huang, Guoquan. 2021. MIMC-
VINS: A Versatile and Resilient Multi-IMU Multi-Camera Visual-Inertial
Navigation System. IEEE Transactions on Robotics, 37(5), 1360–1380.

[310] Eigen, David, Puhrsch, Christian, and Fergus, Rob. 2014. Depth map predic-
tion from a single image using a multi-scale deep network. Pages 2366–2374
of: Conf. Neural Information Processing Systems (NIPS).

[311] El Moudni, Anass, Morbidi, Fabio, Kramm, Sebastien, and Boutteau, Rémi.
2023. An Event-based Stereo 3D Mapping and Tracking Pipeline for Au-
tonomous Vehicles. Pages 5962–5968 of: IEEE Intl. Conf. on Intelligent
Transportation Systems (ITSC).

[312] Elfes, A. 1989. Using occupancy grids for mobile robot perception and nav-
igation. Computer, 22(6), 46–57.



References 563

[313] Elseberg, J., Borrmann, D., and Nüchter, A. 2013. One billion points in
the cloud – an octree for efficient processing of 3D laser scans. ISPRS J. of
Photogrammetry and Remote Sensing (JPRS), 76, 76–88.

[314] Engel, J., Sturm, J., and Cremers, D. 2012 (Oct.). Accurate Figure Flying
with a Quadrocopter Using Onboard Visual and Inertial Sensing. In: Proc.
of the Workshop on Visual Control of Mobile Robots (ViCoMoR) at the
IEEE/RJS International Conference on Intelligent Robot Systems (IROS).

[315] Engel, Jakob, Schöps, Thomas, and Cremers, Daniel. 2014. LSD-SLAM:
Large-scale direct monocular SLAM. Pages 834–849 of: European Conf. on
Computer Vision (ECCV). Springer.

[316] Engel, Jakob, Koltun, Vladlen, and Cremers, Daniel. 2017. Direct sparse
odometry. IEEE Trans. Pattern Anal. Machine Intell., 40(3), 611–625.

[317] Enqvist, O., Josephson, K., and Kahl, F. 2009. Optimal correspondences
from pairwise constraints. Pages 1295–1302 of: Intl. Conf. on Computer
Vision (ICCV).

[318] Eriksson, A., Olsson, C., Kahl, F., and Chin, T.-J. 2018. Rotation aver-
aging and strong duality. IEEE Conf. on Computer Vision and Pattern
Recognition (CVPR).

[319] Ester, Martin, Kriegel, Hans-Peter, Sander, Jorg, Xu, Xiaowei, et al. 1996.
A density-based algorithm for discovering clusters in large spatial databases
with noise. Pages 226–231 of: kdd, vol. 96.

[320] Eustice, R., Singh, H., and Leonard, J. 2005a (April). Exactly Sparse
Delayed-State Filters. Pages 2417–2424 of: IEEE Intl. Conf. on Robotics
and Automation (ICRA).

[321] Eustice, R., Walter, M., and Leonard, J. 2005b (Aug). Sparse Extended
Information Filters: Insights into Sparsification. Pages 3281–3288 of:
IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems (IROS).

[322] Fahmi, Shamel, Fink, Geoff, and Semini, Claudio. 2021. On State Estimation
for Legged Locomotion Over Soft Terrain. IEEE Sensors Letters, 5(1), 1–4.

[323] Fallon, Maurice F., Antone, Matthew, Roy, Nicholas, and Teller, Seth. 2014.
Drift-free humanoid state estimation fusing kinematic, inertial and LIDAR
sensing. Pages 112–119 of: IEEE Intl. Conf. on Humanoid Robots.

[324] Fallon, Maurice F., Marion, Pat, Deits, Robin, Whelan, Thomas, Antone,
Matthew E., McDonald, John, and Tedrake, Russ. 2015. Continuous hu-
manoid locomotion over uneven terrain using stereo fusion. Pages 881–888
of: IEEE Intl. Conf. on Humanoid Robots.

[325] Faramarzi, Farnaz, Linares-Barranco, Bernabé, and Serrano-Gotarredona,
Teresa. 2024. A 128×128 Electronically Multi-Foveated Dynamic Vision Sen-
sor With Real-Time Resolution Reconfiguration. IEEE Access, 12, 192656–
192671.

[326] Farrell, J.A. 2008. Aided Navigation: GPS with High Rate Sensors. McGraw-
Hill.

[327] Featherstone, Roy. 2007. Rigid Body Dynamics Algorithms. Berlin, Heidel-
berg: Springer-Verlag.

[328] Feder, Tomás, and Vardi, Moshe Y. 1993. Monotone monadic SNP and con-
straint satisfaction. Pages 612–622 of: ACM Symp. on Theory of Computing
(STOC). New York, NY, USA: ACM Press.

[329] Fehr, Marius, Furrer, Fadri, Dryanovski, Ivan, Sturm, Jürgen, Gilitschen-
ski, Igor, Siegwart, Roland, and Cadena, Cesar. 2017. TSDF-based change



564 References

detection for consistent long-term dense reconstruction and dynamic object
discovery. Pages 5237–5244 of: IEEE Intl. Conf. on Robotics and Automation
(ICRA). IEEE.

[330] Feige, Uriel, Goldwasser, Shafi, Lovász, László, Safra, Shmuel, and Szegedy,
Mario. 1991 (Sept.). Approximating clique is almost NP-complete. Pages
2–12 of: Symp. on Foundations of Computer Science.

[331] Feng, Qiaojun, Meng, Yue, Shan, Mo, and Atanasov, Nikolay. 2019. Local-
ization and Mapping using Instance-specific Mesh Models. Pages 4985–4991
of: IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems (IROS).

[332] Fent, Felix, Kuttenreich, Fabian, Ruch, Florian, Rizwin, Farija, Juergens,
Stefan, Lechermann, Lorenz, Nissler, Christian, Perl, Andrea, Voll, Ulrich,
Yan, Min, and Lienkamp, Markus. 2024. MAN TruckScenes: A multimodal
dataset for autonomous trucking in diverse conditions. In: Advances in Neu-
ral Information Processing Systems (NIPS).

[333] Fernandez-Cortizas, M., Bavle, H., Perez-Saura, D., Sanchez-Lopez, J., Cam-
poy, P., and Voos, H. 2024. Multi S-Graphs: An Efficient Distributed
Semantic-Relational Collaborative SLAM. IEEE Robotics and Automation
Letters, 9(6), 6004–6011.

[334] Finateu, Thomas, Niwa, Atsumi, Matolin, Daniel, Tsuchimoto, Koya,
Mascheroni, Andrea, Reynaud, Etienne, Mostafalu, Pooria, Brady, Freder-
ick, Chotard, Ludovic, LeGoff, Florian, Takahashi, Hirotsugu, Wakabayashi,
Hayato, Oike, Yusuke, and Posch, Christoph. 2020. A 1280x720 Back-
Illuminated Stacked Temporal Contrast Event-Based Vision Sensor with
4.86µm Pixels, 1.066GEPS Readout, Programmable Event-Rate Controller
and Compressive Data-Formatting Pipeline. Pages 112–114 of: IEEE Int.
Solid-State Circuits Conf. (ISSCC).

[335] Finman, Ross, Whelan, Thomas, Kaess, Michael, and Leonard, John J. 2013.
Toward lifelong object segmentation from change detection in dense rgb-d
maps. Pages 178–185 of: 2013 European Conference on Mobile Robots. IEEE.

[336] Fischler, Martin A, and Bolles, Robert C. 1981. Random sample consen-
sus: a paradigm for model fitting with applications to image analysis and
automated cartography. Communications of the ACM, 24(6), 381–395.

[337] Focchi, Michele, Orsolino, Romeo, Camurri, Marco, Barasuol, Victor,
Mastalli, Carlos, Caldwell, Darwin G., and Semini, Claudio. 2019. Heuristic
Planning for Rough Terrain Locomotion in Presence of External Distur-
bances and Variable Perception Quality. Springer International Publishing.
Pages 165–209.

[338] Fong, W., Mohan, R., Hurtado, J., Zhou, L., Caesar, H., Beijbom, O., and
Valada, A. 2022. Panoptic nuScenes: A Large-Scale Benchmark for LiDAR
Panoptic Segmentation and Tracking. In: IEEE Intl. Conf. on Robotics and
Automation (ICRA).

[339] Fornasier, A., van Goor, P., Allak, E., Mahony, R., and Weiss, S. 2024.
MSCEqF: A Multi State Constraint Equivariant Filter for Vision-Aided In-
ertial Navigation. IEEE Robotics and Automation Letters, 9(1), 731–738.

[340] Forsgren, Brendon, Kaess, Michael, Vasudevan, Ram, McLain, Timothy W.,
and Mangelson, Joshua G. 2024. Group-k consistent measurement set max-
imization via maximum clique over k-uniform hypergraphs for robust multi-
robot map merging. Intl. J. of Robotics Research.



References 565

[341] Forster, Christian, Pizzoli, Matia, and Scaramuzza, Davide. 2014. SVO: Fast
semi-direct monocular visual odometry. Pages 15–22 of: IEEE Intl. Conf.
on Robotics and Automation (ICRA). IEEE.

[342] Forster, Christian, Carlone, Luca, Dellaert, Frank, and Scaramuzza, Davide.
2015 (July 13–17,). IMU preintegration on manifold for efficient visual-
inertial maximum-a-posteriori estimation. In: Robotics: Science and Systems
(RSS).

[343] Forster, Christian, Carlone, Luca, Dellaert, Frank, and Scaramuzza, Da-
vide. 2016. On-manifold preintegration for real-time visual–inertial odome-
try. IEEE Transactions on Robotics, 33(1), 1–21.

[344] Fourie, Dehann. 2017. Multi-modal and inertial sensor solutions for
navigation-type factor graphs. Ph.D. thesis, MIT.

[345] Fourie, Dehann, Leonard, John, and Kaess, Michael. 2016. A nonparametric
belief solution to the Bayes tree. Pages 2189–2196 of: IEEE/RSJ Intl. Conf.
on Intelligent Robots and Systems (IROS). IEEE.

[346] Fredriksson, Johan, and Olsson, Carl. 2012. Simultaneous multiple rota-
tion averaging using lagrangian duality. Pages 245–258 of: Asian Conf. on
Computer Vision (ACCV). Springer.

[347] Frese, U. 2005. Treemap: An O(log n) Algorithm for Simultaneous Local-
ization and Mapping. Pages 455–476 of: Spatial Cognition IV. Springer
Verlag.

[348] Frese, U., Larsson, P., and Duckett, T. 2005. A Multilevel Relaxation Algo-
rithm for Simultaneous Localisation and Mapping. IEEE Trans. Robotics,
21(2), 196–207.

[349] Fridovich-Keil, Sara, Yu, Alex, Tancik, Matthew, Chen, Qinhong, Recht,
Benjamin, and Kanazawa, Angjoo. 2022. Plenoxels: Radiance fields without
neural networks. In: IEEE Conf. on Computer Vision and Pattern Recogni-
tion (CVPR).

[350] Fritsche, Paul, Kueppers, Simon, Briese, Gunnar, and Wagner, Bernardo.
2016. Radar and LiDAR Sensorfusion in Low Visibility Environments. Pages
30–36 of: ICINCO.

[351] Fritsche, Paul, Kueppers, Simon, Briese, Gunnar, and Wagner, Bernardo.
2018. Fusing LiDAR and Radar Data to Perform SLAM in Harsh Environ-
ments. Cham: Springer International Publishing. Pages 175–189.

[352] Fu, Jiahui, Huang, Qiangqiang, Doherty, Kevin, Wang, Yue, and Leonard,
John J. 2021. A multi-hypothesis approach to pose ambiguity in object-
based SLAM. Pages 7639–7646 of: IEEE/RSJ Intl. Conf. on Intelligent
Robots and Systems (IROS). IEEE.

[353] Fu, Jiahui, Du, Yilun, Singh, Kurran, Tenenbaum, Joshua B, and Leonard,
John J. 2023. Neuse: Neural se (3)-equivariant embedding for consistent
spatial understanding with objects. Robotics: Science and Systems (RSS).

[354] Fu, Taimeng, Su, Shaoshu, Lu, Yiren, and Wang, Chen. 2024. iSLAM: Im-
perative SLAM. IEEE Robotics and Automation Letters (RA-L).

[355] Funk, N., Tarrio, J., Papatheodorou, S., Popović, M., Alcantarilla, P. F.,
and Leutenegger, S. 2021. Multi-resolution 3D Mapping with Explicit Free
Space Representation for Fast and Accurate Mobile Robot Motion Planning.
IEEE Robotics and Automation Letters, 6(2), 3553–3560.

[356] Furber, S. B., Galluppi, F., Temple, S., and Plana, L. A. 2014. The SpiN-
Naker Project. Proceedings of the IEEE, 102, 652–665.



566 References

[357] Furgale, P., Barfoot, T.D., and Sibley, G. 2012. Continuous-time batch
estimation using temporal basis functions. Pages 2088–2095 of: IEEE Intl.
Conf. on Robotics and Automation (ICRA). IEEE.

[358] Furgale, Paul, Rehder, Joern, and Siegwart, Roland. 2013. Unified tempo-
ral and spatial calibration for multi-sensor systems. Pages 1280–1286 of:
2013 IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems. IEEE.

[359] Furrer, Fadri, Novkovic, Tonci, Fehr, Marius, Gawel, Abel, Grinvald, Mar-
garita, Sattler, Torsten, Siegwart, Roland, and Nieto, Juan. 2018. Incremen-
tal object database: Building 3d models from multiple partial observations.
Pages 6835–6842 of: 2018 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). IEEE.

[360] Gadd, Matthew, De Martini, Daniele, and Newman, Paul. 2021. Contrastive
Learning for Unsupervised Radar Place Recognition. Pages 344–349 of: Intl.
Conf. on Advanced Robotics (ICAR).

[361] Gadd, Matthew, De Martini, Daniele, Bartlett, Oliver, Murcutt, Paul, Towl-
son, Matt, Widojo, Matthew, Muşat, Valentina, Robinson, Luke, Panagio-
taki, Efimia, Pramatarov, Georgi, et al. 2024. OORD: The Oxford Offroad
Radar Dataset. arXiv preprint arXiv:2403.02845.

[362] Galeote-Luque, Andres, Kubelka, Vladimı́r, Magnusson, Martin, Ruiz-
Sarmiento, Jose-Raul, and Gonzalez-Jimenez, Javier. 2024. Doppler-only
Single-scan 3D Vehicle Odometry. In: IEEE Intl. Conf. on Robotics and
Automation (ICRA).

[363] Galindo, Cipriano, Saffiotti, Alessandro, Coradeschi, Silvia, Buschka, Pär,
Fernandez-Madrigal, Juan-Antonio, and González, Javier. 2005. Multi-
Hierarchical Semantic Maps for Mobile Robotics. Pages 3492–3497 of:
IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems (IROS).

[364] Gallego, Guillermo, and Scaramuzza, Davide. 2017. Accurate Angular Ve-
locity Estimation with an Event Camera. IEEE Robotics and Automation
Letters, 2(2), 632–639.

[365] Gallego, Guillermo, Mueggler, Elias, and Sturm, Peter. 2017. Translation
of ”Zur Ermittlung eines Objektes aus zwei Perspektiven mit innerer Orien-
tierung” by Erwin Kruppa (1913). arXiv preprint.

[366] Gallego, Guillermo, Lund, Jon E. A., Mueggler, Elias, Rebecq, Henri, Del-
bruck, Tobi, and Scaramuzza, Davide. 2018a. Event-based, 6-DOF Camera
Tracking from Photometric Depth Maps. IEEE Trans. Pattern Anal. Ma-
chine Intell., 40(10), 2402–2412.

[367] Gallego, Guillermo, Rebecq, Henri, and Scaramuzza, Davide. 2018b. A Uni-
fying Contrast Maximization Framework for Event Cameras, with Applica-
tions to Motion, Depth, and Optical Flow Estimation. Pages 3867–3876 of:
IEEE Conf. on Computer Vision and Pattern Recognition (CVPR).

[368] Gallego, Guillermo, Gehrig, Mathias, and Scaramuzza, Davide. 2019. Focus
Is All You Need: Loss Functions For Event-based Vision. Pages 12272–12281
of: IEEE Conf. on Computer Vision and Pattern Recognition (CVPR).

[369] Gallego, Guillermo, Delbruck, Tobi, Orchard, Garrick, Bartolozzi, Chiara,
Taba, Brian, Censi, Andrea, Leutenegger, Stefan, Davison, Andrew, Con-
radt, Jörg, Daniilidis, Kostas, and Scaramuzza, Davide. 2022. Event-based
Vision: A Survey. IEEE Trans. Pattern Anal. Machine Intell., 44(1), 154–
180.

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6225005&tag=1
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6225005&tag=1


References 567

[370] Gálvez-López, Dorian, and Tardos, Juan D. 2012. Bags of binary words for
fast place recognition in image sequences. IEEE Transactions on robotics,
28(5), 1188–1197.

[371] Gao, Ling, Liang, Yuxuan, Yang, Jiaqi, Wu, Shaoxun, Wang, Chenyu, Chen,
Jiaben, and Kneip, Laurent. 2022. VECtor: A Versatile Event-Centric
Benchmark for Multi-Sensor SLAM. IEEE Robotics and Automation Letters,
7(3), 8217–8224.

[372] Gao, Wei, and Tedrake, Russ. 2019. SurfelWarp: Efficient non-volumetric
single view dynamic reconstruction. arXiv preprint arXiv:1904.13073.

[373] Gao, X., Wang, R., Demmel, N., and Cremers, D. 2018 (October). LDSO:
Direct Sparse Odometry with Loop Closure. In: IEEE/RSJ Intl. Conf. on
Intelligent Robots and Systems (IROS).

[374] Gao, Yiming, Cao, Yan-Pei, and Shan, Ying. 2023. SurfelNeRF: Neu-
ral Surfel Radiance Fields for Online Photorealistic Reconstruction of In-
door Scenes. In: IEEE Conf. on Computer Vision and Pattern Recognition
(CVPR).

[375] Garcia-Salguero, Mercedes, Briales, Jesus, and Gonzalez-Jimenez, Javier.
2021. Certifiable relative pose estimation. Image and Vision Computing,
109, 104142.

[376] Garg, Ravi, Roussos, Anastasios, and Agapito, Lourdes. 2013. Dense varia-
tional reconstruction of non-rigid surfaces from monocular video. In: CVPR.

[377] Gawel, Abel, Del Don, Carlo, Siegwart, Roland, Nieto, Juan, and Cadena,
Cesar. 2018. X-view: Graph-based semantic multi-view localization. IEEE
Robotics and Automation Letters, 3(3), 1687–1694.

[378] Gehrig, Daniel, Loquercio, Antonio, Derpanis, Konstantinos G., and Scara-
muzza, Davide. 2019. End-to-End Learning of Representations for Asyn-
chronous Event-Based Data. Pages 5632–5642 of: Intl. Conf. on Computer
Vision (ICCV).

[379] Gehrig, Daniel, Gehrig, Mathias, Hidalgo-Carrió, Javier, and Scaramuzza,
Davide. 2020. Video to Events: Recycling Video Datasets for Event Cam-
eras. Pages 3583–3592 of: IEEE Conf. on Computer Vision and Pattern
Recognition (CVPR).

[380] Gehrig, Mathias, Aarents, Willem, Gehrig, Daniel, and Scaramuzza, Davide.
2021. DSEC: A Stereo Event Camera Dataset for Driving Scenarios. IEEE
Robotics and Automation Letters, 6(3), 4947–4954.

[381] Geiger, A., Lenz, P., and Urtasun, R. 2012 (June). Are we ready for Au-
tonomous Driving? The KITTI Vision Benchmark Suite. Pages 3354–3361
of: IEEE Conf. on Computer Vision and Pattern Recognition (CVPR).

[382] Geneva, Patrick, Eckenhoff, Kevin, Yang, Yulin, and Huang, Guoquan. 2018.
Lips: Lidar-inertial 3d plane slam. Pages 123–130 of: 2018 IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems (IROS). IEEE.

[383] Geneva, Patrick, Eckenhoff, Kevin, Lee, Woosik, Yang, Yulin, and Huang,
Guoquan. 2020. OpenVINS: A Research Platform for Visual-Inertial Esti-
mation. In: Proc. of the IEEE International Conference on Robotics and
Automation.

[384] Gentil, Cedric Le, and Vidal-Calleja, Teresa. 2023. Continuous latent state
preintegration for inertial-aided systems. Intl. J. of Robotics Research,
42(10), 874–900.



568 References

[385] Gentil, Cédric Le, Vayugundla, Mallikarjuna, Giubilato, Riccardo, Sturzl,
Wolfgang, Vidal-Calleja, Teresa, and Triebel, Rudolph. 2020. Gaussian Pro-
cess Gradient Maps for Loop-Closure Detection in Unstructured Planetary
Environments. Pages 1895–1902 of: IEEE/RSJ Intl. Conf. on Intelligent
Robots and Systems (IROS).

[386] Ghaffari Jadidi, Maani, Valls Miro, Jaime, and Dissanayake, Gamini. 2018.
Gaussian processes autonomous mapping and exploration for range-sensing
mobile robots. Autonomous Robots, 42(2), 273–290.

[387] Ghiasi, Golnaz, Gu, Xiuye, Cui, Yin, and Lin, Tsung-Yi. 2022. Scaling open-
vocabulary image segmentation with image-level labels. Pages 540–557 of:
European conference on computer vision. Springer.

[388] Ghosh, Suman, and Gallego, Guillermo. 2024. Event-based Stereo Depth
Estimation: A Survey. arXiv preprint.

[389] Ghosh, Suman, Cavinato, Valentina, and Gallego, Guillermo. 2024. ES-
PTAM: Event-based Stereo Parallel Tracking and Mapping. In: European
Conf. on Computer Vision Workshops.

[390] Giamou, Matthew, Ma, Ziye, Peretroukhin, Valentin, and Kelly, Jonathan.
2019. Certifiably Globally Optimal Extrinsic Calibration From Per-Sensor
Egomotion. IEEE Robotics and Automation Letters, 4(2), 367–374.

[391] Giftthaler, Markus, Neunert, Michael, Stäuble, Markus, and Buchli, Jonas.
2018. The control toolbox-an open-source c++ library for robotics, optimal
and model predictive control. Pages 123–129 of: 2018 IEEE International
Conference on Simulation, Modeling, and Programming for Autonomous
Robots (SIMPAR). IEEE.

[392] Girshick, Ross, Donahue, Jeff, Darrell, Trevor, and Malik, Jitendra. 2016.
Region-Based Convolutional Networks for Accurate Object Detection and
Segmentation. IEEE Transactions on Pattern Analysis and Machine Intel-
ligence, 38(1), 142–158.

[393] Gladkova, M, Wang, R, Zeller, N, and Cremers, D. 2021. Tight Integration
of Feature-based Relocalization in Monocular Direct Visual Odometry. In:
Proc. of the IEEE International Conference on Robotics and Automation
(ICRA).

[394] Gladkova, M, Korobov, N, Demmel, N, Ošep, A, Leal-Taixé, L, and Cre-
mers, D. 2022. DirectTracker: 3D Multi-Object Tracking Using Direct Image
Alignment and Photometric Bundle Adjustment. In: International Confer-
ence on Intelligent Robots and Systems (IROS).

[395] Godard, Clément, Mac Aodha, Oisin, and Brostow, Gabriel J. 2016. Un-
supervised monocular depth estimation with left-right consistency. arXiv
preprint arXiv:1609.03677.

[396] Golkov, Vladimir, Skwark, Marcin J, Golkov, Antonij, Dosovitskiy, Alexey,
Brox, Thomas, Meiler, Jens, and Cremers, Daniel. 2016. Protein contact
prediction from amino acid co-evolution using convolutional networks for
graph-valued images. Advances in Neural Information Processing Systems,
29.

[397] Golub, G.H., and Loan, C.F. Van. 1996. Matrix Computations. Third edn.
Baltimore: Johns Hopkins University Press.

[398] Gomez, Jorge, Patel, Saavan, Sarwar, Syed Shakib, Li, Ziyun, Capoccia, Raf-
faele, Wang, Zhao, Pinkham, Reid, Berkovich, Andrew, Tsai, Tsung-Hsun,
De Salvo, Barbara, and Liu, Chiao. 2022. Distributed On-Sensor Compute



References 569

System for AR/VR Devices: A Semi-Analytical Simulation Framework for
Power Estimation.

[399] Gómez-Rodŕıguez, Juan J, Lamarca, José, Morlana, Javier, Tardós, Juan D,
and Montiel, J.M.M. 2021. SD-DefSLAM: Semi-direct monocular SLAM
for deformable and intracorporeal scenes. Pages 5170–5177 of: 2021 IEEE
international conference on robotics and automation (ICRA). IEEE.

[400] Goodfellow, Ian, Bengio, Yoshua, and Courville, Aaron. 2016. Deep Learn-
ing. MIT Press. http://www.deeplearningbook.org.

[401] Gorlo, N., Schmid, L., and Carlone, L. 2024a. Long-Term Human Trajectory
Prediction using 3D Dynamic Scene Graphs. IEEE Robotics and Automation
Letters.

[402] Gorlo, Nicolas, Schmid, Lukas, and Carlone, Luca. 2024b. Long-Term Hu-
man Trajectory Prediction using 3D Dynamic Scene Graphs. IEEE Robotics
and Automation Letters.

[403] Gotardo, Paulo FU, and Martinez, Aleix M. 2011a. Kernel non-rigid struc-
ture from motion. In: ICCV.

[404] Gotardo, Paulo FU, and Martinez, Aleix M. 2011b. Non-rigid structure from
motion with complementary rank-3 spaces. In: CVPR.

[405] Greve, Elias, Büchner, Martin, Vödisch, Niclas, Burgard, Wolfram, and Val-
ada, Abhinav. 2024. Collaborative dynamic 3d scene graphs for automated
driving. Pages 11118–11124 of: IEEE Intl. Conf. on Robotics and Automa-
tion (ICRA). IEEE.

[406] Grimminger, Felix, Meduri, Avadesh, Khadiv, Majid, Viereck, Julian,
Wüthrich, Manuel, Naveau, Maximilien, Berenz, Vincent, Heim, Steve, Wid-
maier, Felix, Flayols, Thomas, Fiene, Jonathan, Badri-Spröwitz, Alexander,
and Righetti, Ludovic. 2020. An Open Torque-Controlled Modular Robot
Architecture for Legged Locomotion Research. IEEE Robotics and Automa-
tion Letters, 5(2), 3650–3657.

[407] Grinvald, Margarita, Furrer, Fadri, Novkovic, Tonci, Chung, Jen Jen, Ca-
dena, Cesar, Siegwart, Roland, and Nieto, Juan. 2019. Volumetric instance-
aware semantic mapping and 3D object discovery. IEEE Robotics and Au-
tomation Letters, 4(3), 3037–3044.

[408] Grisetti, G., Stachniss, C., and Burgard, W. 2007. Improved Techniques
for Grid Mapping With Rao-Blackwellized particle filters. IEEE Trans.
Robotics, 23(1), 34–46.

[409] Grisetti, Giorgio, Kümmerle, Rainer, Stachniss, Cyrill, Frese, Udo, and
Hertzberg, Christoph. 2010 (5). Hierarchical optimization on manifolds for
online 2D and 3D mapping. Pages 273–278 of: IEEE Intl. Conf. on Robotics
and Automation (ICRA).

[410] Grisetti, Giorgio, Kümmerle, Rainer, Strasdat, Hauke, and Konolige, Kurt.
2011. g2o: A general framework for (hyper) graph optimization. Pages 9–13
of: IEEE Intl. Conf. on Robotics and Automation (ICRA).

[411] Grohe, Martin, Neuen, Daniel, Schweitzer, Pascal, and Wiebking, Daniel.
2020. An Improved Isomorphism Test for Bounded-Tree-Width Graphs.
ACM Trans. on Algorithms (TALG), 16(3).

[412] Gropp, Amos, Yariv, Lior, Haim, Niv, Atzmon, Matan, and Lipman, Yaron.
2020. Implicit Geometric Regularization for Learning Shapes. Pages 3789–
3799 of: Intl. Conf. on Machine Learning (ICML).

http://www.deeplearningbook.org


570 References

[413] Grupp, Michael. 2017. evo: Python package for the evaluation of odometry
and SLAM. https://github.com/MichaelGrupp/evo.

[414] Gu, Albert, Goel, Karan, and Ré, Christopher. 2022. Efficiently Modeling
Long Sequences with Structured State Spaces. In: The International Con-
ference on Learning Representations (ICLR).

[415] Gu, Qiao, Kuwajerwala, Ali, Morin, Sacha, Jatavallabhula, Krishna Murthy,
Sen, Bipasha, Agarwal, Aditya, Rivera, Corban, Paul, William, Ellis, Kirsty,
Chellappa, Rama, et al. 2024. Conceptgraphs: Open-vocabulary 3d scene
graphs for perception and planning. Pages 5021–5028 of: IEEE Intl. Conf.
on Robotics and Automation (ICRA). IEEE.

[416] Guan, Weipeng, Lin, Fuling, Chen, Peiyu, and Lu, Peng. 2024a. DEIO: Deep
Event Inertial Odometry. arXiv preprint.

[417] Guan, Weipeng, Chen, Peiyu, Zhao, Huibin, Wang, Yu, and Lu, Peng. 2024b.
EVI-SAM: Robust, Real-Time, Tightly-Coupled Event–Visual–Inertial State
Estimation and 3D Dense Mapping. Adv. Intell. Syst., 6(12), 2400243.

[418] Guan, Weipeng, Chen, Peiyu, Xie, Yuhan, and Lu, Peng. 2024c. PL-EVIO:
Robust Monocular Event-Based Visual Inertial Odometry With Point and
Line Features. IEEE Trans. Autom. Sci. Eng., 21(4), 6277–6293.

[419] Guédon, Antoine, and Lepetit, Vincent. 2024. Sugar: Surface-aligned gaus-
sian splatting for efficient 3d mesh reconstruction and high-quality mesh
rendering. In: IEEE Conf. on Computer Vision and Pattern Recognition
(CVPR).

[420] Guennebaud, Gaël, Jacob, Benoit, et al. 2010. Eigen. URl: http://eigen.
tuxfamily. org, 3.

[421] Guo, Chao X, and Roumeliotis, Stergios I. 2013. IMU-RGBD camera navi-
gation using point and plane features. Pages 3164–3171 of: IEEE/RSJ Intl.
Conf. on Intelligent Robots and Systems (IROS).

[422] Guo, Jiadong, Borges, Paulo VK, Park, Chanoh, and Gawel, Abel. 2019.
Local descriptor for robust place recognition using lidar intensity. IEEE
Robotics and Automation Letters, 4(2), 1470–1477.

[423] Guo, Shuang, and Gallego, Guillermo. 2024a. CMax-SLAM: Event-based
Rotational-Motion Bundle Adjustment and SLAM System using Contrast
Maximization. IEEE Trans. Robotics, 40, 2442–2461.

[424] Guo, Shuang, and Gallego, Guillermo. 2024b. Event-based Mosaicing Bun-
dle Adjustment. Pages 479–496 of: European Conf. on Computer Vision
(ECCV).

[425] Guo, Shuang, and Gallego, Guillermo. 2024c. Event-based Photometric Bun-
dle Adjustment. arXiv preprint.

[426] Guo, Yifan, Ren, Zhongqiang, and Wang, Chen. 2024. iMTSP: Solving Min-
Max Multiple Traveling Salesman Problem with Imperative Learning. In:
IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems (IROS).

[427] Gutmann, J.-S., and Konolige, K. 2000 (November). Incremental Mapping
of Large Cyclic Environments. Pages 318–325 of: IEEE Intl. Symp. on Com-
putational Intelligence in Robotics and Automation (CIRA).

[428] Guzhov, Andrey, Raue, Federico, Hees, Jörn, and Dengel, Andreas. 2022. Au-
dioclip: Extending clip to image, text and audio. Pages 976–980 of: ICASSP
2022-2022 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP). IEEE.

https://github.com/MichaelGrupp/evo


References 571

[429] Gómez Rodŕıguez, Juan J., Montiel, J.M.M., and Tardós, Juan D. 2022.
Tracking monocular camera pose and deformation for SLAM inside the hu-
man body. Pages 5278–5285 of: 2022 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS).

[430] Ha, D., and Schmidhuber, J. 2018. World Models. In: Advances in Neural
Information Processing Systems (NIPS).

[431] Ha, Seongbo, Yeon, Jiung, and Yu, Hyeonwoo. 2024. RGBD GS-ICP SLAM.
In: European Conf. on Computer Vision (ECCV).

[432] Hadviger, Antea, Cvǐsić, Igor, Marković, Ivan, Vražić, Sacha, and Petrović,
Ivan. 2021. Feature-based event stereo visual odometry. Pages 1–6 of: Eu-
ropean Conf. on Mobile Robotics (ECMR).

[433] Han, Luxin, Gao, Fei, Zhou, Boyu, and Shen, Shaojie. 2019. Fiesta: Fast
incremental euclidean distance fields for online motion planning of aerial
robots. Pages 4423–4430 of: IEEE/RSJ Intl. Conf. on Intelligent Robots
and Systems (IROS).

[434] Hanan, S. 1989. Implementing Ray-tracing with Octrees and Neighbor Find-
ing. Computers & Graphics, 13(4), 445–460.

[435] Handa, A., Newcombe, R. A., Angeli, A., and Davison, A. J. 2012. Real-
Time Camera Tracking: When is High Frame-Rate Best? In: European Conf.
on Computer Vision (ECCV).

[436] Handa, A., Whelan, T., McDonald, J. B., and Davison, A. J. 2014. A Bench-
mark for RGB-D Visual Odometry, 3D Reconstruction and SLAM. In: IEEE
Intl. Conf. on Robotics and Automation (ICRA).

[437] Handa, Ankur, Bloesch, Michael, Pătrăucean, Viorica, Stent, Simon, McCor-
mac, John, and Davison, Andrew. 2016. gvnn: Neural network library for
geometric computer vision. Pages 67–82 of: Computer Vision–ECCV 2016
Workshops: Amsterdam, The Netherlands, October 8-10 and 15-16, 2016,
Proceedings, Part III 14. Springer.

[438] Harnad, Stevan. 1990. The symbol grounding problem. Physica D: Nonlinear
Phenomena, 42(1), 335–346.

[439] Harris, C., and Stephens, M. 1988. A combined corner and edge detector.
Pages 147–151 of: Proceedings of the Alvey Vision Conference.

[440] Harrison, Alastair, and Newman, Paul. 2008. High quality 3D laser ranging
under general vehicle motion. Pages 7–12 of: IEEE Intl. Conf. on Robotics
and Automation (ICRA).

[441] Hart, William E, Laird, Carl D, Watson, Jean-Paul, Woodruff, David L,
Hackebeil, Gabriel A, Nicholson, Bethany L, Siirola, John D, et al. 2017.
Pyomo-optimization modeling in python. Vol. 67. Springer.

[442] Hartley, R., Trumpf, J., Dai, Y., and Li, H. 2013. Rotation Averaging. Intl.
J. of Computer Vision, 103(3), 267–305.

[443] Hartley, R.I., and Kahl, F. 2009. Global optimization through rotation space
search. Intl. J. of Computer Vision, 82(1), 64–79.

[444] Hartley, Richard, and Zisserman, Andrew. 2003. Multiple view geometry in
computer vision. Cambridge university press.

[445] Hartley, Ross, Jadidi, Maani Ghaffari, Grizzle, Jessy, and Eustice, Ryan M.
2018a. Contact-Aided Invariant Extended Kalman Filtering for Legged
Robot State Estimation. In: Robotics: Science and Systems (RSS).

[446] Hartley, Ross, Jadidi, Maani Ghaffari, Gan, Lu, Huang, Jiunn-Kai, Grizzle,
Jessy W., and Eustice, Ryan M. 2018b. Hybrid Contact Preintegration for



572 References

Visual-Inertial-Contact State Estimation Using Factor Graphs. Pages 3783–
3790 of: IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems (IROS).

[447] Hartley, Ross, Mangelson, Josh, Gan, Lu, Ghaffari Jadidi, Maani, Walls,
Jeffrey M., Eustice, Ryan M., and Grizzle, Jessy W. 2018c. Legged Robot
State-Estimation Through Combined Forward Kinematic and Preintegrated
Contact Factors. Pages 4422–4429 of: IEEE Intl. Conf. on Robotics and
Automation (ICRA).

[448] Hartley, Ross, Ghaffari, Maani, Eustice, Ryan M, and Grizzle, Jessy W.
2020. Contact-aided invariant extended Kalman filtering for robot state
estimation. The International Journal of Robotics Research, 39(4), 402–430.

[449] He, Dongjiao, Xu, Wei, Chen, Nan, Kong, Fanze, Yuan, Chongjian, and
Zhang, Fu. 2023. Point-LIO: Robust High-Bandwidth Light Detection and
Ranging Inertial Odometry. Advanced Intelligent Systems, 5(7), 2200459.

[450] He, Kaiming, Zhang, Xiangyu, Ren, Shaoqing, and Sun, Jian. 2016a. Deep
residual learning for image recognition. Pages 770–778 of: IEEE Conf. on
Computer Vision and Pattern Recognition (CVPR).

[451] He, Kaiming, Gkioxari, Georgia, Dollár, Piotr, and Girshick, Ross. 2017a.
Mask r-cnn. Pages 2961–2969 of: Intl. Conf. on Computer Vision (ICCV).

[452] He, Kaiming, Gkioxari, Georgia, Dollár, Piotr, and Girshick, Ross. 2017b.
Mask R-CNN. Pages 2980–2988 of: Intl. Conf. on Computer Vision (ICCV).

[453] He, Li, Wang, Xiaolong, and Zhang, Hong. 2016b. M2DP: A novel 3D point
cloud descriptor and its application in loop closure detection. Pages 231–237
of: IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems (IROS). IEEE.

[454] Heck, Martijn J.R. 2017. Highly integrated optical phased arrays: photonic
integrated circuits for optical beam shaping and beam steering. Nanopho-
tonics, 6(1), 93–107.

[455] Hendrycks, Dan, and Gimpel, Kevin. 2016. Bridging Nonlinearities and
Stochastic Regularizers with Gaussian Error Linear Units. arXiv preprint
arXiv:1606.08415.

[456] Henein, Mina, Zhang, Jun, Mahony, Robert, and Ila, Viorela. 2020. Dynamic
SLAM: The need for speed. Pages 2123–2129 of: 2020 IEEE International
Conference on Robotics and Automation (ICRA). IEEE.

[457] Henning, Dorian F, Laidlow, Tristan, and Leutenegger, Stefan. 2022. BodyS-
LAM: joint camera localisation, mapping, and human motion tracking.
Pages 656–673 of: European Conf. on Computer Vision (ECCV). Springer.

[458] Henning, Dorian F, Choi, Christopher, Schaefer, Simon, and Leutenegger,
Stefan. 2023. BodySLAM++: Fast and tightly-coupled visual-inertial cam-
era and human motion tracking. Pages 3781–3788 of: IEEE/RSJ Intl. Conf.
on Intelligent Robots and Systems (IROS). IEEE.

[459] Herath, Sachini, Yan, Hang, and Furukawa, Yasutaka. 2020. Ronin: Robust
neural inertial navigation in the wild: Benchmark, evaluations, & new meth-
ods. Pages 3146–3152 of: 2020 IEEE international conference on robotics
and automation (ICRA). IEEE.

[460] Herath, Sachini, Caruso, David, Liu, Chen, Chen, Yufan, and Furukawa,
Yasutaka. 2022. Neural inertial localization. Pages 6604–6613 of: Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[461] Hermann, R., and Krener, A. 1977. Nonlinear controllability and observ-
ability. IEEE Trans. on Automatic Control, 22(5), 728–740.



References 573

[462] Herraez, Daniel Casado, Chang, Le, Zeller, Matthias, Wiesmann, Louis,
Behley, Jens, Heidingsfeld, Michael, and Stachniss, Cyrill. 2024. SPR: Single-
Scan Radar Place Recognition. IEEE Robotics and Automation Letters.

[463] Hesch, J. A., Mirzaei, F. M., Mariottini, G. L., and Roumeliotis, S. I. 2010
(May. 3 - 8). A Laser-Aided Inertial Navigation System (L-INS) for human
localization in unknown indoor environments. Pages 5376–5382 of: Interna-
tional Conference on Robotics and Automation.

[464] Hesch, J.A., Kottas, D.G., Bowman, S.L., and Roumeliotis, S.I. 2013a.
Consistency Analysis and Improvement of Vision-aided Inertial Navigation.
IEEE Trans. Robotics, 30(1), 158–176.

[465] Hesch, JoelA., Kottas, DimitriosG., Bowman, SeanL., and Roumeliotis, Ster-
giosI. 2013b. Towards Consistent Vision-Aided Inertial Navigation. Pages
559–574 of: Frazzoli, Emilio, Lozano-Perez, Tomas, Roy, Nicholas, and Rus,
Daniela (eds), Algorithmic Foundations of Robotics X. Springer Tracts in
Advanced Robotics, vol. 86. Springer Berlin Heidelberg.

[466] Hess, Wolfgang, Kohler, Damon, Rapp, Holger, and Andor, Daniel. 2016.
Real-time loop closure in 2D LIDAR SLAM. Pages 1271–1278 of: IEEE
Intl. Conf. on Robotics and Automation (ICRA). IEEE.

[467] Hestenes, Magnus R, and Stiefel, Eduard. 1952. Methods of conjugate gra-
dients for solving. Journal of research of the National Bureau of Standards,
49(6), 409.

[468] Hidalgo-Carrió, Javier, Gehrig, Daniel, and Scaramuzza, Davide. 2020
(Nov.). Learning Monocular Dense Depth from Events. Pages 534–542
of: Intl. Conf. on 3D Vision (3DV).

[469] Hidalgo-Carrió, Javier, Gallego, Guillermo, and Scaramuzza, Davide. 2022
(June). Event-aided Direct Sparse odometry. Pages 5781–5790 of: IEEE
Conf. on Computer Vision and Pattern Recognition (CVPR).

[470] Himstedt, Marian, Frost, Jan, Hellbach, Sven, Böhme, Hans-Joachim, and
Maehle, Erik. 2014. Large scale place recognition in 2D LIDAR scans using
geometrical landmark relations. Pages 5030–5035 of: IEEE/RSJ Intl. Conf.
on Intelligent Robots and Systems (IROS). IEEE.

[471] Ho, Jonathan, Jain, Ajay, and Abbeel, Pieter. 2020. Denoising Diffusion
Probabilistic Models. Pages 6840–6851 of: Larochelle, H., Ranzato, M., Had-
sell, R., Balcan, M.F., and Lin, H. (eds), Advances in Neural Information
Processing Systems, vol. 33. Curran Associates, Inc.

[472] Hoeller, David, Rudin, Nikita, Sako, Dhionis V., and Hutter, Marco. 2024.
ANYmal parkour: Learning agile navigation for quadrupedal robots. Science
Robotics, 9(88).

[473] Holmes, Connor, and Barfoot, Timothy D. 2023. An efficient global optimal-
ity certificate for landmark-based SLAM. IEEE Robotics and Automation
Letters, 8(3), 1539–1546.

[474] Holmes, Connor, Dümbgen, Frederike, and Barfoot, Timothy D. 2024. On
Semidefinite Relaxations for Matrix-Weighted State-Estimation Problems in
Robotics.

[475] Holmstrom, Sven T. S., Baran, Utku, and Urey, Hakan. 2014. MEMS Laser
Scanners: A Review. Journal of Microelectromechanical Systems, 23(2), 259–
275.

[476] Honerkamp, Daniel, Büchner, Martin, Despinoy, Fabien, Welschehold, Tim,
and Valada, Abhinav. 2024. Language-Grounded Dynamic Scene Graphs



574 References

for Interactive Object Search with Mobile Manipulation. IEEE Robotics
and Automation Letters.

[477] Hong, Je Hyeong, Zach, Christopher, Fitzgibbon, Andrew, and Cipolla,
Roberto. 2016. Projective bundle adjustment from arbitrary initialization
using the variable projection method. Pages 477–493 of: Computer Vision–
ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, Oc-
tober 11–14, 2016, Proceedings, Part I 14. Springer.

[478] Hong, Je Hyeong, Zach, Christopher, and Fitzgibbon, Andrew. 2017. Re-
visiting the variable projection method for separable nonlinear least squares
problems. Pages 5939–5947 of: 2017 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR). IEEE.

[479] Hong, Sheng, and et al. 2024. LIV-GaussMap: LiDAR-Inertial-Visual Fu-
sion for Real-time 3D Radiance Field Map Rendering. IEEE Robotics and
Automation Letters.

[480] Hong, Yining, Lin, Chunru, Du, Yilun, Chen, Zhenfang, Tenenbaum,
Joshua B, and Gan, Chuang. 2023a. 3d concept learning and reasoning
from multi-view images. Pages 9202–9212 of: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition.

[481] Hong, Ziyang, Petillot, Yvan, and Wang, Sen. 2020. RadarSLAM: Radar
based Large-Scale SLAM in All Weathers. Pages 5164–5170 of: IEEE/RSJ
Intl. Conf. on Intelligent Robots and Systems (IROS).

[482] Hong, Ziyang, Petillot, Yvan, Wallace, Andrew, and Wang, Sen. 2022.
RadarSLAM: A robust simultaneous localization and mapping system for
all weather conditions. Intl. J. of Robotics Research, 41(5), 519–542.

[483] Hong, Ziyang, Petillot, Yvan, Zhang, Kaicheng, Xu, Shida, and Wang, Sen.
2023b. Large-Scale Radar Localization using Online Public Maps. Pages
3990–3996 of: IEEE Intl. Conf. on Robotics and Automation (ICRA).

[484] Hoppe, Hugues, DeRose, Tony, Duchamp, Tom, McDonald, John, and Stuet-
zle, Werner. 1992. Surface reconstruction from unorganized points. Pages 71–
78 of: Intl. Conf. on Computer Graphics and Interactive Techniques (SIG-
GRAPH). Association for Computing Machinery.

[485] Horn, Berthold K. P. 1987. Closed-form solution of absolute orientation
using unit quaternions. J. Opt. Soc. Am. A, 4(4), 629–642.

[486] Hornung, Armin, Wurm, Kai M., Bennewitz, Maren, Stachniss, Cyrill, and
Burgard, Wolfram. 2013. OctoMap: an efficient probabilistic 3D mapping
framework based on octrees. Autonomous Robots, 189–206.

[487] Hsiao, Ming, and Kaess, Michael. 2019. MH-iSAM2: Multi-hypothesis isam
using bayes tree and hypo-tree. Pages 1274–1280 of: IEEE Intl. Conf. on
Robotics and Automation (ICRA). IEEE.

[488] Hu, Mu, Yin, Wei, Zhang, Chi, Cai, Zhipeng, Long, Xiaoxiao, Chen, Hao,
Wang, Kaixuan, Yu, Gang, Shen, Chunhua, and Shen, Shaojie. 2024. Met-
ric3d v2: A versatile monocular geometric foundation model for zero-shot
metric depth and surface normal estimation. IEEE Trans. Pattern Anal.
Machine Intell.

[489] Hu, Yuhuang, Liu, Shih-Chii, and Delbruck, Tobi. 2021. v2e: From Video
Frames to Realistic DVS Events. Pages 1312–1321 of: IEEE/CVF Conf. on
Computer Vision and Pattern Recognition Workshops.

[490] Huai, Jianzhu, Wang, Binliang, Zhuang, Yuan, Chen, Yiwen, Li, Qipeng,
Han, Yulong, and Toth, Charles. 2024. Snail-Radar: A large-scale diverse



References 575

dataset for the evaluation of 4D-radar-based SLAM systems. arXiv preprint
arXiv:2407.11705.

[491] Huang, Binbin, Yu, Zehao, Chen, Anpei, Geiger, Andreas, and Gao,
Shenghua. 2024a. 2D Gaussian Splatting for Geometrically Accurate Ra-
diance Fields. In: SIGGRAPH 2024 Conference Papers. Association for
Computing Machinery.

[492] Huang, Chen, Mees, Oier, Zeng, Andy, and Burgard, Wolfram. 2022a. Visual
Language Maps for Robot Navigation. IEEE Intl. Conf. on Robotics and
Automation (ICRA), 10608–10615.

[493] Huang, Guoquan. 2017. Towards Consistent Filtering for Discrete-Time
Partially-Observable Nonlinear Systems. Systems and Control Letters,
106(Aug.), 87–95.

[494] Huang, Guoquan, Mourikis, Anastasios I., and Roumeliotis, Stergios I. 2010.
Observability-based Rules for Designing Consistent EKF SLAM Estimators.
International Journal of Robotics Research, 29(5), 502–528.

[495] Huang, Guoquan, Mourikis, Anastasios I., and Roumeliotis, Stergios I. 2011
(Sept.). An Observability Constrained Sliding Window Filter for SLAM.
Pages 65–72 of: Proc. of the IEEE/RSJ International Conference on Intel-
ligent Robots and Systems.

[496] Huang, Huajian, Li, Longwei, Hui, Cheng, and Yeung, Sai-Kit. 2024b. Photo-
SLAM: Real-time Simultaneous Localization and Photorealistic Mapping for
Monocular, Stereo, and RGB-D Cameras. In: IEEE Conf. on Computer
Vision and Pattern Recognition (CVPR).

[497] Huang, J.-T., Xu, R., Hinduja, A., and Kaess, M. 2024c (May). Multi-Radar
Inertial Odometry for 3D State Estimation using mmWave Imaging Radar.
In: Proc. IEEE Intl. Conf. on Robotics and Automation (ICRA).

[498] Huang, Qiangqiang, Pu, Can, Khosoussi, Kasra, Rosen, David M, Fourie,
Dehann, How, Jonathan P, and Leonard, John J. 2022b. Incremental non-
Gaussian inference for SLAM using normalizing flows. IEEE Trans. Robotics,
39(2), 1458–1475.

[499] Huang, Shoudong, Chen, Yongbo, Zhao, Liang, Zhang, Yanhao, and Xu,
Mengya. 2021. Some research questions for slam in deformable environments.
Pages 7653–7660 of: 2021 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). IEEE.

[500] Huang, Yewei, Shan, Tixiao, Chen, Fanfei, and Englot, Brendan. 2022c.
DiSCo-SLAM: Distributed Scan Context-Enabled Multi-Robot LiDAR
SLAM With Two-Stage Global-Local Graph Optimization. IEEE Robotics
and Automation Letters, 7(2), 1150–1157.

[501] Huang, Zhaoyang, Shi, Xiaoyu, Zhang, Chao, Wang, Qiang, Cheung,
Ka Chun, Qin, Hongwei, Dai, Jifeng, and Li, Hongsheng. 2022d. Flowformer:
A transformer architecture for optical flow. Pages 668–685 of: European
Conf. on Computer Vision (ECCV). Springer.

[502] Huber, P. 1981. Robust Statistics. John Wiley & Sons, New York, NY.
[503] Hughes, N., Chang, Y., Hu, S., Talak, R., Abdulhai, R., Strader, J., and Car-

lone, L. 2024a. Foundations of Spatial Perception for Robotics: Hierarchical
Representations and Real-time Systems. Intl. J. of Robotics Research.

[504] Hughes, N., Chang, Y., Hu, S., Talak, R., Abdulhai, R., Strader, J., and Car-
lone, L. 2024b. Foundations of Spatial Perception for Robotics: Hierarchical
Representations and Real-time Systems. Intl. J. of Robotics Research.



576 References

[505] Hwangbo, Jemin, Bellicoso, Carmine Dario, Fankhauser, Péter, and Hutter,
Marco. 2016. Probabilistic foot contact estimation by fusing information
from dynamics and differential/forward kinematics. Pages 3872–3878 of:
IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems (IROS).

[506] Hwangbo, Jemin, Lee, Joonho, Dosovitskiy, Alexey, Bellicoso, Dario, Tsou-
nis, Vassilios, Koltun, Vladlen, and Hutter, Marco. 2019. Learning agile and
dynamic motor skills for legged robots. Science Robotics, 4(26).

[507] Hyyppä, J., Hyyppä, H., Leckie, D., Gougeon, F., Yu, X., and Maltamo,
M. 2008. Review of methods of small-footprint airborne laser scanning for
extracting forest inventory data in boreal forests. International Journal of
Remote Sensing, 29(5), 1339–1366.

[508] ICRA Quadruped Robot Challenge. 2024. ICRA Quadruped Robot
Challenge. https://quadruped-robot-challenges.notion.site/
Quadruped-Robot-Challenges-bdc4af35638c4036817c3212e602b0e3.
[Online; accessed 10-Jun-2024].

[509] Iglesias, José Pedro, Olsson, Carl, and Kahl, Fredrik. 2020. Global Optimal-
ity for Point Set Registration Using Semidefinite Programming. In: IEEE
Conf. on Computer Vision and Pattern Recognition (CVPR).

[510] Ilg, Eddy, Mayer, Nikolaus, Saikia, Tonmoy, Keuper, Margret, Dosovitskiy,
Alexey, and Brox, Thomas. 2017. Flownet 2.0: Evolution of optical flow esti-
mation with deep networks. Pages 2462–2470 of: IEEE Conf. on Computer
Vision and Pattern Recognition (CVPR).

[511] Indelman, V., Wiliams, S., Kaess, M., and Dellaert, F. 2012. Factor Graph
Based Incremental Smoothing in Inertial Navigation Systems. In: Intl. Conf.
on Information Fusion (FUSION).

[512] Innmann, Matthias, Zollhöfer, Michael, Nießner, Matthias, Theobalt, Chris-
tian, and Stamminger, Marc. 2016. VolumeDeform: Real-time volumetric
non-rigid reconstruction. Pages 362–379 of: European conference on com-
puter vision. Springer.

[513] Ivan, Jean-Paul A, Stoyanov, Todor, and Stork, Johannes A. 2022. Online
Distance Field Priors for Gaussian Process Implicit Surfaces. IEEE Robotics
and Automation Letters, 7(4), 8996–9003.

[514] Izadi, Shahram, Kim, David, Hilliges, Otmar, Molyneaux, David, New-
combe, Richard, Kohli, Pushmeet, Shotton, Jamie, Hodges, Steve, Freeman,
Dustin, Davison, Andrew, et al. 2011. KinectFusion: real-time 3D recon-
struction and interaction using a moving depth camera. Pages 559–568 of:
ACM Symp. on User interface software and technology.

[515] Izatt, G., Dai, H., and Tedrake, R. 2017. Globally Optimal Object Pose Es-
timation in Point Clouds with Mixed-Integer Programming. In: Intl. Symp.
of Robotics Research (ISRR).

[516] Izquierdo, Sergio, and Civera, Javier. 2024. Optimal transport aggrega-
tion for visual place recognition. Pages 17658–17668 of: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[517] Jaimez, M., Kerl, C., Gonzalez-Jimenez, J., and Cremers, D. 2017. Fast
Odometry and Scene Flow from RGB-D Cameras based on Geometric Clus-
tering. In: Proc. of the IEEE Int. Conf. on Robotics and Automation
(ICRA).

[518] Jang, Hyesu, Jung, Minwoo, and Kim, Ayoung. 2023. RaPlace: Place Recog-
nition for Imaging Radar using Radon Transform and Mutable Threshold.

 https://quadruped-robot-challenges.notion.site/Quadruped-Robot-Challenges-bdc4af 35638c4036817c3212e602b0e3
 https://quadruped-robot-challenges.notion.site/Quadruped-Robot-Challenges-bdc4af 35638c4036817c3212e602b0e3


References 577

Pages 11194–11201 of: IEEE/RSJ Intl. Conf. on Intelligent Robots and Sys-
tems (IROS).

[519] Jatavallabhula, Krishna Murthy, Iyer, Ganesh, and Paull, Liam. 2020. ∇
slam: Dense slam meets automatic differentiation. Pages 2130–2137 of: IEEE
Intl. Conf. on Robotics and Automation (ICRA). IEEE.

[520] Jatavallabhula, Krishna Murthy, Kuwajerwala, Alihusein, Gu, Qiao,
Omama, Mohd, Chen, Tao, Maalouf, Alaa, Li, Shuang, Iyer, Ganesh,
Saryazdi, Soroush, Keetha, Nikhil, et al. 2023. Conceptfusion: Open-set
multimodal 3d mapping. arXiv preprint arXiv:2302.07241.

[521] Jenelten, Fabian, Hwangbo, Jemin, Tresoldi, Fabian, Bellicoso, C. Dario,
and Hutter, Marco. 2019. Dynamic Locomotion on Slippery Ground. IEEE
Robotics and Automation Letters, 4(4), 4170–4176.

[522] Jeong, Jinyong, Cho, Younggun, Shin, Young-Sik, Roh, Hyunchul, and Kim,
Ayoung. 2019. Complex urban dataset with multi-level sensors from highly
diverse urban environments. The International Journal of Robotics Research,
38(6), 642–657.

[523] Ji, Gwanghyeon, Mun, Juhyeok, Kim, Hyeongjun, and Hwangbo, Jemin.
2022. Concurrent Training of a Control Policy and a State Estimator for
Dynamic and Robust Legged Locomotion. IEEE Robotics and Automation
Letters, 7(2), 4630–4637.

[524] Ji, Kaiyi, Yang, Junjie, and Liang, Yingbin. 2021. Bilevel optimization: Con-
vergence analysis and enhanced design. Pages 4882–4892 of: International
conference on machine learning. PMLR.

[525] Jia, Yangqing, Shelhamer, Evan, Donahue, Jeff, Karayev, Sergey, Long,
Jonathan, Girshick, Ross, Guadarrama, Sergio, and Darrell, Trevor. 2014.
Caffe: Convolutional architecture for fast feature embedding. Pages 675–678
of: 22nd ACM international conference on Multimedia.

[526] Jiang, Fan, Agrawal, Varun, Buchanan, Russell, Fallon, Maurice, and Del-
laert, Frank. 2021. iMHS: An incremental multi-hypothesis smoother. arXiv
preprint arXiv:2103.13178.

[527] Jiang, H., Huang, B., Wu, R., Li, Z., Garg, S., Nayyeri, H., Wang, S., and
Li, Y. 2024. RoboEXP: Action-Conditioned Scene Graph via Interactive
Exploration for Robotic Manipulation. In: arXiv preprint: 2402.15487.

[528] Jiang, Huaizu, Sun, Deqing, Jampani, Varun, Yang, Ming-Hsuan, Learned-
Miller, Erik, and Kautz, Jan. 2018. Super SloMo: High Quality Estimation
of Multiple Intermediate Frames for Video Interpolation. Pages 9000–9008
of: IEEE Conf. on Computer Vision and Pattern Recognition (CVPR).

[529] Jiang, Kun, Gao, Shuang, Zhang, Xudong, Li, Jijunnan, Guo, Yandong, Liu,
Shijie, Li, Chunlai, and Wang, Jianyu. 2023. SELVO: A Semantic-Enhanced
Lidar-Visual Odometry. In: IEEE/RSJ Intl. Conf. on Intelligent Robots and
Systems (IROS).

[530] Jiao, Jianhao, Wei, Hexiang, Hu, Tianshuai, Hu, Xiangcheng, Zhu, Yilong,
He, Zhijian, Wu, Jin, Yu, Jingwen, Xie, Xupeng, Huang, Huaiyang, Geng,
Ruoyu, Wang, Lujia, and Liu, Ming. 2022. FusionPortable: A Multi-Sensor
Campus-Scene Dataset for Evaluation of Localization and Mapping Accu-
racy on Diverse Platforms. Pages 3851–3856 of: IEEE/RSJ Intl. Conf. on
Intelligent Robots and Systems (IROS).

[531] Jin, Hailin, Favaro, Paolo, and Soatto, Stefano. 2000. Real-time 3D motion
and structure of point features: a front-end system for vision-based control



578 References

and interaction. Pages 778–779 of: IEEE Conf. on Computer Vision and
Pattern Recognition (CVPR), vol. 2.

[532] Johari, Mohammad Mahdi, Carta, Camilla, and Fleuret, François. 2023.
Eslam: Efficient dense slam system based on hybrid representation of signed
distance fields. In: IEEE Conf. on Computer Vision and Pattern Recognition
(CVPR).

[533] Johnson, J, Mangelson, J, Barfoot, T D, and Beard, R. 2024. Continuous-
time Trajectory Estimation: A Comparative Study Between Gaussian Process
and Spline-based Approaches. (arXiv:2402.00399 [cs.RO]).

[534] Judd, Kevin M, Gammell, Jonathan D, and Newman, Paul. 2018. Mul-
timotion visual odometry (MVO): Simultaneous estimation of camera and
third-party motions. Pages 3949–3956 of: IEEE/RSJ Intl. Conf. on Intelli-
gent Robots and Systems (IROS). IEEE.

[535] Jumper, John, Evans, Richard, Pritzel, Alexander, Green, Tim, Figurnov,
Michael, Ronneberger, Olaf, Tunyasuvunakool, Kathryn, Bates, Russ, Ž́ıdek,
Augustin, Potapenko, Anna, et al. 2021. Highly accurate protein structure
prediction with AlphaFold. Nature, 596(7873), 583–589.

[536] Jung, Minwoo, Yang, Wooseong, Lee, Dongjae, Gil, Hyeonjae, Kim, Giseop,
and Kim, Ayoung. 0. HeLiPR: Heterogeneous LiDAR dataset for inter-
LiDAR place recognition under spatiotemporal variations. Intl. J. of
Robotics Research, 0(0), 02783649241242136.

[537] Kabalar, Julia, Wu, Shun-Cheng, Wald, Johanna, Tateno, Keisuke, Navab,
Nassir, and Tombari, Federico. 2023. Towards Long-Term Retrieval-Based
Visual Localization in Indoor Environments With Changes. IEEE Robotics
and Automation Letters, 8(4), 1975–1982.

[538] Kaess, M., Ranganathan, A., and Dellaert, F. 2008. iSAM: Incremental
Smoothing and Mapping. IEEE Trans. Robotics, 24(6), 1365–1378.

[539] Kaess, M., Johannsson, H., Roberts, R., Ila, V., Leonard, J., and Dellaert,
F. 2011 (May). iSAM2: Incremental Smoothing and Mapping with Fluid
Relinearization and Incremental Variable Reordering. In: IEEE Intl. Conf.
on Robotics and Automation (ICRA).

[540] Kaess, M., Johannsson, H., Roberts, R., Ila, V., Leonard, J.J., and Dellaert,
F. 2012a. iSAM2: Incremental Smoothing and Mapping Using the Bayes
Tree. Intl. J. of Robotics Research, 31(2), 216–235.

[541] Kaess, M., Johannsson, H., Roberts, R., Ila, V., Leonard, J., and Dellaert,
F. 2012b. iSAM2: Incremental Smoothing and Mapping Using the Bayes
Tree. Intl. J. of Robotics Research, 31(2), 216–235.

[542] Kaess, Michael. 2015. Simultaneous localization and mapping with infinite
planes. Pages 4605–4611 of: IEEE Intl. Conf. on Robotics and Automation
(ICRA).

[543] Kaiser, Jacques, Tieck, J. Camillo Vasquez, Hubschneider, Christian, Wolf,
Peter, Weber, Michael, Hoff, Michael, Friedrich, Alexander, Wojtasik, Kon-
rad, Roennau, Arne, Kohlhaas, Ralf, Dillmann, Rüdiger, and Zöllner, J. Mar-
ius. 2016. Towards a framework for end-to-end control of a simulated vehicle
with spiking neural networks. Pages 127–134 of: IEEE Int. Conf. on Simu-
lation, Modeling, and Programming for Autonomous Robots (SIMPAR).

[544] Kammel, S., Ziegler, J., Pitzer, B., Werling, M., Gindele, T., Jagzent, D.,
Schröder, J., Thuy, M., Goebl, M., v. Hundelshausen, F., Pink, O., Frese,

https://arxiv.org/abs/2402.00399


References 579

C., and Stiller, C. 2008. Team AnniWay’s Autonomous System for the 2007
DARPA Urban Challenge. J. of Field Robotics, 615–639.

[545] Kannala, Juho, and Brandt, Sami S. 2006. A generic camera model and
calibration method for conventional, wide-angle, and fish-eye lenses. IEEE
transactions on pattern analysis and machine intelligence, 28(8), 1335–1340.

[546] Karimian, A., and Tron, R. 2023. Essential Matrix Estimation using Con-
vex Relaxations in Orthogonal Space. In: Intl. Conf. on Computer Vision
(ICCV).

[547] Kassab, Christina, Mattamala, Mat́ıas, Morin, Sacha, Büchner, Martin, Val-
ada, Abhinav, Paull, Liam, and Fallon, Maurice. 2024a. The Bare Neces-
sities: Designing Simple, Effective Open-Vocabulary Scene Graphs. arXiv
preprint arXiv:2412.01539.

[548] Kassab, Christina, Mattamala, Matias, Zhang, Lintong, and Fallon, Mau-
rice. 2024b. Language-extended indoor slam (lexis): A versatile system for
real-time visual scene understanding. Pages 15988–15994 of: 2024 IEEE
International Conference on Robotics and Automation (ICRA). IEEE.

[549] Kato, Hiroharu, Ushiku, Yoshitaka, and Harada, Tatsuya. 2018. Neural 3d
mesh renderer. Pages 3907–3916 of: IEEE Conf. on Computer Vision and
Pattern Recognition (CVPR).

[550] Kato, Hiroharu, Beker, Deniz, Morariu, Mihai, Ando, Takahiro, Matsuoka,
Toru, Kehl, Wadim, and Gaidon, Adrien. 2020. Differentiable rendering: A
survey. arXiv preprint arXiv:2006.12057.

[551] Katragadda, Saimouli, Wu, Cho-Ying, Guo, Yuliang, Xinyu Huang, Guo-
quan Huang, and Ren, Liu. 2025. Online Language Splatting. In: arxiv
preprint: 2503.09447.

[552] Katz, Benjamin, Carlo, Jared Di, and Kim, Sangbae. 2019. Mini Cheetah:
A Platform for Pushing the Limits of Dynamic Quadruped Control. Pages
6295–6301 of: IEEE Intl. Conf. on Robotics and Automation (ICRA).

[553] Kazhdan, Michael, Bolitho, Matthew, and Hoppe, Hugues. 2006. Poisson
surface reconstruction. Pages 61–70 of: Proceedings of the fourth Eurograph-
ics symposium on Geometry processing. Eurographics Association.

[554] Keenan Burnett, Angela P. Schoellig, Timothy D. Barfoot. 2021. Do We
Need to Compensate for Motion Distortion and Doppler Effects in Spinning
Radar Navigation? IEEE Robotics and Automation Letters, 6(2), 771–778.

[555] Keetha, Nikhil, Mishra, Avneesh, Karhade, Jay, Jatavallabhula, Kr-
ishna Murthy, Scherer, Sebastian, Krishna, Madhava, and Garg, Sourav.
2023. Anyloc: Towards universal visual place recognition. IEEE Robotics
and Automation Letters.

[556] Keetha, Nikhil, Karhade, Jay, Jatavallabhula, Krishna Murthy, Yang, Geng-
shan, Scherer, Sebastian, Ramanan, Deva, and Luiten, Jonathon. 2024.
Splatam: Splat track & map 3d gaussians for dense rgb-d slam. Pages
21357–21366 of: IEEE Conf. on Computer Vision and Pattern Recognition
(CVPR).

[557] Keller, Maik, Lefloch, Damien, Lambers, Martin, Izadi, Shahram, Weyrich,
Tim, and Kolb, Andreas. 2013. Real-time 3d reconstruction in dynamic
scenes using point-based fusion. Pages 1–8 of: Intl. Conf. on 3D Vision
(3DV). IEEE.

[558] Kellner, Dominik, Klappstein, Jens, and Dietmayer, Klaus. 2012. Grid-based



580 References

DBSCAN for clustering extended objects in radar data. Pages 365–370 of:
IEEE Intelligent Vehicles Symposium (IV).

[559] Kellner, Dominik, Barjenbruch, Michael, Klappstein, Jens, Dickmann,
Jürgen, and Dietmayer, Klaus. 2013. Instantaneous ego-motion estimation
using Doppler radar. Pages 869–874 of: IEEE Intl. Conf. on Intelligent
Transportation Systems (ITSC).

[560] Kerbl, Bernhard, Kopanas, Georgios, Leimkühler, Thomas, and Drettakis,
George. 2023. 3d gaussian splatting for real-time radiance field rendering.
ACM Trans. Graph., 42(4), 139–1.

[561] Kerl, Christian, Sturm, Jürgen, and Cremers, Daniel. 2013a. Dense visual
SLAM for RGB-D cameras. Pages 2100–2106 of: IEEE/RSJ Intl. Conf. on
Intelligent Robots and Systems (IROS). IEEE.

[562] Kerl, Christian, Sturm, Jürgen, and Cremers, Daniel. 2013b. Robust odom-
etry estimation for RGB-D cameras. Pages 3748–3754 of: IEEE Intl. Conf.
on Robotics and Automation (ICRA). IEEE.

[563] Kerr, Justin, Kim, Chung Min, Goldberg, Ken, Kanazawa, Angjoo, and
Tancik, Matthew. 2023. LERF: Language Embedded Radiance Fields. In:
Intl. Conf. on Computer Vision (ICCV).

[564] Keselman, Leonid, and Hebert, Martial. 2022. Approximate differentiable
rendering with algebraic surfaces. Pages 596–614 of: European Conference
on Computer Vision. Springer.

[565] Khader, Motaz, and Cherian, Samir. 2020. An introduction to automotive
lidar. Texas Instruments.

[566] Khattak, Shehryar, Nguyen, Huan, Mascarich, Frank, Dang, Tung, and
Alexis, Kostas. 2020. Complementary multi–modal sensor fusion for resilient
robot pose estimation in subterranean environments. Pages 1024–1029 of:
Intl. Conf. on Unmanned Aircraft Systems (ICUAS).

[567] Khazatsky, Alexander, Pertsch, Karl, Nair, Suraj, Balakrishna, Ashwin,
Dasari, Sudeep, Karamcheti, Siddharth, Nasiriany, Soroush, Srirama, Mo-
han Kumar, Chen, Lawrence Yunliang, Ellis, Kirsty, Fagan, Peter David,
Hejna, Joey, Itkina, Masha, Lepert, Marion, Ma, Yecheng Jason, Miller,
Patrick Tree, Wu, Jimmy, Belkhale, Suneel, Dass, Shivin, Ha, Huy, Jain,
Arhan, Lee, Abraham, Lee, Youngwoon, Memmel, Marius, Park, Sungjae,
Radosavovic, Ilija, Wang, Kaiyuan, Zhan, Albert, Black, Kevin, Chi, Cheng,
Hatch, Kyle Beltran, Lin, Shan, Lu, Jingpei, Mercat, Jean, Rehman, Ab-
dul, Sanketi, Pannag R, Sharma, Archit, Simpson, Cody, Vuong, Quan,
Walke, Homer Rich, Wulfe, Blake, Xiao, Ted, Yang, Jonathan Heewon,
Yavary, Arefeh, Zhao, Tony Z., Agia, Christopher, Baijal, Rohan, Cas-
tro, Mateo Guaman, Chen, Daphne, Chen, Qiuyu, Chung, Trinity, Drake,
Jaimyn, Foster, Ethan Paul, Gao, Jensen, Herrera, David Antonio, Heo,
Minho, Hsu, Kyle, Hu, Jiaheng, Jackson, Donovon, Le, Charlotte, Li, Yun-
shuang, Lin, Kevin, Lin, Roy, Ma, Zehan, Maddukuri, Abhiram, Mirchan-
dani, Suvir, Morton, Daniel, Nguyen, Tony, O’Neill, Abigail, Scalise, Rosario,
Seale, Derick, Son, Victor, Tian, Stephen, Tran, Emi, Wang, Andrew E.,
Wu, Yilin, Xie, Annie, Yang, Jingyun, Yin, Patrick, Zhang, Yunchu, Bas-
tani, Osbert, Berseth, Glen, Bohg, Jeannette, Goldberg, Ken, Gupta, Abhi-
nav, Gupta, Abhishek, Jayaraman, Dinesh, Lim, Joseph J, Malik, Jitendra,
Mart́ın-Mart́ın, Roberto, Ramamoorthy, Subramanian, Sadigh, Dorsa, Song,
Shuran, Wu, Jiajun, Yip, Michael C., Zhu, Yuke, Kollar, Thomas, Levine,



References 581

Sergey, and Finn, Chelsea. 2024. DROID: A Large-Scale In-The-Wild Robot
Manipulation Dataset.

[568] Khosoussi, Kasra, Huang, Shoudong, and Dissanayake, Gamini. 2016. Tree-
connectivity: Evaluating the graphical structure of SLAM. Pages 1316–1322
of: IEEE Intl. Conf. on Robotics and Automation (ICRA). IEEE.

[569] Khosoussi, Kasra, Giamou, Matthew, Sukhatme, Gaurav S, Huang,
Shoudong, Dissanayake, Gamini, and How, Jonathan P. 2019. Reliable
graphs for SLAM. Intl. J. of Robotics Research, 38(2-3), 260–298.

[570] Kim, Been, Kaess, Michael, Fletcher, Luke, Leonard, John, Bachrach, Abra-
ham, Roy, Nicholas, and Teller, Seth. 2010. Multiple relative pose graphs
for robust cooperative mapping. Pages 3185–3192 of: IEEE Intl. Conf. on
Robotics and Automation (ICRA). IEEE.

[571] Kim, Giseop, and Kim, Ayoung. 2018. Scan context: Egocentric spatial
descriptor for place recognition within 3d point cloud map. Pages 4802–
4809 of: IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems (IROS).
IEEE.

[572] Kim, Giseop, and Kim, Ayoung. 2020. Remove, then revert: Static point
cloud map construction using multiresolution range images. Pages 10758–
10765 of: IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems (IROS).
IEEE.

[573] Kim, Giseop, and Kim, Ayoung. 2022. Lt-mapper: A modular framework
for lidar-based lifelong mapping. Pages 7995–8002 of: IEEE Intl. Conf. on
Robotics and Automation (ICRA). IEEE.

[574] Kim, Giseop, Park, Byungjae, and Kim, Ayoung. 2019a. 1-day learning,
1-year localization: Long-term lidar localization using scan context image.
IEEE Robotics and Automation Letters, 4(2), 1948–1955.

[575] Kim, Giseop, Park, Yeong Sang, Cho, Younghun, Jeong, Jinyong, and Kim,
Ayoung. 2020. Mulran: Multimodal range dataset for urban place recogni-
tion. Pages 6246–6253 of: IEEE Intl. Conf. on Robotics and Automation
(ICRA). IEEE.

[576] Kim, Giseop, Choi, Sunwook, and Kim, Ayoung. 2021. Scan context++:
Structural place recognition robust to rotation and lateral variations in ur-
ban environments. IEEE Trans. Robotics, 38(3), 1856–1874.

[577] Kim, Hanjun, Jung, Minwoo, Noh, Chiyun, Jung, Sangwoo, Song, Hyunho,
Yang, Wooseong, Jang, Hyesu, and Kim, Ayoung. 2025. HeRCULES: Het-
erogeneous Radar Dataset in Complex Urban Environment for Multi-session
Radar SLAM. In: IEEE Intl. Conf. on Robotics and Automation (ICRA).

[578] Kim, Hanme, Handa, Ankur, Benosman, Ryad, Ieng, Sio-Hoi, and Davison,
Andrew J. 2014. Simultaneous Mosaicing and Tracking with an Event Cam-
era. In: British Machine Vision Conf. (BMVC).

[579] Kim, Hanme, Leutenegger, Stefan, and Davison, Andrew J. 2016. Real-
Time 3D Reconstruction and 6-DoF Tracking with an Event Camera. Pages
349–364 of: European Conf. on Computer Vision (ECCV).

[580] Kim, Haram, and Kim, H. Jin. 2021. Real-Time Rotational Motion Esti-
mation With Contrast Maximization Over Globally Aligned Events. IEEE
Robotics and Automation Letters, 6(3), 6016–6023.

[581] Kim, Moo Jin, Pertsch, Karl, Karamcheti, Siddharth, Xiao, Ted, Balakr-
ishna, Ashwin, Nair, Suraj, Rafailov, Rafael, Foster, Ethan, Lam, Grace,
Sanketi, Pannag, Vuong, Quan, Kollar, Thomas, Burchfiel, Benjamin,



582 References

Tedrake, Russ, Sadigh, Dorsa, Levine, Sergey, Liang, Percy, and Finn,
Chelsea. 2024. OpenVLA: An Open-Source Vision-Language-Action Model.
arXiv preprint arXiv:2406.09246.

[582] Kim, S., and Kim, J. 2012. Building occupancy maps with a mixture of
Gaussian processes. Pages 4756–4761 of: IEEE Intl. Conf. on Robotics and
Automation (ICRA).

[583] Kim, S., and Kim, J. 2013. Occupancy Mapping and Surface Reconstruction
Using Local Gaussian Processes With Kinect Sensors. Pages 1335–1346 of:
IEEE Trans. on Cybernetics.

[584] Kim, Soohwan, and Kim, Jonghyuk. 2015. GPmap: A Unified Framework
for Robotic Mapping Based on Sparse Gaussian Processes. Springer Inter-
national Publishing. Pages 319–332.

[585] Kim, Ue-Hwan, Park, Jin-Man, Song, Taek-Jin, and Kim, Jong-Hwan.
2019b. 3-D Scene Graph: A Sparse and Semantic Representation of Phys-
ical Environments for Intelligent Agents. IEEE Trans. on Cybernetics,
PP(Aug.), 1–13.

[586] Kim, Yeeun, Yu, Byeongho, Lee, Eungchang Mason, Kim, Joon-ha, Park,
Hae-won, and Myung, Hyun. 2022. STEP: State Estimator for Legged
Robots Using a Preintegrated Foot Velocity Factor. IEEE Robotics and
Automation Letters, 7(2), 4456–4463.

[587] Kingma, Diederik P, and Ba, Jimmy. 2014. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980.

[588] Kirillov, Alexander, He, Kaiming, Girshick, Ross, Rother, Carsten, and Dol-
lar, Piotr. 2019 (June). Panoptic Segmentation. In: The IEEE Conference
on Computer Vision and Pattern Recognition (CVPR).

[589] Kirillov, Alexander, Mintun, Eric, Ravi, Nikhila, Mao, Hanzi, Rolland,
Chloe, Gustafson, Laura, Xiao, Tete, Whitehead, Spencer, Berg, Alexan-
der C, Lo, Wan-Yen, et al. 2023. Segment anything. Pages 4015–4026 of:
Proceedings of the IEEE/CVF International Conference on Computer Vi-
sion.

[590] Kitanov, Andrej, and Indelman, Vadim. 2024. Topological belief space plan-
ning for active SLAM with pairwise Gaussian potentials and performance
guarantees. Intl. J. of Robotics Research, 43(1), 69–97.

[591] Klein, Georg, and Murray, David. 2007. Parallel tracking and mapping for
small AR workspaces. Pages 225–234 of: IEEE and ACM Intl. Sym. on
Mixed and Augmented Reality (ISMAR). IEEE.

[592] Klenk, Simon, Chui, Jason, Demmel, Nikolaus, and Cremers, Daniel. 2021.
TUM-VIE: The TUM Stereo Visual-Inertial Event Dataset. Pages 8601–
8608 of: IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems (IROS).

[593] Klenk, Simon, Motzet, Marvin, Koestler, Lukas, and Cremers, Daniel. 2024.
Deep Event Visual Odometry. Pages 739–749 of: Intl. Conf. on 3D Vision
(3DV).

[594] Kobayashi, Sosuke, Matsumoto, Eiichi, and Sitzmann, Vincent. 2022. De-
composing nerf for editing via feature field distillation. Advances in Neural
Information Processing Systems (NIPS).

[595] Koch, Sebastian, Hermosilla, Pedro, Vaskevicius, Narunas, Colosi, Mirco,
and Ropinski, Timo. 2024a. Lang3DSG: Language-based contrastive pre-
training for 3D Scene Graph prediction. In: 2024 International Conference
on 3D Vision (3DV).



References 583

[596] Koch, Sebastian, Vaskevicius, Narunas, Colosi, Mirco, Hermosilla, Pedro,
and Ropinski, Timo. 2024b (June). Open3DSG: Open-Vocabulary 3D Scene
Graphs from Point Clouds with Queryable Objects and Open-Set Relation-
ships. In: Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR).

[597] Koch, Sebastian, Hermosilla, Pedro, Vaskevicius, Narunas, Colosi, Mirco,
and Ropinski, Timo. 2024c (January). SGRec3D: Self-Supervised 3D Scene
Graph Learning via Object-Level Scene Reconstruction. Pages 3404–3414
of: Proceedings of the IEEE/CVF Winter Conference on Applications of
Computer Vision (WACV).

[598] Koenemann, Jonas, Licitra, Giovanni, Alp, Mustafa, and Diehl, Moritz.
2017. Openocl–open optimal control library.

[599] Koide, Kenji, Yokozuka, Masashi, Oishi, Shuji, and Banno, Atsuhiko. 2021.
Voxelized gicp for fast and accurate 3d point cloud registration. Pages 11054–
11059 of: IEEE Intl. Conf. on Robotics and Automation (ICRA). IEEE.

[600] Koller, D., and Friedman, N. 2009. Probabilistic Graphical Models: Principles
and Techniques. The MIT Press.

[601] Kong, Xin, Yang, Xuemeng, Zhai, Guangyao, Zhao, Xiangrui, Zeng, Xian-
fang, Wang, Mengmeng, Liu, Yong, Li, Wanlong, and Wen, Feng. 2020. Se-
mantic Graph Based Place Recognition for 3D Point Clouds. In: IEEE/RSJ
Intl. Conf. on Intelligent Robots and Systems (IROS).

[602] Konolige, K. 2004. Large-scale map-making. In: Proc. 21th AAAI National
Conference on AI.

[603] Konolige, K., and Agrawal, M. 2008. FrameSLAM: From Bundle Adjustment
to Real-Time Visual Mapping. IEEE Trans. Robotics, 24, 1066–1077.

[604] Konolige, Kurt, Grisetti, Giorgio, Kümmerle, Rainer, Burgard, Wolfram,
Limketkai, Benson, and Vincent, Regis. 2010. Efficient sparse pose adjust-
ment for 2D mapping. Pages 22–29 of: IEEE/RSJ Intl. Conf. on Intelligent
Robots and Systems (IROS). IEEE.

[605] Kopanas, Georgios, Philip, Julien, Leimkühler, Thomas, and Drettakis,
George. 2021. Point-Based Neural Rendering with Per-View Optimization.
Computer Graphics Forum (Proceedings of the Eurographics Symposium on
Rendering), 40(4).

[606] Koskinen, Markku, Kostamovaara, Juha Tapio, and Myllylae, Risto A. 1992.
Comparison of continuous-wave and pulsed time-of-flight laser range-finding
techniques. Pages 296–305 of: Optics, Illumination, and Image Sensing for
Machine Vision VI, vol. 1614.

[607] Kottas, Dimitrios, and Roumeliotis, Stergios. 2013 (June 24–28,). Exploiting
Urban Scenes for Vision-aided Inertial Navigation. In: Robotics: Science and
Systems (RSS).

[608] Kottege, Navinda, Scherer, Sebastian, Faigl, J., and Agha, Ali. 2022. Special
Issue on Advancements and Lessons Learned during Phases I and II of the
DARPA Subterranean Challenge. Field Robotics, 1947–1950.

[609] Kottege, Navinda, Williams, Jason, Tidd, Brendan, Talbot, Fletcher,
Steindl, Ryan, Cox, Mark, Frousheger, Dennis, Hines, Thomas, Pitt, Alex,
Tam, Benjamin, Wood, Brett, Hanson, Lauren, Surdo, Katrina Lo, Mol-
nar, Thomas, Wildie, Matt, Stepanas, Kazys, Catt, Gavin, Tychsen-Smith,
Lachlan, Penfold, Dean, Overs, Leslie, Ramezani, Milad, Khosoussi, Kasra,
Kendoul, Farid, Wagner, Glenn, Palmer, Duncan, Manderson, Jack, Medek,



584 References

Corey, O’Brien, Matthew, Chen, Shengkang, and Arkin, Ronald C. 2024.
Heterogeneous Robot Teams with Unified Perception and Autonomy: How
Team CSIRO Data61 Tied for the Top Score at the DARPA Subterranean
Challenge. Field Robotics, 313–359.

[610] Krajńık, Tomáš, Fentanes, Jaime Pulido, Hanheide, Marc, and Duckett,
Tom. 2016. Persistent localization and life-long mapping in changing en-
vironments using the frequency map enhancement. Pages 4558–4563 of:
2016 IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems (IROS). IEEE.

[611] Krajńık, Tomáš, Fentanes, Jaime P, Santos, Joao M, and Duckett, Tom.
2017. Fremen: Frequency map enhancement for long-term mobile robot
autonomy in changing environments. IEEE Trans. Robotics, 33(4), 964–
977.

[612] Kramer, Andrew, and Heckman, Christoffer. 2020. Radar-Inertial State Esti-
mation and Obstacle Detection for Micro-Aerial Vehicles in Dense Fog. Pages
3–16 of: International Symposium on Experimental Robotics. Springer.

[613] Kramer, Andrew, Stahoviak, Carl, Santamaria-Navarro, Angel, Agha-
Mohammadi, Ali-Akbar, and Heckman, Christoffer. 2020. Radar-inertial
ego-velocity estimation for visually degraded environments. Pages 5739–
5746 of: IEEE Intl. Conf. on Robotics and Automation (ICRA). IEEE.

[614] Kramer, Andrew, Harlow, Kyle, Williams, Christopher, and Heckman,
Christoffer. 2022. ColoRadar: The Direct 3D Millimeter Wave Radar
Dataset. Intl. J. of Robotics Research, 41(4), 351–360.

[615] Krizhevsky, A., Sutskever, I., and Hinton, G. 2012a. ImageNet classifica-
tion with deep convolutional neural networks. In: Conf. Neural Information
Processing Systems (NIPS).

[616] Krizhevsky, Alex, Sutskever, Ilya, and Hinton, Geoffrey E. 2012b. Imagenet
classification with deep convolutional neural networks. Advances in Neural
Information Processing Systems (NIPS), 25.

[617] Kubelka, Vladimı́r, Fritz, Emil, and Magnusson, Martin. 2024. Do we need
scan-matching in radar odometry? In: IEEE Intl. Conf. on Robotics and
Automation (ICRA).

[618] Kucner, Tomasz Piotr, Magnusson, Martin, Mghames, Sariah, Palmieri,
Luigi, Verdoja, Francesco, Swaminathan, Chittaranjan Srinivas, Krajńık,
Tomáš, Schaffernicht, Erik, Bellotto, Nicola, Hanheide, Marc, et al. 2023.
Survey of maps of dynamics for mobile robots. Intl. J. of Robotics Research,
42(11), 977–1006.

[619] Kueng, Beat, Mueggler, Elias, Gallego, Guillermo, and Scaramuzza, Davide.
2016. Low-latency Visual Odometry using Event-based Feature Tracks.
Pages 16–23 of: IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems
(IROS).

[620] Kuipers, Benjamin. 2000. The Spatial Semantic Hierarchy. Artificial Intel-
ligence, 119, 191–233.

[621] Kukko, Antero, Kaijaluoto, Risto, Kaartinen, Harri, Lehtola, Ville V,
Jaakkola, Anttoni, and Hyyppä, Juha. 2017. Graph SLAM correction for
single scanner MLS forest data under boreal forest canopy. ISPRS Journal
of Photogrammetry and Remote Sensing, 132, 199–209.

[622] Kümmerle, Rainer, Grisetti, Giorgio, Strasdat, Hauke, Konolige, Kurt, and



References 585

Burgard, Wolfram. 2011. G2o: A general framework for graph optimization.
In: IEEE Intl. Conf. on Robotics and Automation (ICRA).

[623] Kung, Pou-Chun, Wang, Chieh-Chih, and Lin, Wen-Chieh. 2021. A Normal
Distribution Transform-Based Radar Odometry Designed For Scanning and
Automotive Radars. Pages 14417–14423 of: IEEE Intl. Conf. on Robotics
and Automation (ICRA).

[624] Labbé, Mathieu, and Michaud, François. 2019. RTAB-Map as an open-
source lidar and visual simultaneous localization and mapping library for
large-scale and long-term online operation. Journal of field robotics, 36(2),
416–446.

[625] Laina, Sebastian Barbas, Boche, Simon, Papatheodorou, Sotiris, Schaefer,
Simon, Jung, Jaehyung, and Leutenegger, Stefan. 2025. FindAnything:
Open-Vocabulary and Object-Centric Mapping for Robot Exploration in
Any Environment. arXiv preprint.

[626] Lajoie, P., Hu, S., Beltrame, G., and Carlone, L. 2019. Modeling Perceptual
Aliasing in SLAM via Discrete-Continuous Graphical Models. IEEE Robotics
and Automation Letters.

[627] Lamarca, Jose, and Montiel, J.M.M. 2018. Camera Tracking for SLAM in
Deformable Maps. In: 4th Inter. Workshop on Recovering 6D Object Pose.
In ECCVw.

[628] Lamarca, Jose, Parashar, Shaifali, Bartoli, Adrien, and Montiel, J.M.M.
2021. DefSLAM: Tracking and Mapping of Deforming Scenes From Monoc-
ular Sequences. IEEE Transactions on robotics, 37(1), 291–303.

[629] Lamarca, José, Gómez Rodŕıguez, Juan J., Tardós, Juan D., and Montiel,
J.M.M. 2022. Direct and Sparse Deformable Tracking. IEEE Robotics and
Automation Letters, 7(4), 11450–11457.

[630] Landry, David, Pomerleau, Francois, and Giguere, Philippe. 2019. CELLO-
3D: Estimating the Covariance of ICP in the Real World. In: IEEE Intl.
Conf. on Robotics and Automation (ICRA).

[631] Lang, Xiaolei, Li, Laijian, Wu, Chenming, Zhao, Chen, Liu, Lina, Liu, Yong,
Lv, Jiajun, and Zuo, Xingxing. 2025. Gaussian-LIC: Real-Time Photo-
Realistic SLAM with Gaussian Splatting and LiDAR-Inertial-Camera Fu-
sion. IEEE Intl. Conf. on Robotics and Automation (ICRA).

[632] Langer, Edith, Patten, Timothy, and Vincze, Markus. 2020. Robust and
efficient object change detection by combining global semantic information
and local geometric verification. Pages 8453–8460 of: 2020 IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems (IROS). IEEE.

[633] Lasserre, J. 2010. Moments, positive polynomials and their applications. Vol.
1. World Scientific.

[634] Lasserre, Jean B. 2001. Global optimization with polynomials and the prob-
lem of moments. SIAM J. Optim., 11(3), 796–817.

[635] Latif, Y., Lerma, C. D. C., and Neira, J. 2012. Robust Loop Closing Over
Time. In: Robotics: Science and Systems (RSS).

[636] Lau, Boris, Sprunk, Christoph, and Burgard, Wolfram. 2013. Efficient grid-
based spatial representations for robot navigation in dynamic environments.
J. on Robotics and Autonomous Systems (RAS), 61(10), 1116–1130.

[637] Le Gentil, C., and Vidal-Calleja, T. 2021. Continuous Integration over SO(3)
for IMU Preintegration. In: Robotics: Science and Systems (RSS).



586 References

[638] Le Gentil, Cedric, Vidal-Calleja, Teresa, and Huang, Shoudong. 2018. 3D
Lidar-IMU Calibration based on Upsampled Preintegrated Measurements
for Motion Distortion Correction. Pages 2149–2155 of: IEEE Intl. Conf. on
Robotics and Automation (ICRA). IEEE.

[639] Le Gentil, Cedric, Vidal-Calleja, Teresa, and Huang, Shoudong. 2020. Gaus-
sian Process Preintegration for Inertial-Aided State Estimation. IEEE
Robotics and Automation Letters, 5(2), 2108–2114.

[640] Le Gentil, Cedric, Vidal-Calleja, Teresa, and Huang, Shoudong. 2021.
IN2LAAMA: Inertial Lidar Localization Autocalibration and Mapping.
IEEE Transactions on Robotics, 37(1), 275–290.

[641] Le Gentil, Cedric, Ouabi, Othmane-Latif, Wu, Lan, Pradalier, Cedric, and
Vidal-Calleja, Teresa. 2023. Accurate Gaussian-Process-based Distance
Fields with Applications to Echolocation and Mapping. IEEE Robotics and
Automation Letters, 1–8.

[642] Lee, Alex Junho, Cho, Younggun, Shin, Young-sik, Kim, Ayoung, and
Myung, Hyun. 2022. ViViD++: Vision for Visibility Dataset. IEEE Robotics
and Automation Letters, 7(3), 6282–6289.

[643] Lee, Bhoram, Zhang, Clark, Huang, Zonghao, and Lee, Daniel D. 2019. On-
line continuous mapping using gaussian process implicit surfaces. In: IEEE
Intl. Conf. on Robotics and Automation (ICRA).

[644] Lee, G. H., Fraundorfer, F., and Pollefeys, M. 2013. Robust pose-graph
loop-closures with expectation-maximization. In: IEEE/RSJ Intl. Conf. on
Intelligent Robots and Systems (IROS).

[645] Lee, Joonho, Hwangbo, Jemin, Wellhausen, Lorenz, Koltun, Vladlen, and
Hutter, Marco. 2020. Learning quadrupedal locomotion over challenging
terrain. Science Robotics, 5(47), 5986.

[646] Leordeanu, Marius, and Hebert, Martial. 2005. A spectral technique for
correspondence problems using pairwise constraints. Pages 1482–1489 of:
Intl. Conf. on Computer Vision (ICCV), vol. 2. IEEE.

[647] Lepetit, Vincent, Moreno-Noguer, Francesc, and Fua, Pascal. 2009. Epnp:
An accurate o (n) solution to the pnp problem. Intl. J. of Computer Vision,
81(2), 155.

[648] Lepora, Nathan F., and Lloyd, John. 2020. Optimal Deep Learning for
Robot Touch: Training Accurate Pose Models of 3D Surfaces and Edges.
IEEE Robotics & Automation Magazine, 27(2), 66–77.

[649] Leroy, Vincent, Cabon, Yohann, and Revaud, Jérôme. 2024. Grounding
image matching in 3d with mast3r. Pages 71–91 of: European Conf. on
Computer Vision (ECCV). Springer.

[650] Leutenegger, S., Chli, M., and Siegwart, R. 2011. BRISK: Binary Robust
Invariance Scalable Keypoints. In: Intl. Conf. on Computer Vision (ICCV).

[651] Leutenegger, Stefan. 2022. Okvis2: Realtime scalable visual-inertial slam
with loop closure. arXiv preprint arXiv:2202.09199.

[652] Leutenegger, Stefan, Lynen, Simon, Bosse, Michael, Siegwart, Roland, and
Furgale, Paul. 2015. Keyframe-based visual–inertial odometry using nonlin-
ear optimization. Intl. J. of Robotics Research, 34(3), 314–334.

[653] Levenberg, K. 1944. A Method for the Solution of Certain Nonlinear Prob-
lems in Least Squares. Quart. Appl. Math, 2(2), 164–168.



References 587

[654] Li, Boyi, Weinberger, Kilian Q, Belongie, Serge, Koltun, Vladlen, and Ran-
ftl, Rene. 2022. Language-driven Semantic Segmentation. In: International
Conference on Learning Representations.

[655] Li, Chunyuan, Wong, Cliff, Zhang, Sheng, Usuyama, Naoto, Liu, Haotian,
Yang, Jianwei, Naumann, Tristan, Poon, Hoifung, and Gao, Jianfeng. 2024a.
Llava-med: Training a large language-and-vision assistant for biomedicine in
one day. Advances in Neural Information Processing Systems, 36.

[656] Li, Dongjiang, Shi, Xuesong, Long, Qiwei, Liu, Shenghui, Yang, Wei, Wang,
Fangshi, Wei, Qi, and Qiao, Fei. 2020. DXSLAM: A Robust and Efficient
Visual SLAM System with Deep Features. In: IEEE/RSJ International
conference on intelligent robots and systems (IROS).

[657] Li, Fangting, Zhang, Guoqiang, and Yan, Jun. 2008. Coregistration Based
on Sift Algorithm for Synthetic Aperture Radar Interferometry.

[658] Li, H. 2009. Consensus set maximization with guaranteed global optimality
for robust geometry estimation. Pages 1074–1080 of: Intl. Conf. on Computer
Vision (ICCV).

[659] Li, Lin, Kong, Xin, Zhao, Xiangrui, Li, Wanlong, Wen, Feng, Zhang, Hongbo,
and Liu, Yong. 2021. SA-LOAM: Semantic-aided LiDAR SLAM with Loop
Closure. In: IEEE Intl. Conf. on Robotics and Automation (ICRA).

[660] Li, M., and Mourikis, A. 2013. High-Precision, Consistent EKF-based
Visual-Inertial Odometry. Intl. J. of Robotics Research, 32(6), 690–711.

[661] Li, M., and Mourikis, A. I. 2012 (May 14–18,). Improving the Accuracy of
EKF-based Visual-Inertial Odometry. Pages 828–835 of: IEEE Intl. Conf.
on Robotics and Automation (ICRA).

[662] Li, Qing, Chen, Shaoyang, Wang, Cheng, Li, Xin, Wen, Chenglu, Cheng,
Ming, and Li, Jonathan. 2019. LO-Net: Deep Real-Time Lidar Odometry.
Pages 8465–8474 of: IEEE Conf. on Computer Vision and Pattern Recogni-
tion (CVPR).

[663] Li, Ruihao, Wang, Sen, Long, Zhiqiang, and Gu, Dongbing. 2018. Un-
deepvo: Monocular visual odometry through unsupervised deep learning.
Pages 7286–7291 of: IEEE Intl. Conf. on Robotics and Automation (ICRA).
IEEE.

[664] Li, Wanhua, Zhou, Renping, Zhou, Jiawei, Song, Yingwei, Herter, Johannes,
Qin, Minghan, Huang, Gao, and Pfister, Hanspeter. 2025. 4D LangSplat:
4D Language Gaussian Splatting via Multimodal Large Language Models.

[665] Li, Xingyi, Zhang, Han, and Chen, Weidong. 2023. 4D Radar-based Pose
Graph SLAM with Ego-velocity Pre-integration Factor. IEEE Robotics and
Automation Letters, 8(8), 5124–5131.

[666] Li, Xudong, Wang, Zhixiang, Liu, Zihao, Zhang, Yizhai, Zhang, Fan, Yao, Xi-
uming, and Huang, Panfeng. 2024b. Asynchronous Event-Inertial Odometry
using a Unified Gaussian Process Regression Framework. Pages 7773–7778
of: IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems (IROS).

[667] Li, Zhengqi, Tucker, Richard, Cole, Forrester, Wang, Qianqian, Jin, Linyi,
Ye, Vickie, Kanazawa, Angjoo, Holynski, Aleksander, and Snavely, Noah.
2024c. Megasam: Accurate, fast, and robust structure and motion from
casual dynamic videos. arXiv preprint arXiv:2412.04463.

[668] Lichtsteiner, Patrick, Posch, Christoph, and Delbruck, Tobi. 2008. A
128×128 120 dB 15 µs latency asynchronous temporal contrast vision sensor.
IEEE J. Solid-State Circuits, 43(2), 566–576.



588 References

[669] Lim, Hyungtae, Hwang, Sungwon, and Myung, Hyun. 2021. ERASOR: Ego-
centric ratio of pseudo occupancy-based dynamic object removal for static
3D point cloud map building. IEEE Robotics and Automation Letters, 6(2),
2272–2279.

[670] Lim, Hyungtae, Jang, Seoyeon, Mersch, Benedikt, Behley, Jens, Myung,
Hyun, and Stachniss, Cyrill. 2024a. Helimos: A dataset for moving object
segmentation in 3d point clouds from heterogeneous lidar sensors. Pages
14087–14094 of: 2024 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). IEEE.

[671] Lim, Hyungtae, Kim, Beomsoo, Kim, Daebeom, Lee, Eungchang Mason,
and Myung, Hyun. 2024b. Quatro++: Robust global registration exploiting
ground segmentation for loop closing in LiDAR SLAM. Intl. J. of Robotics
Research, 43(5), 685–715.

[672] Lim, Jaein, and Tsiotras, Panagiotis. 2021. A Generalized A* Algorithm
for Finding Globally Optimal Paths in Weighted Colored Graphs. Pages
7503–7509 of: IEEE Intl. Conf. on Robotics and Automation (ICRA).

[673] Lin, J., and Zhang, F. 2019. Loam livox A Robust LiDAR Odemetry and
Mapping LOAM Package for Livox LiDAR. In: IEEE/RSJ Intl. Conf. on
Intelligent Robots and Systems (IROS).

[674] Lin, Jiarong, and Zhang, Fu. 2020. Loam livox: A fast, robust, high-precision
LiDAR odometry and mapping package for LiDARs of small FoV. Pages
3126–3131 of: IEEE Intl. Conf. on Robotics and Automation (ICRA).

[675] Lin, Pei-Chun, Komsuoglu, Haldun, and Koditschek, Daniel E. 2005. A leg
configuration measurement system for full-body pose estimates in a hexapod
robot. IEEE Trans. Robotics, 21(3), 411–422.

[676] Lin, Tzu-Yuan, Zhang, Ray, Yu, Justin, and Ghaffari, Maani. 2022 (08–11
Nov). Legged Robot State Estimation using Invariant Kalman Filtering
and Learned Contact Events. Pages 1057–1066 of: Faust, Aleksandra, Hsu,
David, and Neumann, Gerhard (eds), Conf. on Robot Learning (CoRL).
Proceedings of Machine Learning Research, vol. 164.

[677] Lindenberger, Philipp, Sarlin, Paul-Edouard, Larsson, Viktor, and Pollefeys,
Marc. 2021. Pixel-perfect structure-from-motion with featuremetric refine-
ment. Pages 5987–5997 of: Proceedings of the IEEE/CVF international con-
ference on computer vision.

[678] Lindenberger, Philipp, Sarlin, Paul-Edouard, and Pollefeys, Marc. 2023.
Lightglue: Local feature matching at light speed. Pages 17627–17638 of:
IEEE Conf. on Computer Vision and Pattern Recognition (CVPR).

[679] Lipson, Lahav, Teed, Zachary, and Deng, Jia. 2024. Deep patch visual slam.
Pages 424–440 of: European Conf. on Computer Vision (ECCV). Springer.

[680] Liso, Lorenzo, Sandström, Erik, Yugay, Vladimir, Van Gool, Luc, and Os-
wald, Martin R. 2024. Loopy-slam: Dense neural slam with loop closures.
Pages 20363–20373 of: Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition.

[681] Liston, Ronald A. 1967. Walking machine studies. The Military Engineer,
59(388), 101–104.

[682] Liu, Chenxi, Wang, Wei, Liu, Hairong, and Wang, Jun. 2022. Application
of Hawk-Eye Technology to Sports Events. Pages 1–5 of: intl. Conf. on
Information Technology and Contemporary Sports (TCS).



References 589

[683] Liu, Hanxiao, Simonyan, Karen, and Yang, Yiming. 2019a. Darts: Differen-
tiable architecture search. In: International Conference on Learning Repre-
sentations (ICLR).

[684] Liu, Liyang, Fryc, Simon, Wu, Lan, Vu, Thanh Long, Paul, Gavin, and
Vidal-Calleja, Teresa. 2021a. Active and interactive mapping with dynamic
Gaussian process implicit surfaces for mobile manipulators. IEEE Robotics
and Automation Letters, 6(2), 3679–3686.

[685] Liu, P., Orru, Y., Paxton, C., Shafiullah, N.M.M., and Pinto, L. 2024a. OK-
Robot: What Really Matters in Integrating Open-Knowledge Models for
Robotics. arXiv preprint arXiv:2401.12202.

[686] Liu, Risheng, Gao, Jiaxin, Zhang, Jin, Meng, Deyu, and Lin, Zhouchen.
2021b. Investigating bi-level optimization for learning and vision from a
unified perspective: A survey and beyond. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 44(12), 10045–10067.

[687] Liu, Shichen, Li, Tianye, Chen, Weikai, and Li, Hao. 2019b. Soft Rasterizer:
A Differentiable Renderer for Image-based 3D Reasoning. In: Intl. Conf. on
Computer Vision (ICCV).

[688] Liu, Shilong, Zeng, Zhaoyang, Ren, Tianhe, Li, Feng, Zhang, Hao, Yang, Jie,
Jiang, Qing, Li, Chunyuan, Yang, Jianwei, Su, Hang, et al. 2024b. Grounding
dino: Marrying dino with grounded pre-training for open-set object detec-
tion. Pages 38–55 of: European Conference on Computer Vision. Springer.

[689] Liu, Wenxin, Caruso, David, Ilg, Eddy, Dong, Jing, Mourikis, Anastasios I.,
Daniilidis, Kostas, Kumar, Vijay R., and Engel, Jakob J. 2020. TLIO: Tight
Learned Inertial Odometry. IEEE Robotics and Automation Letters, 5, 5653–
5660.

[690] Liu, Xiaoye. 2008. Airborne LiDAR for DEM generation: some critical issues.
Progress in Physical Geography: Earth and Environment, 32(1), 31–49.

[691] Liu, Xinghua, Xue, Hanjun, Gao, Xiang, Liu, Han, Chen, Badong, and Ge,
Shuzhi Sam. 2023a. Cubic B-Spline-Based Feature Tracking for Visual-
Inertial Odometry With Event Camera. IEEE Trans. Instrum. Meas., 72,
1–15.

[692] Liu, Zhe, Shi, Dianxi, Li, Ruihao, and Yang, Shaowu. 2023b. ESVIO: Event-
Based Stereo Visual-Inertial Odometry. Sensors, 23(4).

[693] Lobo, Jorge, and Dias, Jorge. 2007. Relative Pose Calibration Between
Visual and Inertial Sensors. Intl. J. of Robotics Research, 26(6), 561–575.

[694] Lochman, Yaroslava, Liepieshov, Kostiantyn, Chen, Jianhui, Perdoch,
Michal, Zach, Christopher, and Pritts, James. 2021. Babelcalib: A universal
approach to calibrating central cameras. Pages 15253–15262 of: Proceedings
of the IEEE/CVF International Conference on Computer Vision.

[695] Lombardi, Stephen, Simon, Tomas, Saragih, Jason, Schwartz, Gabriel,
Lehrmann, Andreas, and Sheikh, Yaser. 2019. Neural Volumes: Learning
Dynamic Renderable Volumes from Images. ACM Transactions on Graph-
ics (TOG).

[696] Long, A W, Wolfe, K C, Mashner, M J, and Chirikjian, G S. 2012. The
Banana Distribution is Gaussian: A Localization Study with Exponential
Coordinates. In: Proceedings of Robotics: Science and Systems.

[697] Long, Jonathan, Shelhamer, Evan, and Darrell, Trevor. 2015. Fully convolu-
tional networks for semantic segmentation. Pages 3431–3440 of: IEEE Conf.
on Computer Vision and Pattern Recognition (CVPR).



590 References

[698] Long, Ran, Rauch, Christian, Zhang, Tianwei, Ivan, Vladimir, and Vijayaku-
mar, Sethu. 2021. Rigidfusion: Robot localisation and mapping in environ-
ments with large dynamic rigid objects. IEEE Robotics and Automation
Letters, 6(2), 3703–3710.

[699] Loop, C., Cai, Q., Orts-Escolano, S., and Chou, P. A. 2016. A Closed-Form
Bayesian Fusion Equation Using Occupancy Probabilities. Pages 380–388
of: Intl. Conf. on 3D Vision (3DV).

[700] Looper, Samuel, Rodriguez-Puigvert, Javier, Siegwart, Roland, Cadena, Ce-
sar, and Schmid, Lukas. 2023. 3d vsg: Long-term semantic scene change
prediction through 3d variable scene graphs. Pages 8179–8186 of: IEEE
Intl. Conf. on Robotics and Automation (ICRA). IEEE.

[701] Loper, Matthew, Mahmood, Naureen, Romero, Javier, Pons-Moll, Gerard,
and Black, Michael J. 2023. SMPL: A skinned multi-person linear model.
Pages 851–866 of: Seminal Graphics Papers: Pushing the Boundaries, Vol-
ume 2.

[702] Loper, Matthew M, and Black, Michael J. 2014. OpenDR: An approximate
differentiable renderer. In: European Conf. on Computer Vision (ECCV).

[703] Lorensen, William E, and Cline, Harvey E. 1987. Marching cubes: A high res-
olution 3D surface construction algorithm. Intl. Conf. on Computer Graphics
and Interactive Techniques (SIGGRAPH), 21(4), 163–169.

[704] Lourakis, Manolis LA, and Argyros, Antonis A. 2005. Is Levenberg-
Marquardt the most efficient optimization algorithm for implementing bun-
dle adjustment? Pages 1526–1531 of: Intl. Conf. on Computer Vision
(ICCV), vol. 2. IEEE.

[705] Lovegrove, S. J. 2011. Parametric Dense Visual SLAM. Ph.D. thesis, Im-
perial College London.

[706] Lowe, D.G. 2004. Distinctive Image Features from Scale-Invariant Key-
points. Intl. J. of Computer Vision, 60(2), 91–110.

[707] Lu, F., and Milios, E. 1997a. Globally consistent range scan alignment for
environment mapping. Autonomous Robots, Apr, 333–349.

[708] Lu, F., and Milios, E. 1997b. Robot pose estimation in unknown environ-
ments by matching 2D range scans. J. of Intelligent and Robotic Systems,
April, 249:275.

[709] Lu, Feng, and Milios, Evangelos. 1997c. Globally consistent range scan align-
ment for environment mapping. Autonomous Robots, 4, 333–349.

[710] Lu, Jingpei, Richter, Florian, and Yip, Michael C. 2023a. Markerless
Camera-to-Robot Pose Estimation via Self-Supervised Sim-to-Real Trans-
fer. Pages 21296–21306 of: IEEE Conf. on Computer Vision and Pattern
Recognition (CVPR).

[711] Lu, Sha, Xu, Xuecheng, Yin, Huan, Chen, Zexi, Xiong, Rong, and Wang,
Yue. 2022. One ring to rule them all: Radon sinogram for place recognition,
orientation and translation estimation. Pages 2778–2785 of: IEEE/RSJ Intl.
Conf. on Intelligent Robots and Systems (IROS). IEEE.

[712] Lu, Shiyang, Chang, Haonan, Jing, Eric Pu, Boularias, Abdeslam, and
Bekris, Kostas. 2023b. OVIR-3D: Open-Vocabulary 3D Instance Retrieval
Without Training on 3D Data. In: 7th Annual Conference on Robot Learn-
ing.

[713] Lu, Ziqi, Huang, Qiangqiang, Doherty, Kevin, and Leonard, John J. 2021.



References 591

Consensus-Informed Optimization Over Mixtures for Ambiguity-Aware Ob-
ject SLAM. In: IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems
(IROS).

[714] Lu, Ziqi, Ye, Jianbo, and Leonard, John. 2025. 3DGS-CD: 3D Gaus-
sian Splatting-Based Change Detection for Physical Object Rearrangement.
IEEE Robotics and Automation Letters.

[715] Lucas, Bruce D, and Kanade, Takeo. 1981. An iterative image registration
technique with an application to stereo vision. Pages 674–679 of: Intl. Joint
Conf. on AI (IJCAI), vol. 2.

[716] Luo, Bin, and Hancock, Edwin R. 1999. Procrustes Alignment with the EM
Algorithm. Pages 623–631 of: Computer Analysis of Images and Patterns,
CAIP. Lecture Notes in Computer Science, vol. 1689. Springer.

[717] Lupton, T., and Sukkarieh, S. 2012. Visual-Inertial-Aided Navigation for
High-Dynamic Motion in Built Environments Without Initial Conditions.
IEEE Trans. Robotics, 28(1), 61–76.

[718] Lusk, Parker C., and How, Jonathan P. 2022. Global Data Association
for SLAM with 3D Grassmannian Manifold Objects. Pages 4463–4470 of:
IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems (IROS).

[719] Lusk, Parker C., Fathian, Kaveh, and How, Jonathan P. 2021a (May). CLIP-
PER: A Graph-Theoretic Framework for Robust Data Association. Pages
13828–13834 of: IEEE Intl. Conf. on Robotics and Automation (ICRA).

[720] Lusk, Parker C., Roy, Ronak, Fathian, Kaveh, and How, Jonathan P. 2021b
(Nov.). MIXER: A Principled Framework for Multimodal, Multiway Data
Association.

[721] Lusk, Parker C., Parikh, Devarth, and How, Jonathan P. 2023. GraffMatch:
Global Matching of 3D Lines and Planes for Wide Baseline LiDAR Regis-
tration. IEEE Robotics and Automation Letters, 8(2), 632–639.

[722] Lv, Jiajun, Xu, Jinhong, Hu, Kewei, Liu, Yong, and Zuo, Xingxing. 2020.
Targetless Calibration of LiDAR-IMU System Based on Continuous-time
Batch Estimation. Pages 9968–9975 of: IEEE/RSJ Intl. Conf. on Intelligent
Robots and Systems (IROS).

[723] Lv, Jiajun, Hu, Kewei, Xu, Jinhong, Liu, Yong, Ma, Xiushui, and Zuo,
Xingxing. 2021. CLINS: Continuous-time trajectory estimation for LiDAR-
inertial system. Pages 6657–6663 of: IEEE/RSJ Intl. Conf. on Intelligent
Robots and Systems (IROS). IEEE.

[724] Lv, Zhaoyang, Dellaert, Frank, Rehg, James M, and Geiger, Andreas. 2019.
Taking a deeper look at the inverse compositional algorithm. Pages 4581–
4590 of: IEEE Conf. on Computer Vision and Pattern Recognition (CVPR).

[725] Lynch, Kevin M., and Park, Frank C. 2017a. Modern Robotics - Mechanics,
Planning, and Control. USA: Cambridge University Press. Chap. 4, pages
137–152.

[726] Lynch, Kevin M., and Park, Frank C. 2017b. Modern Robotics - Mechanics,
Planning, and Control. USA: Cambridge University Press. Chap. 5, pages
171–190.

[727] Lynch, Kevin M, Marchuk, Nicholas D, and Elwin, Matthew L. 2015. Em-
bedded Computing and Mechatronics with the PIC32 Microcontroller. 1 edn.
Newness. Chap. 21.

[728] Ma, Junyi, Zhang, Jun, Xu, Jintao, Ai, Rui, Gu, Weihao, and Chen,
Xieyuanli. 2022. Overlaptransformer: An efficient and yaw-angle-invariant



592 References

transformer network for lidar-based place recognition. IEEE Robotics and
Automation Letters, 7(3), 6958–6965.

[729] Macenski, Steve, Tsai, David, and Feinberg, Max. 2020. Spatio-temporal
voxel layer: A view on robot perception for the dynamic world. Intl. J. of
Advanced Robotic Systems, 17(2).

[730] Maggio, D., and Carlone, L. 2025. Bayesian Fields: Task-driven Open-Set
Semantic Gaussian Splatting. arXiv preprint.

[731] Maggio, D., Chang, Y., Hughes, N., Trang, M., Griffith, D., Dougherty, C.,
Cristofalo, E., Schmid, L., and Carlone, L. 2024. Clio: Real-time Task-Driven
Open-Set 3D Scene Graphs. IEEE Robotics and Automation Letters, 9(10),
8921–8928.

[732] Mahlknecht, Florian, Gehrig, Daniel, Nash, Jeremy, Rockenbauer,
Friedrich M., Morrell, Benjamin, Delaune, Jeff, and Scaramuzza, Davide.
2022. Exploring Event Camera-based Odometry for Planetary Robots. IEEE
Robotics and Automation Letters, 7(4), 8651–8658.

[733] Majumdar, Arjun, Ajay, Anurag, Zhang, Xiaohan, Putta, Pranav, Yena-
mandra, Sriram, Henaff, Mikael, Silwal, Sneha, Mcvay, Paul, Maksymets,
Oleksandr, Arnaud, Sergio, et al. 2024. Openeqa: Embodied question an-
swering in the era of foundation models. Pages 16488–16498 of: Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[734] Malcolm, James, Yalamanchili, Pavan, McClanahan, Chris, Venugopalakr-
ishnan, Vishwanath, Patel, Krunal, and Melonakos, John. 2012. ArrayFire:
a GPU acceleration platform. Pages 49–56 of: Modeling and simulation for
defense systems and applications VII, vol. 8403. SPIE.

[735] Mangelson, J. G., Dominic, D., Eustice, R. M., and Vasudevan, R. 2018.
Pairwise Consistent Measurement Set Maximization for Robust Multi-robot
Map Merging. Pages 2916–2923 of: IEEE Intl. Conf. on Robotics and Au-
tomation (ICRA).

[736] Maravgakis, Michael, Argiropoulos, Despina-Ekaterini, Piperakis, Stylianos,
and Trahanias, Panos. 2023. Probabilistic Contact State Estimation for
Legged Robots using Inertial Information. Pages 12163–12169 of: IEEE
Intl. Conf. on Robotics and Automation (ICRA).

[737] Marck, Jan Willem, Mohamoud, Ali, vd Houwen, Eric, and van Heijster,
Rob. 2013. Indoor radar SLAM: A radar application for vision and GPS
denied environments. Pages 471–474 of: 2013 European Radar Conference.

[738] Marquardt, D.W. 1963. An Algorithm for Least-Squares Estimation of Non-
linear Parameters. J. Soc. Indust. Appl. Math., 11(2), 431–441.

[739] Marr, David. 1983. Vision: A Computational Investigation into the Human
Representation and Processing of Visual Information. W.H. Freeman and
Company.

[740] Marschner, Steve, and Shirley, Peter. 2018. Fundamentals of computer graph-
ics. CRC Press.

[741] Martel, J. 2019. Unconventional Processing with Unconventional Visual
Sensing. Ph.D. thesis, ETH Zurich.

[742] Martel, J., and Dudek, P. 2016. Vision Chips with In-pixel Processors for
High-performance Low-power Embedded Vision Systems. In: ASR-MOV
Workshop, CGO.

[743] Martens, W., Poffet, Y., Soria, P. R., Fitch, R., and Sukkarieh, S. 2017.



References 593

Geometric Priors for Gaussian Process Implicit Surfaces. IEEE Robotics
and Automation Letters, 373–380.

[744] Martinelli, A. 2013 (Nov.). Visual-inertial structure from motion: Observ-
ability and resolvability. Pages 4235–4242 of: IEEE/RSJ Intl. Conf. on
Intelligent Robots and Systems (IROS).

[745] MATLAB. 2010. version 7.10.0 (R2010a). Natick, Massachusetts: The
MathWorks Inc.

[746] Matsuki, Hidenobu, von Stumberg, Lukas, Usenko, Vladyslav, Stückler,
Jörg, and Cremers, Daniel. 2018. Omnidirectional DSO: Direct Sparse
Odometry with Fisheye Cameras. IEEE Robotics and Automation Letters,
3(4), 3693–3700.

[747] Matsuki, Hidenobu, Murai, Riku, Kelly, Paul HJ, and Davison, Andrew J.
2024. Gaussian splatting slam. Pages 18039–18048 of: IEEE Conf. on Com-
puter Vision and Pattern Recognition (CVPR).

[748] Matsuki, Hidenobu, Bae, Gwangbin, and Davison, Andrew. 2025. 4DTAM:
Non-Rigid Tracking and Mapping via Dynamic Surface Gaussians. In: IEEE
Conf. on Computer Vision and Pattern Recognition (CVPR).

[749] Maybeck, P. 1979. Stochastic Models, Estimation and Control. Vol. 1. New
York: Academic Press.

[750] Mayer, Nikolaus, Ilg, Eddy, Hausser, Philip, Fischer, Philipp, Cremers,
Daniel, Dosovitskiy, Alexey, and Brox, Thomas. 2016. A large dataset to
train convolutional networks for disparity, optical flow, and scene flow esti-
mation. Pages 4040–4048 of: IEEE Conf. on Computer Vision and Pattern
Recognition (CVPR).

[751] Mazur, K., Bae, G., and Davison, A. J. 2024. SuperPrimitive: Scene Re-
construction at a Primitive Level. In: IEEE Conf. on Computer Vision and
Pattern Recognition (CVPR).

[752] Mazur, Kirill, Sucar, Edgar, and Davison, Andrew J. 2023. Feature-realistic
neural fusion for real-time, open set scene understanding. Pages 8201–8207
of: IEEE Intl. Conf. on Robotics and Automation (ICRA). IEEE.

[753] McCormac, J., Handa, A., Leutenegger, S., and Davison, A. J. 2017a.
SceneNet RGB-D: Can 5M Synthetic Images Beat Generic ImageNet Pre-
training on Indoor Segmentation? In: Intl. Conf. on Computer Vision
(ICCV).

[754] McCormac, J., Handa, A., Davison, A. J., and Leutenegger, S. 2017b. Se-
manticFusion: Dense 3D Semantic Mapping with Convolutional Neural Net-
works. In: IEEE Intl. Conf. on Robotics and Automation (ICRA).

[755] McCormac, John, Clark, Ronald, Bloesch, Michael, Davison, Andrew, and
Leutenegger, Stefan. 2018. Fusion++: Volumetric object-level slam. Pages
32–41 of: 2018 international conference on 3D vision (3DV). IEEE.

[756] McDonald, J., Kaess, M., Cadena, C., Neira, J., and Leonard, J.J. 2013.
Real-time 6-DOF multi-session visual SLAM over large-scale environments.
Robotics and Autonomous Systems, 61(10), 1144–1158. European Conf. on
Mobile Robotics (ECMR).

[757] McGhee, Robert B. 1968. Some finite state aspects of legged locomotion.
Mathematical Biosciences, 2(1-2), 67–84.

[758] McGhee, Robert B, and Iswandhi, Geoffrey I. 1979. Adaptive locomotion of
a multilegged robot over rough terrain. IEEE Trans. on Systems, Man, and
Cybernetics, 9(4), 176–182.



594 References

[759] Meagher, D. 1980. Octree Encoding: A New Technique for the Represen-
tation, Manipulation and Display of Arbitrary 3-D Objects by Computer.
Technical Report, Image Processing Laboratory, Rensselaer Poly-
technic Institute(IPL-TR-80-111).

[760] Medioni, G., Lee, M.-S., , and Tang, C.-K. 2000. A Computational Frame-
work for Segmentation and Grouping. Elsevier.

[761] Mei, C., Sibley, G., Cummins, M., Newman, P., and Reid, I. 2011. RSLAM:
A System for Large-Scale Mapping in Constant-Time Using Stereo. Intl. J.
of Computer Vision, 94, 198–214.

[762] Melkumyan, Arman, and Ramos, Fabio Tozeto. 2009. A sparse covariance
function for exact Gaussian process inference in large datasets. In: Intl. Joint
Conf. on AI (IJCAI).

[763] Menze, Moritz, and Geiger, Andreas. 2015. Object scene flow for autonomous
vehicles. Pages 3061–3070 of: IEEE Conf. on Computer Vision and Pattern
Recognition (CVPR).

[764] Menze, Moritz, Heipke, Christian, and Geiger, Andreas. 2018. Object Scene
Flow. ISPRS Journal of Photogrammetry and Remote Sensing (JPRS).

[765] Mersch, Benedikt, Chen, Xieyuanli, Vizzo, Ignacio, Nunes, Lucas, Behley,
Jens, and Stachniss, Cyrill. 2022. Receding moving object segmentation in
3d lidar data using sparse 4d convolutions. IEEE Robotics and Automation
Letters, 7(3), 7503–7510.

[766] Mescheder, Lars, Oechsle, Michael, Niemeyer, Michael, Nowozin, Sebastian,
and Geiger, Andreas. 2019. Occupancy Networks: Learning 3D Reconstruc-
tion in Function Space. In: IEEE Conf. on Computer Vision and Pattern
Recognition (CVPR).

[767] Messikommer, Nico, Fang, Carter, Gehrig, Mathias, and Scaramuzza, Da-
vide. 2023. Data-driven feature tracking for event cameras. Pages 5642–5651
of: IEEE Conf. on Computer Vision and Pattern Recognition (CVPR).

[768] Mielle, Malcolm, Magnusson, Martin, and Lilienthal, Achim J. 2019 (Sept.).
A comparative analysis of radar and lidar sensing for localization and map-
ping. In: European Conf. on Mobile Robotics (ECMR).

[769] Miki, Takahiro, Lee, Joonho, Hwangbo, Jemin, Wellhausen, Lorenz, Koltun,
Vladlen, and Hutter, Marco. 2022. Learning robust perceptive locomotion
for quadrupedal robots in the wild. Science Robotics, 7(62), eabk2822.

[770] Mildenhall, Ben, Srinivasan, Pratul P, Tancik, Matthew, Barron,
Jonathan T, Ramamoorthi, Ravi, and Ng, Ren. 2020. NeRF: Represent-
ing Scenes as Neural Radiance Fields for View Synthesis. Pages 405–421 of:
European Conf. on Computer Vision (ECCV). Springer.

[771] Mildenhall, Ben, Srinivasan, Pratul P, Tancik, Matthew, Barron,
Jonathan T, Ramamoorthi, Ravi, and Ng, Ren. 2021. NeRF: Represent-
ing scenes as neural radiance fields for view synthesis. Communications of
the ACM, 65(1), 99–106.

[772] Milioto, A., and Stachniss, C. 2019. Bonnet: An Open-source Training
and Deployment Framework for Semantic Segmentation in Robotics Using
CNNs. Pages 7094–7100 of: IEEE Intl. Conf. on Robotics and Automation
(ICRA).

[773] Milioto, A., Behley, J., McCool, C., and Stachniss, C. 2020. LiDAR Panop-
tic Segmentation for Autonomous Driving. In: IEEE/RSJ Intl. Conf. on
Intelligent Robots and Systems (IROS).



References 595

[774] Milioto, Andres, Vizzo, Ignacio, Behley, Jens, and Stachniss, Cyrill. 2019.
Rangenet++: Fast and accurate lidar semantic segmentation. Pages 4213–
4220 of: IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems (IROS).
IEEE.

[775] Mitrokhin, Anton, Ye, Chengxi, Fermuller, Cornelia, Aloimonos, Yiannis,
and Delbruck, Tobi. 2019. EV-IMO: Motion Segmentation Dataset and
Learning Pipeline for Event Cameras. Pages 6105–6112 of: IEEE/RSJ Intl.
Conf. on Intelligent Robots and Systems (IROS).

[776] Moeys, Diederik Paul, Corradi, Federico, Li, Chenghan, Bamford,
Simeon A., Longinotti, Luca, Voigt, Fabian F., Berry, Stewart, Taverni,
Gemma, Helmchen, Fritjof, and Delbruck, Tobi. 2018. A Sensitive Dynamic
and Active Pixel Vision Sensor for Color or Neural Imaging Applications.
IEEE Trans. Biomed. Circuits Syst., 12(1), 123–136.

[777] Montemerlo, M., Thrun, S., Koller, D., and Wegbreit, B. 2002. FastSLAM: A
Factored Solution to the Simultaneous Localization and Mapping Problem.
In: Proc. 19th AAAI National Conference on AI.

[778] Montemerlo, M., Becker, J., Bhat, S., Dahlkamp, H., Dolgov, D., Ettinger, S.,
Haehnel, D., Hilden, T., Hoffmann, G., Huhnke, B., Johnston, D., Klumpp,
S., Langer, D., Levandowski, A., Levinson, J., Marcil, J., Orenstein, D.,
Paefgen, J., Penny, I., Petrovskaya, A., Pflueger, M., Stanek, G., Stavens,
D., Vogt, A., and Thrun, S. 2008. Junior: The Stanford entry in the Urban
Challenge. J. of Field Robotics, 25(9), 569–597.

[779] Mopidevi, A.N., Harlow, K., and Heckman, C. 2024 (Oct.). RMap:
Millimeter-Wave Radar Mapping Through Volumetric Upsampling. In:
IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems (IROS).

[780] Moravec, Hans, and Elfes, Alberto. 1985. High resolution maps from wide
angle sonar. Pages 116–121 of: IEEE Intl. Conf. on Robotics and Automation
(ICRA).

[781] Moreno-Noguer, Francesc, and Porta, Josep M. 2011. Probabilistic simulta-
neous pose and non-rigid shape recovery. In: CVPR.

[782] Mosher, Ralph S. 1969. Exploring the potential of a quadruped. SAE Trans-
actions, 836–843.

[783] Mourikis, Anastasios I, and Roumeliotis, Stergios I. 2007. A multi-state
constraint Kalman filter for vision-aided inertial navigation. Pages 3565–
3572 of: IEEE Intl. Conf. on Robotics and Automation (ICRA). IEEE.

[784] Mueggler, Elias, Rebecq, Henri, Gallego, Guillermo, Delbruck, Tobi, and
Scaramuzza, Davide. 2017. The Event-Camera Dataset and Simulator:
Event-based Data for Pose Estimation, Visual Odometry, and SLAM. Intl.
J. of Robotics Research, 36(2), 142–149.

[785] Mueggler, Elias, Gallego, Guillermo, Rebecq, Henri, and Scaramuzza, Da-
vide. 2018. Continuous-Time Visual-Inertial Odometry for Event Cameras.
IEEE Trans. Robotics, 34(6), 1425–1440.

[786] Mühlfellner, Peter, Bürki, Mathias, Bosse, Michael, Derendarz, Wojciech,
Philippsen, Roland, and Furgale, Paul. 2016. Summary maps for lifelong
visual localization. J. of Field Robotics, 33(5), 561–590.

[787] Mullane, J., Vo, B-N., Adams, M., and Vo, B-T. 2011. A Random-Finite-Set
Approach to Bayesian SLAM. IEEE Trans. Robotics, 27(2), 268–282.

[788] Mullane, John, Adams, Martin D, and Wijesoma, Wijerupage Sardha. 2006.



596 References

Evidential versus Bayesian estimation for radar map building. Pages 1–8 of:
Intl. Conf. on Control, Automation, Robotics and Vision (ICARCV). IEEE.

[789] Mullane, John, Jose, Ebi, Adams, Martin D, and Wijesoma, Wijeru-
page Sardha. 2007. Including probabilistic target detection attributes into
map representations. J. on Robotics and Autonomous Systems (RAS), 55(1),
72–85.

[790] Müller, Thomas, Evans, Alex, Schied, Christoph, and Keller, Alexander.
2022. Instant neural graphics primitives with a multiresolution hash encod-
ing. ACM transactions on graphics (TOG), 41(4), 1–15.

[791] Mur-Artal, Raul, and Tardós, Juan D. 2017a. Orb-slam2: An open-source
slam system for monocular, stereo, and rgb-d cameras. IEEE Trans.
Robotics, 33(5), 1255–1262.

[792] Mur-Artal, Raúl, and Tardós, Juan D. 2017b. Visual-inertial monocular
SLAM with map reuse. IEEE Robotics and Automation Letters, 2(2), 796–
803.

[793] Mur-Artal, Raul, Montiel, Jose Maria Martinez, and Tardos, Juan D. 2015.
ORB-SLAM: A versatile and accurate monocular SLAM system. IEEE
Trans. Robotics, 31(5), 1147–1163.

[794] Murai, R., Ortiz, J., Saeedi, S., Kelly, P. H. J., and Davison, A. J. 2023. A
robot web for distributed many-device localisation. IEEE Trans. Robotics.

[795] Murai, Riku, Dexheimer, Eric, and Davison, Andrew J. 2025. MASt3R-
SLAM: Real-Time Dense SLAM with 3D Reconstruction Priors. In: IEEE
Conf. on Computer Vision and Pattern Recognition (CVPR).

[796] Murray, R.M., Li, Z., and Sastry, S. 1994. A Mathematical Introduction to
Robotic Manipulation. CRC Press.

[797] Museth, Ken. 2021. NanoVDB: A GPU-Friendly and Portable VDB Data
Structure For Real-Time Rendering And Simulation. In: ACM SIGGRAPH
2021 Talks. SIGGRAPH ’21. ACM.

[798] Museth, Ken, Lait, Jeff, Johanson, John, Budsberg, Jeff, Henderson, Ron,
Alden, Mihai, Cucka, Peter, Hill, David, and Pearce, Andrew. 2013. Open-
VDB: an open-source data structure and toolkit for high-resolution volumes.
In: ACM SIGGRAPH 2013 Courses. SIGGRAPH ’13. ACM.

[799] Nabarro, S., van der Wilk, M., and Davison, A. J. 2024. Learning in Deep
Factor Graphs with Gaussian Belief Propagation. In: Intl. Conf. on Machine
Learning (ICML).

[800] Nam, Hyunwoo, Xu, Qing, and Hong, Dennis. 2020. A Reliable Low-Cost
Foot Contact Sensor for Legged Robots. Pages 219–224 of: Intl. Conf. on
Ubiquitous Robots (UR).

[801] Nardi, L., Bodin, B., Zia, M. Z., Mawer, J., Nisbet, A., Kelly, P. H.J., Davi-
son, A. J., Lujan, M., OBoyle, M. F.P., Riley, G., Topham, N., and Furber, S.
2015. Introducing SLAMBench, a performance and accuracy benchmarking
methodology for SLAM. In: IEEE Intl. Conf. on Robotics and Automation
(ICRA).

[802] Nardi, L., Bodin, B., Saeedi, S., Vespa, E., Davison, A. J., and Kelly, P.
H. J. 2017. Algorithmic Performance-Accuracy Trade-off in 3D Vision Ap-
plications Using HyperMapper. arXiv preprint arXiv:1702.00505.

[803] Neira, J., and Tardos, J.D. 2001. Data association in stochastic mapping
using the joint compatibility test. IEEE Trans. Robotics, 17(6), 890–897.



References 597

[804] Nematollahi, Iman, DeMoss, Branton, Chandra, Akshay L, Hawes, Nick,
Burgard, Wolfram, and Posner, Ingmar. 2025. LUMOS: Language-
Conditioned Imitation Learning with World Models. In: IEEE Intl. Conf.
on Robotics and Automation (ICRA).

[805] Newcombe, R. A. 2012. Dense Visual SLAM. Ph.D. thesis, Imperial College
London.

[806] Newcombe, Richard A, Lovegrove, Steven J, and Davison, Andrew J. 2011a.
DTAM: Dense tracking and mapping in real-time. Pages 2320–2327 of: Intl.
Conf. on Computer Vision (ICCV). IEEE.

[807] Newcombe, Richard A, Izadi, Shahram, Hilliges, Otmar, Molyneaux, David,
Kim, David, Davison, Andrew J, Kohi, Pushmeet, Shotton, Jamie, Hodges,
Steve, and Fitzgibbon, Andrew. 2011b. Kinectfusion: Real-time dense sur-
face mapping and tracking. Pages 127–136 of: IEEE and ACM Intl. Sym.
on Mixed and Augmented Reality (ISMAR). Ieee.

[808] Newcombe, Richard A, Fox, Dieter, and Seitz, Steven M. 2015. Dynamicfu-
sion: Reconstruction and tracking of non-rigid scenes in real-time. Pages 343–
352 of: IEEE Conf. on Computer Vision and Pattern Recognition (CVPR).

[809] Ng, Yin Zhi, Choi, Benjamin, Tan, Robby, and Heng, Lionel. 2021.
Continuous-time Radar-inertial Odometry for Automotive Radars. Pages
323–330 of: IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems
(IROS).

[810] Ngo, Dat Tien, Östlund, Jonas, and Fua, Pascal. 2016. Template-based
monocular 3D shape recovery using Laplacian meshes. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 38(1), 172–187.

[811] Nicholson, Lachlan, Milford, Michael, and Sünderhauf, Niko. 2019. Quadric-
SLAM: Dual Quadrics From Object Detections as Landmarks in Object-
Oriented SLAM. IEEE Robotics and Automation Letters, 4(1), 1–8.

[812] Nie, Jiawang. 2014. Optimality conditions and finite convergence of
Lasserre’s hierarchy. Mathematical programming, 146(1-2), 97–121.

[813] Niemeyer, Michael, Mescheder, Lars, Oechsle, Michael, and Geiger, Andreas.
2020. Differentiable Volumetric Rendering: Learning Implicit 3D Represen-
tations without 3D Supervision. Pages 3501 – 3512 of: 2020 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR 2020).
Piscataway, NJ: IEEE.

[814] Nießner, Matthias, Zollhöfer, Michael, Izadi, Shahram, and Stamminger,
Marc. 2013. Real-time 3D reconstruction at scale using voxel hashing. ACM
Transactions on Graphics (ToG), 32(6), 1–11.

[815] Nieto, J., Guivant, H., Nebot, E., and Thrun, S. 2003. Real Time Data
Association for FastSLAM. In: IEEE Intl. Conf. on Robotics and Automation
(ICRA).

[816] Nistér, D. 2003. An Efficient Solution to the Five-Point Relative Pose Prob-
lem. In: IEEE Conf. on Computer Vision and Pattern Recognition (CVPR).

[817] Nitzberg, Ramon. 1972. Constant-false-alarm-rate signal processors for sev-
eral types of interference. IEEE Trans. Aerosp. Electron. Syst., 27–34.

[818] Niu, Junkai, Zhong, Sheng, Lu, Xiuyuan, Shen, Shaojie, Gallego, Guillermo,
and Zhou, Yi. 2025. ESVO2: Direct Visual-Inertial Odometry with Stereo
Event Cameras. IEEE Trans. Robotics.



598 References

[819] Niu, Xiaoji, Wu, Yibin, and Kuang, Jian. 2021. Wheel-INS: A Wheel-
Mounted MEMS IMU-Based Dead Reckoning System. IEEE Transactions
on Vehicular Technology, 70(10), 9814–9825.

[820] Nocedal, Jorge, and Wright, Stephen J. 1999. Numerical Optimization.
Springer Series in Operations Research. Springer-Verlag.

[821] Nuss, Dominik, Reuter, Stephan, Thom, Markus, Yuan, Ting, Krehl, Gun-
ther, Maile, Michael, Gern, Axel, and Dietmayer, Klaus. 2018. A random
finite set approach for dynamic occupancy grid maps with real-time appli-
cation. Intl. J. of Robotics Research, 37(8), 841–866.

[822] O’Callaghan, Simon T, and Ramos, Fabio T. 2012. Gaussian process occu-
pancy maps. Intl. J. of Robotics Research, 31(1), 42–62.

[823] Ochs, Peter, Dosovitskiy, Alexey, Brox, Thomas, and Pock, Thomas. 2015.
On iteratively reweighted algorithms for nonsmooth nonconvex optimization
in computer vision. SIAM Journal on Imaging Sciences, 8(1), 331–372.

[824] Octo Model Team, Ghosh, Dibya, Walke, Homer, Pertsch, Karl, Black,
Kevin, Mees, Oier, Dasari, Sudeep, Hejna, Joey, Xu, Charles, Luo, Jian-
lan, Kreiman, Tobias, Tan, You Liang, Chen, Lawrence Yunliang, Sanketi,
Pannag, Vuong, Quan, Xiao, Ted, Sadigh, Dorsa, Finn, Chelsea, and Levine,
Sergey. 2024. Octo: An Open-Source Generalist Robot Policy. In: Proceed-
ings of Robotics: Science and Systems.

[825] Oechsle, Michael, Peng, Songyou, and Geiger, Andreas. 2021. Unisurf: Unify-
ing neural implicit surfaces and radiance fields for multi-view reconstruction.
Pages 5589–5599 of: Proceedings of the IEEE/CVF International Conference
on Computer Vision.

[826] Ogayar-Anguita, C. J., Lopez-Ruiz, A., Rueda-Ruiz, A. J., and Segura-
Sanchez, Rafael J. 2023. Nested spatial data structures for optimal indexing
of LiDAR data. ISPRS J. of Photogrammetry and Remote Sensing (JPRS),
195, 287–297.

[827] Ok, Kyel, Liu, Katherine, Frey, Kris, How, Jonathan P., and Roy, Nicholas.
2019. Robust Object-based SLAM for High-speed Autonomous Navigation.
Pages 669–675 of: IEEE Intl. Conf. on Robotics and Automation (ICRA).

[828] Oleynikova, Helen, Taylor, Zachary, Fehr, Marius, Siegwart, Roland, and
Nieto, Juan. 2017. Voxblox: Incremental 3d euclidean signed distance fields
for on-board mav planning. Pages 1366–1373 of: IEEE/RSJ Intl. Conf. on
Intelligent Robots and Systems (IROS). IEEE.

[829] Oliphant, Travis E. 2006. A guide to NumPy. Vol. 1. Trelgol Publishing
USA.

[830] Olson, E., Leonard, J., and Teller, S. 2006 (May). Fast Iterative Alignment
of Pose Graphs with Poor Initial Estimates. Pages 2262–2269 of: IEEE Intl.
Conf. on Robotics and Automation (ICRA).

[831] Olson, Edwin. 2009. Real-Time Correlative Scan Matching. Pages 4387–4393
of: IEEE Intl. Conf. on Robotics and Automation (ICRA).

[832] Olson, Edwin. 2015. M3RSM: Many-to-many multi-resolution scan match-
ing. Pages 5815–5821 of: IEEE Intl. Conf. on Robotics and Automation
(ICRA). IEEE.

[833] Olson, Edwin, and Agarwal, Pratik. 2012 (July). Inference on networks
of mixtures for robust robot mapping. In: Robotics: Science and Systems
(RSS).



References 599

[834] Olson, Edwin, Strom, Johannes, Morton, Ryan, Richardson, Andrew, Ran-
ganathan, Pradeep, Goeddel, Robert, Bulic, Mihai, Crossman, Jacob, and
Marinier, Bob. 2012. Progress toward multi-robot reconnaissance and the
MAGIC 2010 competition. Journal of Field Robotics, 29(5), 762–792.

[835] Ong, Dexter, Tao, Yuezhan, Murali, Varun, Spasojevic, Igor, Kumar, Vi-
jay, and Chaudhari, Pratik. 2025. ATLAS Navigator: Active Task-driven
LAnguage-embedded Gaussian Splatting. In: arxiv preprint: 2502.20386.

[836] Open, NN. 2016. An open source neural networks c++ library. URL:
http://opennn.cimne.com (2016).

[837] Oquab, Maxime, Darcet, Timothée, Moutakanni, Théo, Vo, Huy V.,
Szafraniec, Marc, Khalidov, Vasil, Fernandez, Pierre, HAZIZA, Daniel,
Massa, Francisco, El-Nouby, Alaaeldin, Assran, Mido, Ballas, Nicolas,
Galuba, Wojciech, Howes, Russell, Huang, Po-Yao, Li, Shang-Wen, Misra,
Ishan, Rabbat, Michael, Sharma, Vasu, Synnaeve, Gabriel, Xu, Hu, Jegou,
Herve, Mairal, Julien, Labatut, Patrick, Joulin, Armand, and Bojanowski,
Piotr. 2024. DINOv2: Learning Robust Visual Features without Supervision.
Transactions on Machine Learning Research. Featured Certification.

[838] Ortiz, J., Pupilli, M., Leutenegger, S., and Davison, A. J. 2020. Bundle
Adjustment on a Graph Processor. In: IEEE Conf. on Computer Vision
and Pattern Recognition (CVPR).

[839] Ortiz, J., Evans, T., and Davison, A. J. 2021. A visual introduction to
Gaussian Belief Propagation. arXiv preprint arXiv:2107.02308.

[840] Ortiz, Joseph, Clegg, Alexander, Dong, Jing, Sucar, Edgar, Novotny, David,
Zollhoefer, Michael, and Mukadam, Mustafa. 2022. iSDF: Real-time neural
signed distance fields for robot perception. In: Robotics: Science and Systems
(RSS).

[841] Ozden, Kemal E., Schindler, Konrad, and Van Gool, Luc. 2010. Multibody
Structure-from-Motion in Practice. IEEE Trans. Pattern Anal. Machine
Intell., 32(6), 1134–1141.

[842] Paek, Dong-Hee, KONG, SEUNG-HYUN, and Wijaya, Kevin Tirta. 2022.
K-Radar: 4D Radar Object Detection for Autonomous Driving in Various
Weather Conditions. Pages 3819–3829 of: Advances in Neural Information
Processing Systems (NIPS), vol. 35.

[843] Paladini, Marco, Del Bue, Alessio, Stosic, Marko, Dodig, Marija, Xavier,
Joao, and Agapito, Lourdes. 2009. Factorization for non-rigid and articulated
structure using metric projections. In: CVPR.

[844] Palieri, Matteo, Morrell, Benjamin, Thakur, Abhishek, Ebadi, Kamak,
Nash, Jeremy, Chatterjee, Arghya, Kanellakis, Christoforos, Carlone, Luca,
Guaragnella, Cataldo, and Agha-mohammadi, Ali-akbar. 2021. LOCUS: A
Multi-Sensor Lidar-Centric Solution for High-Precision Odometry and 3D
Mapping in Real-Time. IEEE Robotics and Automation Letters, 6(1), 421–
428.

[845] Pan, Yue, Xiao, Pengchuan, He, Yujie, Shao, Zhenlei, and Li, Zesong. 2021.
MULLS: Versatile LiDAR SLAM via multi-metric linear least square. Pages
11633–11640 of: IEEE Intl. Conf. on Robotics and Automation (ICRA).
IEEE.

[846] Papalia, A., Fishberg, A., O’Neill, B., How, J., Rosen, D., and Leonard, J.
2024a. Certifiably correct range-aided SLAM. IEEE Trans. Robotics.



600 References

[847] Papalia, Alan, Tian, Yulun, Rosen, David M., How, Jonathan P., and
Leonard, John J. 2024b. An Overview of the Burer-Monteiro Method for
Certifiable Robot Perception. ArXiv, abs/2410.00117.

[848] Parameshwara, Chethan M, Hari, Gokul, Fermüller, Cornelia, Sanket,
Nitin J, and Aloimonos, Yiannis. 2022. DiffPoseNet: Direct differentiable
camera pose estimation. Pages 6845–6854 of: IEEE Conf. on Computer
Vision and Pattern Recognition (CVPR).

[849] Parashar, Shaifali, Pizarro, Daniel, and Bartoli, Adrien. 2017. Isometric
Non-Rigid Shape-from-Motion with Riemannian Geometry Solved in Linear
Time. IEEE Transactions on Pattern Analysis and Machine Intelligence,
40(10), 2442–2454.

[850] Parashar, Shaifali, Pizarro, Daniel, and Bartoli, Adrien. 2021. Robust iso-
metric non-rigid structure-from-motion. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 44(10), 6409–6423.

[851] Paredes-Vallés, Federico, Hagenaars, Jesse, Dupeyroux, Julien, Stroobants,
Stein, Xu, Yingfu, and de Croon, Guido C. H. E. 2024. Fully neuromorphic
vision and control for autonomous drone flight. Science Robotics, 9(90),
eadi0591.

[852] Park, C., Moghadam, P., Kim, S., Elfes, A., Fookes, C., and Sridharan, S.
2018. Elastic LiDAR Fusion: Dense Map-Centric Continuous-Time SLAM.
In: IEEE Intl. Conf. on Robotics and Automation (ICRA).

[853] Park, Jeong Joon, Florence, Peter, Straub, Julian, Newcombe, Richard, and
Lovegrove, Steven. 2019. DeepSDF: Learning Continuous Signed Distance
Functions for Shape Representation. In: IEEE Conf. on Computer Vision
and Pattern Recognition (CVPR).

[854] Park, Yeong Sang, Shin, Young-Sik, and Kim, Ayoung. 2020. PhaRaO:
Direct Radar Odometry using Phase Correlation. Pages 2617–2623 of: 2020
IEEE International Conference on Robotics and Automation (ICRA).

[855] Paskin, M.A. 2003. Thin Junction Tree Filters for Simultaneous Localization
and Mapping. In: Intl. Joint Conf. on AI (IJCAI).

[856] Paszke, Adam, Gross, Sam, Massa, Francisco, Lerer, Adam, Bradbury,
James, Chanan, Gregory, Killeen, Trevor, Lin, Zeming, Gimelshein, Natalia,
Antiga, Luca, et al. 2019. Pytorch: An imperative style, high-performance
deep learning library. Advances in neural information processing systems,
32.

[857] Patel, Maithili, and Chernova, Sonia. 2022. Proactive robot assistance via
spatio-temporal object modeling. Conf. on Robot Learning (CoRL).

[858] Paton, Michael, MacTavish, Kirk, Warren, Michael, and Barfoot, Timo-
thy D. 2016. Bridging the appearance gap: Multi-experience localization
for long-term visual teach and repeat. Pages 1918–1925 of: IEEE/RSJ Intl.
Conf. on Intelligent Robots and Systems (IROS). IEEE.

[859] Pattabiraman, Bharath, Patwary, Md. Mostofa Ali, Gebremedhin, Asse-
faw H., keng Liao, Wei, and Choudhary, Alok. 2015. Fast Algorithms for the
Maximum Clique Problem on Massive Graphs with Applications to Over-
lapping Community Detection. Internet Mathematics, 11(4-5), 421–448.

[860] Pavlakos, G., Zhou, X., Chan, A., Derpanis, K., and Daniilidis, K. 2017a. 6-
DoF Object Pose from Semantic Keypoints. In: IEEE Intl. Conf. on Robotics
and Automation (ICRA).



References 601

[861] Pavlakos, Georgios, Zhou, Xiaowei, Chan, Aaron, Derpanis, Konstantinos G,
and Daniilidis, Kostas. 2017b. 6-DoF Object Pose from Semantic Keypoints.
In: IEEE Intl. Conf. on Robotics and Automation (ICRA).

[862] Pavlakos, Georgios, Zhu, Luyang, Zhou, Xiaowei, and Daniilidis, Kostas.
2018. Learning to Estimate 3D Human Pose and Shape from a Single
Color Image. In: IEEE Conf. on Computer Vision and Pattern Recogni-
tion (CVPR).

[863] Pearl, J. 2017. Theoretical Impediments to Machine Learning, With Seven
Sparks from the Causal Revolution. Tech. rept. University of California, Los
Angeles. Technical Report R-275.

[864] Pearlmutter, Barak A, and Siskind, Jeffrey Mark. 2008. Reverse-mode AD
in a functional framework: Lambda the ultimate backpropagator. ACM
Transactions on Programming Languages and Systems (TOPLAS), 30(2),
1–36.

[865] Peng, Guohao, Li, Heshan, Zhao, Yangyang, Zhang, Jun, Wu, Zhenyu,
Zheng, Pengyu, and Wang, Danwei. 2024a (6). TransLoc4D: Transformer-
based 4D Radar Place Recognition. Pages 17595–17605 of: IEEE Conf. on
Computer Vision and Pattern Recognition (CVPR).

[866] Peng, Liangzu, Fazlyab, Mahyar, and Vidal, René. 2022. Towards Under-
standing The Semidefinite Relaxations of Truncated Least-Squares in Robust
Rotation Search.

[867] Peng, Liangzu, Kümmerle, Christian, and Vidal, René. 2023a. On the Con-
vergence of IRLS and Its Variants in Outlier-Robust Estimation. Pages
17808–17818 of: IEEE Conf. on Computer Vision and Pattern Recognition
(CVPR).

[868] Peng, Shihan, Zhou, Hanyu, Dong, Hao, Shi, Zhiwei, Liu, Haoyue, Duan,
Yuxing, Chang, Yi, and Yan, Luxin. 2024b. CoSEC: A Coaxial Stereo Event
Camera Dataset for Autonomous Driving. arXiv preprint.

[869] Peng, Songyou, Niemeyer, Michael, Mescheder, Lars, Pollefeys, Marc, and
Geiger, Andreas. 2020. Convolutional occupancy networks. In: European
Conf. on Computer Vision (ECCV).

[870] Peng, Songyou, Genova, Kyle, Jiang, Chiyu, Tagliasacchi, Andrea, Pollefeys,
Marc, Funkhouser, Thomas, et al. 2023b. Openscene: 3d scene understanding
with open vocabularies. Pages 815–824 of: Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition.

[871] Peng, Xiongfeng, Liu, Zhihua, Li, Weiming, Tan, Ping, Cho, SoonYong, and
Wang, Qiang. 2023c. DVI-SLAM: A dual visual inertial SLAM network.
arXiv preprint arXiv:2309.13814.

[872] Peng, Yuxiang, Chen, Chuchu, and Huang, Guoquan. 2024c (May). Quan-
tized Visual-Inertial Odometry. In: Proc. International Conference on
Robotics and Automation.

[873] Peng, Yuxiang, Chen, Chuchu, and Huang, Guoquan. 2024d (May). Ultra-
fast Square-Root Filter-based VINS. In: Proc. InternationalConference on
Robotics and Automation.

[874] Peng, Yuxiang, Chen, Chuchu, and Huang, Guoquan. 2025 (May). QVIO2:
Quantized MAP-based Visual-Inertial Odometry. In: Proc. International-
Conference on Robotics and Automation.



602 References

[875] Peng, Zhexi, Shao, Tianjia, Yong, Liu, Zhou, Jingke, Yang, Yin, Wang, Jing-
dong, and Zhou, Kun. 2024e. RTG-SLAM: Real-time 3D Reconstruction at
Scale using Gaussian Splatting. ACM SIGGRAPH Conference Proceedings.

[876] Perera, Samunda, and Barnes, Nick. 2012. Maximal cliques based rigid body
motion segmentation with a RGB-D camera. Pages 120–133 of: Asian Conf.
on Computer Vision. Springer.

[877] Pfister, H., Zwickler, M., v. Baar, J., and Gross, M. 2000. Surfels: surface
elements as rendering primitives. In: Intl. Conf. on Computer Graphics and
Interactive Techniques (SIGGRAPH).

[878] Pfreundschuh, Patrick, Hendrikx, Hubertus FC, Reijgwart, Victor, Dubé,
Renaud, Siegwart, Roland, and Cramariuc, Andrei. 2021. Dynamic object
aware lidar slam based on automatic generation of training data. Pages
11641–11647 of: 2021 IEEE International Conference on Robotics and Au-
tomation (ICRA). IEEE.

[879] P.H.S. Torr, A. Zisserman. 2000. MLESAC: A New Robust Estimator with
Application to Estimating Image Geometry. Tech. rept. MSR-TR-99-60.
MSR.

[880] Pineda, Luis, Fan, Taosha, Monge, Maurizio, Venkataraman, Shobha, Sodhi,
Paloma, Chen, Ricky TQ, Ortiz, Joseph, DeTone, Daniel, Wang, Austin,
Anderson, Stuart, et al. 2022. Theseus: A library for differentiable nonlinear
optimization. Conf. Neural Information Processing Systems (NIPS), 35,
3801–3818.

[881] Piperakis, Stylianos, and Trahanias, Panos E. 2016. Non-linear ZMP based
state estimation for humanoid robot locomotion. Pages 202–209 of: IEEE
Intl. Conf. on Humanoid Robots.

[882] Pizzoli, Matia, Forster, Christian, and Scaramuzza, Davide. 2014. RE-
MODE: Probabilistic, monocular dense reconstruction in real time. Pages
2609–2616 of: 2014 IEEE international conference on robotics and automa-
tion (ICRA). IEEE.

[883] Placed, J.A., Strader, J., Carrillo, H., Atanasov, N., Indelman, V., Carlone,
L., and Castellanos, J.A. 2023. A Survey on Active Simultaneous Local-
ization and Mapping: State of the Art and New Frontiers. IEEE Trans.
Robotics, 39(3), 1686–1705. arXiv preprint: 2207.00254, .

[884] Placed, Julio A, and Castellanos, José A. 2022. A general relationship be-
tween optimality criteria and connectivity indices for active graph-SLAM.
IEEE Robotics and Automation Letters, 8(2), 816–823.

[885] Plastria, Frank. 2011. The Weiszfeld Algorithm: Proof, Amendments, and
Extensions. Springer US. Pages 357–389.

[886] Pock, T. 2008. Fast Total Variation for Computer Vision. Ph.D. thesis,
Graz University of Technology.

[887] Pock, T., Grabner, M., and Bischof, H. 2007. Real-time Computation of
Variational Methods on Graphics Hardware. In: Proceedings of the Computer
Vision Winter Workshop.

[888] Pomerleau, Dean A. 1989. ALVINN: an autonomous land vehicle in a neural
network. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc. Page
305–313.

[889] Pomerleau, François, Krüsi, Philipp, Colas, Francis, Furgale, Paul, and Sieg-
wart, Roland. 2014. Long-term 3D map maintenance in dynamic environ-



References 603

ments. Pages 3712–3719 of: 2014 IEEE International Conference on Robotics
and Automation (ICRA). IEEE.

[890] Posch, Christoph, Matolin, Daniel, and Wohlgenannt, Rainer. 2011. A
QVGA 143 dB Dynamic Range Frame-Free PWM Image Sensor With Loss-
less Pixel-Level Video Compression and Time-Domain CDS. IEEE J. Solid-
State Circuits, 46(1), 259–275.

[891] Posch, Christoph, Serrano-Gotarredona, Teresa, Linares-Barranco, Bernabe,
and Delbruck, Tobi. 2014. Retinomorphic Event-Based Vision Sensors:
Bioinspired Cameras With Spiking Output. Proc. IEEE, 102(10), 1470–
1484.

[892] Powell, M.J.D. 1970. A New Algorithm for Unconstrained Optimization.
Pages 31–65 of: Rosen, J., Mangasarian, O., and Ritter, K. (eds), Nonlinear
Programming. Academic Press.

[893] Premachandra, H. A. G. C., Liu, Ran, Yuen, Chau, and Tan, U-Xuan. 2023.
UWB Radar SLAM: An Anchorless Approach in Vision Denied Indoor En-
vironments. IEEE Robotics and Automation Letters, 8(9), 5299–5306.

[894] Proudman, Alexander, Ramezani, Milad, Digumarti, Sundara Tejaswi, Che-
brolu, Nived, and Fallon, Maurice. 2022. Towards real-time forest inventory
using handheld LiDAR. Robotics and Autonomous Systems, 157, 104240.

[895] Pütz, Sebastian, Wiemann, Thomas, Kleine Piening, Malte, and Hertzberg,
Joachim. 2021. Continuous Shortest Path Vector Field Navigation on 3D
Triangular Meshes for Mobile Robots. In: IEEE Intl. Conf. on Robotics and
Automation (ICRA).

[896] Qadri, M., Manchester, Z., and Kaess, M. 2023. Learning Covariances for
Estimation with Constrained Bilevel Optimization.

[897] Qi, Charles R, Su, Hao, Mo, Kaichun, and Guibas, Leonidas J. 2017. Point-
net: Deep learning on point sets for 3d classification and segmentation. Pages
652–660 of: Proceedings of the IEEE conference on computer vision and pat-
tern recognition.

[898] Qian, Jingxing, Chatrath, Veronica, Yang, Jun, Servos, James, Schoellig,
Angela P, and Waslander, Steven L. 2022. Pocd: Probabilistic object-level
change detection and volumetric mapping in semi-static scenes. Robotics:
Science and Systems (RSS).

[899] Qian, Jingxing, Chatrath, Veronica, Servos, James, Mavrinac, Aaron, Bur-
gard, Wolfram, Waslander, Steven L, and Schoellig, Angela P. 2023. Pov-
slam: Probabilistic object-aware variational slam in semi-static environ-
ments. Robotics: Science and Systems (RSS).

[900] Qian, Long, Wu, Jie Ying, DiMaio, Simon P, Navab, Nassir, and Kazanzides,
Peter. 2019. A review of augmented reality in robotic-assisted surgery. IEEE
Transactions on Medical Robotics and Bionics, 2(1), 1–16.

[901] Qin, Chao, Ye, Haoyang, Pranata, Christian E, Han, Jun, Zhang, Shuyang,
and Liu, Ming. 2020. LINS: A Lidar-Inertial State Estimator for Robust
and Efficient Navigation. In: IEEE Intl. Conf. on Robotics and Automation
(ICRA).

[902] Qin, Minghan, Li, Wanhua, Zhou, Jiawei, Wang, Haoqian, and Pfister,
Hanspeter. 2024. Langsplat: 3d language gaussian splatting. Pages
20051–20060 of: IEEE Conf. on Computer Vision and Pattern Recognition
(CVPR).



604 References

[903] Qin, Tong, Li, Peiliang, and Shen, Shaojie. 2018. Vins-mono: A robust and
versatile monocular visual-inertial state estimator. IEEE Trans. Robotics,
34(4), 1004–1020.

[904] Qiu, Yuheng, Wang, Chen, Wang, Wenshan, Henein, Mina, and Scherer,
Sebastian. 2022. AirDOS: Dynamic SLAM benefits from articulated objects.
Pages 8047–8053 of: IEEE Intl. Conf. on Robotics and Automation (ICRA).
IEEE.

[905] Qiu, Yuheng, Wang, Chen, Xu, Can, Chen, Yutian, Zhou, Xunfei, Xia, You-
jie, and Scherer, Sebastian. 2024 (May). AirIMU: Learning Uncertainty
Propagation for Inertial Odometry.

[906] Radford, Alec, Kim, Jong Wook, Hallacy, Chris, Ramesh, Aditya, Goh,
Gabriel, Agarwal, Sandhini, Sastry, Girish, Askell, Amanda, Mishkin,
Pamela, Clark, Jack, et al. 2021. Learning transferable visual models from
natural language supervision. Pages 8748–8763 of: International conference
on machine learning. PMLR.

[907] Radke, Richard J, Andra, Srinivas, Al-Kofahi, Omar, and Roysam, Badri-
nath. 2005. Image change detection algorithms: a systematic survey. IEEE
transactions on image processing, 14(3), 294–307.

[908] Rahimi, Ali, and Recht, Benjamin. 2007. Random features for large-scale
kernel machines. In: Advances in Neural Information Processing Systems
(NIPS), vol. 20.

[909] Raibert, Marc H. 1986. Legged robots that balance. MIT press.
[910] Ramezani, Milad, Khosoussi, Kasra, Catt, Gavin, Moghadam, Peyman,

Williams, Jason, Borges, Paulo, Pauling, Fred, and Kottege, Navinda. 2022.
Wildcat: Online continuous-time 3d lidar-inertial slam. arXiv preprint
arXiv:2205.12595.

[911] Ramos, Fabio, and Ott, Lionel. 2016. Hilbert maps: Scalable continuous
occupancy mapping with stochastic gradient descent. Intl. J. of Robotics
Research, 35(14), 1717–1730.

[912] Rana, Krishan, Haviland, Jesse, Garg, Sourav, Abou-Chakra, Jad, Reid, Ian,
and Suenderhauf, Niko. 2023. SayPlan: Grounding Large Language Models
using 3D Scene Graphs for Scalable Task Planning. Pages 23–72 of: Conf. on
Robot Learning (CoRL).

[913] Ranganathan, A., Kaess, M., and Dellaert, F. 2007. Loopy SAM. In: Intl.
Joint Conf. on AI (IJCAI).

[914] Ranjan, Anurag, and Black, Michael J. 2017. Optical flow estimation using
a spatial pyramid network. Pages 4161–4170 of: IEEE Conf. on Computer
Vision and Pattern Recognition (CVPR).

[915] Rapp, Matthias, Dietmayer, Klaus, Hahn, Markus, Schuster, Frank, Lom-
bacher, Jakob, and Dickmann, Jürgen. 2016. FSCD and BASD: Robust
landmark detection and description on radar-based grids. Pages 1–4 of:
2016 IEEE MTT-S International Conference on Microwaves for Intelligent
Mobility (ICMIM).

[916] Rasmussen, Carl Edward, and Williams, Christopher KI. 2006. Gaussian
Processes for Machine Learning. Cambridge, Mass.: MIT Press.

[917] Ratliff, Nathan D., Silver, David, and Bagnell, J. Andrew. 2009. Learning to
search: Functional gradient techniques for imitation learning. Autonomous
Robots, 27, 25–53.



References 605

[918] Ravi, Nikhila, Gabeur, Valentin, Hu, Yuan-Ting, Hu, Ronghang, Ryali,
Chaitanya, Ma, Tengyu, Khedr, Haitham, Rädle, Roman, Rolland, Chloe,
Gustafson, Laura, et al. 2024. Sam 2: Segment anything in images and
videos. arXiv preprint arXiv:2408.00714.

[919] Ravichandran, Z., Peng, L., Hughes, N., Griffith, J.D., and Carlone, L. 2022.
Hierarchical Representations and Explicit Memory: Learning Effective Navi-
gation Policies on 3D Scene Graphs using Graph Neural Networks. In: IEEE
Intl. Conf. on Robotics and Automation (ICRA). .

[920] Ray, Aaron, Bradley, Christopher, Carlone, Luca, and Roy, Nicholas. 2024.
Task and Motion Planning in Hierarchical 3D Scene Graphs. In: Intl. Symp.
of Robotics Research (ISRR).

[921] Rebecq, Henri, Horstschäfer, Timo, Gallego, Guillermo, and Scaramuzza,
Davide. 2017a. EVO: A Geometric Approach to Event-based 6-DOF Par-
allel Tracking and Mapping in Real-Time. IEEE Robotics and Automation
Letters, 2(2), 593–600.

[922] Rebecq, Henri, Horstschaefer, Timo, and Scaramuzza, Davide. 2017b. Real-
time Visual-Inertial Odometry for Event Cameras using Keyframe-based
Nonlinear Optimization. In: British Machine Vision Conf. (BMVC).

[923] Rebecq, Henri, Gallego, Guillermo, Mueggler, Elias, and Scaramuzza, Da-
vide. 2018a. EMVS: Event-based Multi-View Stereo—3D Reconstruction
with an Event Camera in Real-Time. Intl. J. of Computer Vision, 126(12),
1394–1414.

[924] Rebecq, Henri, Gehrig, Daniel, and Scaramuzza, Davide. 2018b. ESIM: an
Open Event Camera Simulator. Pages 969–982 of: Conf. on Robot Learning
(CoRL). Proc. Machine Learning Research, vol. 87. PMLR.

[925] Rebecq, Henri, Ranftl, René, Koltun, Vladlen, and Scaramuzza, Davide.
2021. High Speed and High Dynamic Range Video with an Event Camera.
IEEE Trans. Pattern Anal. Machine Intell., 43(6), 1964–1980.

[926] Redmon, Joseph, Divvala, Santosh, Girshick, Ross, and Farhadi, Ali. 2016.
You Only Look Once: Unified, Real-Time Object Detection. In: IEEE Conf.
on Computer Vision and Pattern Recognition (CVPR).

[927] Reed, Scott, Zolna, Konrad, Parisotto, Emilio, Colmenarejo, Sergio Gómez,
Novikov, Alexander, Barth-maron, Gabriel, Giménez, Mai, Sulsky, Yury,
Kay, Jackie, Springenberg, Jost Tobias, Eccles, Tom, Bruce, Jake, Razavi,
Ali, Edwards, Ashley, Heess, Nicolas, Chen, Yutian, Hadsell, Raia, Vinyals,
Oriol, Bordbar, Mahyar, and de Freitas, Nando. 2022. A Generalist Agent.
Transactions on Machine Learning Research. Featured Certification, Out-
standing Certification.

[928] Reijgwart, V., Millane, A., Oleynikova, H., Siegwart, R., Cadena, C., and
Nieto, J. 2020. Voxgraph: Globally Consistent, Volumetric Mapping Using
Signed Distance Function Submaps. IEEE Robotics and Automation Letters.

[929] Reijgwart, Victor, Cadena, Cesar, Siegwart, Roland, and Ott, Lionel. 2023-
07. Efficient volumetric mapping of multi-scale environments using wavelet-
based compression. In: Robotics: Science and Systems (RSS).

[930] Reimers, Nils, and Gurevych, Iryna. 2019. Sentence-BERT: Sentence Em-
beddings using Siamese BERT-Networks. In: Proceedings of the 2019 Con-
ference on Empirical Methods in Natural Language Processing. Association
for Computational Linguistics.



606 References

[931] Reinbacher, Christian, Munda, Gottfried, and Pock, Thomas. 2017. Real-
Time Panoramic Tracking for Event Cameras. Pages 1–9 of: IEEE Int. Conf.
Comput. Photography (ICCP).

[932] Reinstein, Michal, and Hoffmann, Matej. 2011. Dead reckoning in a dynamic
quadruped robot: Inertial navigation system aided by a legged odometer.
Pages 617–624 of: IEEE Intl. Conf. on Robotics and Automation (ICRA).

[933] Ren, Yifei, Xu, Binbin, Choi, Christopher L, and Leutenegger, Stefan. 2022.
Visual-inertial multi-instance dynamic SLAM with object-level relocalisa-
tion. Pages 11055–11062 of: IEEE/RSJ Intl. Conf. on Intelligent Robots
and Systems (IROS). IEEE.

[934] Revels, Jarrett, Lubin, Miles, and Papamarkou, Theodore. 2016. Forward-
mode automatic differentiation in Julia. arXiv preprint arXiv:1607.07892.

[935] Riegler, Gernot, Osman Ulusoy, Ali, and Geiger, Andreas. 2017. Octnet:
Learning deep 3d representations at high resolutions. In: IEEE Conf. on
Computer Vision and Pattern Recognition (CVPR).

[936] Robbins, Herbert, and Monro, Sutton. 1951. A stochastic approximation
method. The annals of mathematical statistics, 400–407.

[937] Rodrigues, Rômulo T., Tsiogkas, Nikolaos, Pascoal, António, and Aguiar,
A. Pedro. 2021. Online Range-Based SLAM Using B-Spline Surfaces. IEEE
Robotics and Automation Letters, 6(2), 1958–1965.

[938] Rodŕıguez, Juan J. Gómez, Montiel, J.M.M., and Tardós, Juan D. 2024.
NR-SLAM: Nonrigid Monocular SLAM. IEEE Transactions on Robotics,
40, 4252–4264.

[939] Ronneberger, O., Fischer, P., and Brox, T. 2015a. U-Net: Convolutional
Networks for Biomedical Image Segmentation.

[940] Ronneberger, Olaf, Fischer, Philipp, and Brox, Thomas. 2015b. U-Net: Con-
volutional networks for biomedical image segmentation. Pages 234–241 of:
Intl. Conf. Medical Image Computing and Computer-Assisted Intervention.

[941] Roriz, Ricardo, Cabral, Jorge, and Gomes, Tiago. 2021. Automotive LiDAR
technology: A survey. IEEE Trans. on Intelligent Transportation Systems
(TITS), 23(7), 6282–6297.

[942] Rosen, David M, Mason, Julian, and Leonard, John J. 2016a. Towards
lifelong feature-based mapping in semi-static environments. Pages 1063–
1070 of: 2016 IEEE International conference on robotics and automation
(ICRA). IEEE.

[943] Rosen, David M., Carlone, Luca, Bandeira, Afonso S., and Leonard, John J.
2019. SE-Sync: A Certifiably Correct Algorithm for Synchronization over
the Special Euclidean Group. Intl. J. of Robotics Research, 38(2–3), 95–125.

[944] Rosen, David M., Doherty, Kevin J., Terán Espinoza, Antonio, and Leonard,
John J. 2021. Advances in Inference and Representation for Simultaneous
Localization and Mapping. Annual Review of Control, Robotics, and Au-
tonomous Systems, 4, 215–242.

[945] Rosen, D.M., Carlone, L., Bandeira, A.S., and Leonard, J.J. 2016b (Decem-
ber). SE-Sync: A Certifiably Correct Algorithm for Synchronization over the
Special Euclidean Group. In: Intl. Workshop on the Algorithmic Foundations
of Robotics (WAFR). extended arxiv preprint: 1611.00128, .

[946] Rosinol, Antoni, Gupta, Arjun, Abate, Marcus, Shi, Jingnan, and Carlone,
Luca. 2020a. 3D dynamic scene graphs: Actionable spatial perception with
places, objects, and humans. Robotics: Science and Systems (RSS).



References 607

[947] Rosinol, Antoni, Abate, Marcus, Chang, Yun, and Carlone, Luca. 2020b.
Kimera: an open-source library for real-time metric-semantic localization
and mapping. Pages 1689–1696 of: IEEE Intl. Conf. on Robotics and Au-
tomation (ICRA). IEEE.

[948] Rosinol, Antoni, Violette, Andrew, Abate, Marcus, Hughes, Nathan, Chang,
Yun, Shi, Jingnan, Gupta, Arjun, and Carlone, Luca. 2021. Kimera: From
SLAM to spatial perception with 3D dynamic scene graphs. Intl. J. of
Robotics Research, 40(12-14), 1510–1546.

[949] Rosinol Vidal, Antoni, Rebecq, Henri, Horstschaefer, Timo, and Scaramuzza,
Davide. 2018. Ultimate SLAM? Combining Events, Images, and IMU for
Robust Visual SLAM in HDR and High Speed Scenarios. IEEE Robotics
and Automation Letters, 3(2), 994–1001.

[950] Ross, Stephane, Gordon, Geoffrey, and Bagnell, Drew. 2011 (11–13 Apr).
A Reduction of Imitation Learning and Structured Prediction to No-Regret
Online Learning. Pages 627–635 of: Proceedings of the Fourteenth Interna-
tional Conference on Artificial Intelligence and Statistics. Proceedings of
Machine Learning Research, vol. 15.

[951] Rosten, E., and Drummond, T. 2006. Machine learning for high-speed corner
detection. In: European Conf. on Computer Vision (ECCV).

[952] Roston, G.P., and Krotkov, E.P. 1992. Dead Reckoning Navigation For
Walking Robots. Pages 607–612 of: IEEE/RSJ Intl. Conf. on Intelligent
Robots and Systems (IROS), vol. 1.

[953] Rotella, Nicholas, Bloesch, Michael, Righetti, Ludovic, and Schaal, Stefan.
2014. State estimation for a humanoid robot. Pages 952–958 of: IEEE/RSJ
Intl. Conf. on Intelligent Robots and Systems (IROS).

[954] Rotella, Nicholas, Schaal, Stefan, and Righetti, Ludovic. 2018. Unsupervised
Contact Learning for Humanoid Estimation and Control. Pages 411–417 of:
IEEE Intl. Conf. on Robotics and Automation (ICRA).

[955] Rouveure, R., Faure, P., and Monod, M. 2010. Radar-based SLAM without
odometric sensor. In: ROBOTICS2010 : International workshop of Mobile
Robotics for environment/agriculture.

[956] Rowell, Joseph, Zhang, Lintong, and Fallon, Maurice. 2024. LiSTA: Geo-
metric Object-Based Change Detection in Cluttered Environments. Pages
3632–3638 of: IEEE Intl. Conf. on Robotics and Automation (ICRA). IEEE.

[957] Rubino, Cosimo, Crocco, Marco, and Del Bue, Alessio. 2018. 3D Object
Localisation from Multi-View Image Detections. IEEE Trans. Pattern Anal.
Machine Intell., 40(6), 1281–1294.

[958] Rublee, Ethan, Rabaud, Vincent, Konolige, Kurt, and Bradski, Gary. 2011.
ORB: An efficient alternative to SIFT or SURF. Pages 2564–2571 of: Intl.
Conf. on Computer Vision (ICCV). Ieee.

[959] Rückert, Darius, Franke, Linus, and Stamminger, Marc. 2022. Adop: Ap-
proximate differentiable one-pixel point rendering. ACM Transactions on
Graphics (ToG), 41(4), 1–14.

[960] Rueckauer, Bodo, and Delbruck, Tobi. 2016. Evaluation of Event-Based
Algorithms for Optical Flow with Ground-Truth from Inertial Measurement
Sensor. Front. Neurosci., 10(176).

[961] Ruiz-Sarmiento, Jose-Raul, Galindo, Cipriano, and Gonzalez-Jimenez,
Javier. 2017. Building Multiversal Semantic Maps for Mobile Robot Op-
eration. Knowledge-Based Systems, 119, 257–272.



608 References

[962] Rünz, M., and Agapito, L. 2017. Co-Fusion: Real-time Segmentation, Track-
ing and Fusion of Multiple Objects. In: IEEE Intl. Conf. on Robotics and
Automation (ICRA).

[963] Runz, Martin, Buffier, Maud, and Agapito, Lourdes. 2018. Maskfusion: Real-
time recognition, tracking and reconstruction of multiple moving objects.
Pages 10–20 of: IEEE and ACM Intl. Sym. on Mixed and Augmented Reality
(ISMAR). IEEE.

[964] Rusinkiewicz, S., and Levoy, M. 2001. Efficient variants of the ICP algorithm.
In: Proc. of Intl. Conf. on 3-D Digital Imaging and Modeling.

[965] Rusu, Radu Bogdan, Blodow, Nico, and Beetz, Michael. 2009. Fast point
feature histograms (FPFH) for 3D registration. Pages 3212–3217 of: IEEE
Intl. Conf. on Robotics and Automation (ICRA). IEEE.

[966] Rusu, Radu Bogdan, Bradski, Gary, Thibaux, Romain, and Hsu, John.
2010. Fast 3d recognition and pose using the viewpoint feature histogram.
Pages 2155–2162 of: IEEE/RSJ Intl. Conf. on Intelligent Robots and Sys-
tems (IROS). IEEE.

[967] Rünz, Martin, and Agapito, Lourdes. 2017. Co-fusion: Real-time segmen-
tation, tracking and fusion of multiple objects. Pages 4471–4478 of: IEEE
Intl. Conf. on Robotics and Automation (ICRA).

[968] Saftescu, Stefan, Gadd, Matthew, De Martini, Daniele, Barnes, Dan, and
Newman, Paul. 2020. Kidnapped Radar: Topological Radar Localisation
using Rotationally-Invariant Metric Learning. Pages 4358–4364 of: IEEE
Intl. Conf. on Robotics and Automation (ICRA).

[969] Salas-Moreno, R. F., Newcombe, R. A., Strasdat, H., Kelly, P. H. J., and
Davison, A. J. 2013. SLAM++: Simultaneous Localisation and Mapping
at the Level of Objects. In: IEEE Conf. on Computer Vision and Pattern
Recognition (CVPR).

[970] Salti, Samuele, Tombari, Federico, and Di Stefano, Luigi. 2014. SHOT:
Unique signatures of histograms for surface and texture description. Comput.
Vis. Image Underst., 125, 251–264.

[971] Salzmann, Mathieu, and Fua, Pascal. 2011. Linear local models for monoc-
ular reconstruction of deformable surfaces. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 33(5), 931–944.

[972] San Segundo, Pablo, and Artieda, Jorge. 2015. A novel clique formulation
for the visual feature matching problem. Appl. Intelligence, 43(2), 325–342.

[973] Sandström, Erik, Li, Yue, Van Gool, Luc, and Oswald, Martin R. 2023.
Point-slam: Dense neural point cloud-based slam. In: Intl. Conf. on Com-
puter Vision (ICCV).

[974] Särkkä, Simo”. 2011. Linear Operators and Stochastic Partial Differential
Equations in Gaussian Process Regression. Pages 151–158 of: International
Conference on Artificial Neural Networks and Machine Learning.

[975] Sarlin, Paul-Edouard, Cadena, Cesar, Siegwart, Roland, and Dymczyk,
Marcin. 2019. From Coarse to Fine: Robust Hierarchical Localization at
Large Scale. In: IEEE Conference in Computer Vision and Pattern Recog-
nition (CVPR).

[976] Sarlin, Paul-Edouard, DeTone, Daniel, Malisiewicz, Tomasz, and Rabi-
novich, Andrew. 2020. Superglue: Learning feature matching with graph
neural networks. Pages 4938–4947 of: IEEE Conf. on Computer Vision and
Pattern Recognition (CVPR).



References 609

[977] Saunderson, J., Parrilo, P.A., and Willsky, A. 2014 (May). Semidefinite
relaxations for optimization problems over rotation matrices. In: IEEE Conf.
on Decision and Control (CDC).

[978] Schauer, Johannes, and Nüchter, Andreas. 2018. The peoplere-
mover—removing dynamic objects from 3-d point cloud data by traversing
a voxel occupancy grid. IEEE robotics and automation letters, 3(3), 1679–
1686.

[979] Schmid, Lukas, Delmerico, Jeffrey, Schönberger, Johannes L, Nieto, Juan,
Pollefeys, Marc, Siegwart, Roland, and Cadena, Cesar. 2022. Panoptic multi-
tsdfs: a flexible representation for online multi-resolution volumetric map-
ping and long-term dynamic scene consistency. Pages 8018–8024 of: 2022
International Conference on Robotics and Automation (ICRA). IEEE.

[980] Schmid, Lukas, Andersson, Olov, Sulser, Aurelio, Pfreundschuh, Patrick, and
Siegwart, Roland. 2023. Dynablox: Real-time detection of diverse dynamic
objects in complex environments. IEEE Robotics and Automation Letters.

[981] Schmid, Lukas, Abate, Marcus, Chang, Yun, and Carlone, Luca. 2024.
Khronos: A unified approach for spatio-temporal metric-semantic slam in
dynamic environments. In: Robotics: Science and Systems (RSS).

[982] Schmidt, Tanner, Newcombe, Richard A, and Fox, Dieter. 2014. DART:
Dense Articulated Real-Time Tracking. Pages 1–9 of: Robotics: Science and
Systems (RSS), vol. 2. Berkeley, CA.

[983] Schonberger, Johannes L, and Frahm, Jan-Michael. 2016. Structure-from-
motion revisited. Pages 4104–4113 of: IEEE Conf. on Computer Vision and
Pattern Recognition (CVPR).

[984] Schouten, Girmi, and Steckel, Jan. 2017. RadarSLAM: Biomimetic SLAM
using ultra-wideband pulse-echo radar. Pages 1–8 of: 2017 International
Conference on Indoor Positioning and Indoor Navigation (IPIN).

[985] Schubert, D., Demmel, N., Usenko, V., Stueckler, J., and Cremers, D. 2018
(September). Direct Sparse Odometry With Rolling Shutter. In: European
Conference on Computer Vision (ECCV).

[986] Schubert, D., Demmel, N., von Stumberg, L., Usenko, V., and Cremers, D.
2019 (November). Rolling-Shutter Modelling for Visual-Inertial Odometry.
In: International Conference on Intelligent Robots and Systems (IROS).

[987] Schumann, Ole, Hahn, Markus, Scheiner, Nicolas, Weishaupt, Fabio, Tilly,
Julius F, Dickmann, Jürgen, and Wöhler, Christian. 2021. RadarScenes: A
real-world radar point cloud data set for automotive applications. Pages 1–8
of: Intl. Conf. on Information Fusion (FUSION).

[988] Schuster, Frank, Keller, Christoph Gustav, Rapp, Matthias, Haueis, Mar-
tin, and Curio, Cristóbal. 2016. Landmark based radar SLAM using graph
optimization. Pages 2559–2564 of: IEEE Intl. Conf. on Intelligent Trans-
portation Systems (ITSC). IEEE.

[989] Scona, Raluca, Jaimez, Mariano, Petillot, Yvan R, Fallon, Maurice, and
Cremers, Daniel. 2018. StaticFusion: Background reconstruction for dense
rgb-d slam in dynamic environments. Pages 3849–3856 of: IEEE Intl. Conf.
on Robotics and Automation (ICRA). IEEE.

[990] Segal, Aleksandr, Haehnel, Dirk, and Thrun, Sebastian. 2009. Generalized-
icp. Page 435 of: Robotics: Science and Systems (RSS), vol. 2. Seattle,
WA.



610 References

[991] Seidenschwarz, Jenny, Zhou, Qunjie, Duisterhof, Bardienus Pieter, Ra-
manan, Deva, and Leal-Taixé, Laura. 2025. DynOMo: Online Point Tracking
by Dynamic Online Monocular Gaussian Reconstruction. Intl. Conf. on 3D
Vision (3DV).

[992] Semini, C, Tsagarakis, N G, Guglielmino, E, Focchi, M, Cannella, F, and
Caldwell, D G. 2011. Design of HyQ – a hydraulically and electrically ac-
tuated quadruped robot. Proceedings of the Institution of Mechanical Engi-
neers, Part I: Journal of Systems and Control Engineering, 225(6), 831–849.

[993] Semini, Claudio, and Wieber, Pierre-Brice. 2020. Legged Robots. Berlin,
Heidelberg: Springer Berlin Heidelberg. Pages 1–8.

[994] Sengupta, Agniva, and Bartoli, Adrien. 2024. ToTem NRS f M: Object-
Wise Non-rigid Structure-from-Motion with a Topological Template. Inter-
national Journal of Computer Vision, 132(6), 2135–2176.

[995] Sethi, Ishwar K., and Jain, Ramesh C. 1987. Finding Trajectories of Feature
Points in a Monocular Image Sequence. IEEE Trans. Pattern Anal. Machine
Intell., 9(1), 56–73.

[996] Sethian, James Albert. 1996. Level set methods: Evolving interfaces in ge-
ometry, fluid mechanics, computer vision, and materials science. Cambridge
monographs on applied and computational mathematics, 3.

[997] Shaban, Amirreza, Cheng, Ching-An, Hatch, Nathan, and Boots, Byron.
2019. Truncated back-propagation for bilevel optimization. Pages 1723–
1732 of: The 22nd International Conference on Artificial Intelligence and
Statistics. PMLR.

[998] Shafiullah, Nur Muhammad Mahi, Cui, Zichen Jeff, Altanzaya, Ariuntuya,
and Pinto, Lerrel. 2022. Behavior Transformers: Cloning k modes with one
stone. In: Thirty-Sixth Conference on Neural Information Processing Sys-
tems.

[999] Shaikewitz, Lorenzo, Ubellacker, Samuel, and Carlone, Luca. 2024. A certifi-
able algorithm for simultaneous shape estimation and object tracking. IEEE
Robotics and Automation Letters.

[1000] Shan, M., Feng, Q., and Atanasov, N. 2020a. Object residual constrained
Visual-Inertial Odometry. Pages 5104–5111 of: IEEE/RSJ Intl. Conf. on
Intelligent Robots and Systems (IROS).

[1001] Shan, Mo, Feng, Qiaojun, and Atanasov, Nikolay. 2020b. OrcVIO: Object
residual constrained Visual-Inertial Odometry. In: IEEE/RSJ Intl. Conf. on
Intelligent Robots and Systems (IROS).

[1002] Shan, Mo, Feng, Qiaojun, Jau, Youyi, and Atanasov, Nikolay. 2021a. EL-
LIPSDF: Joint Object Pose and Shape Optimization with a Bi-level Ellip-
soid and Signed Distance Function Description. In: Intl. Conf. on Computer
Vision (ICCV).

[1003] Shan, Qi, Curless, Brian, Furukawa, Yasutaka, Hernandez, Carlos, and Seitz,
Steven M. 2014. Occluding contours for multi-view stereo. Pages 4002–4009
of: IEEE Conf. on Computer Vision and Pattern Recognition (CVPR).

[1004] Shan, Tixiao, and Englot, Brendan. 2018. LeGO-LOAM: Lightweight and
Ground-Optimized Lidar Odometry and Mapping on Variable Terrain. In:
IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems (IROS).

[1005] Shan, Tixiao, Englot, Brendan, Meyers, Drew, Wang, Wei, Ratti, Carlo, and
Rus, Daniela. 2020c. Lio-sam: Tightly-coupled lidar inertial odometry via



References 611

smoothing and mapping. Pages 5135–5142 of: IEEE/RSJ Intl. Conf. on
Intelligent Robots and Systems (IROS). IEEE.

[1006] Shan, Tixiao, Englot, Brendan, Duarte, Fábio, Ratti, Carlo, and Rus,
Daniela. 2021b. Robust place recognition using an imaging lidar. Pages
5469–5475 of: IEEE Intl. Conf. on Robotics and Automation (ICRA). IEEE.

[1007] Sheeny, Marcel, De Pellegrin, Emanuele, Mukherjee, Saptarshi, Ahrabian,
Alireza, Wang, Sen, and Wallace, Andrew. 2021. RADIATE: A radar dataset
for automotive perception in bad weather. Pages 1–7 of: IEEE Intl. Conf.
on Robotics and Automation (ICRA).

[1008] Shen, Chen, O’Brien, James F., and Shewchuk, Jonathan Richard. 2004.
Interpolating and Approximating Implicit Surfaces from Polygon Soup. Intl.
Conf. on Computer Graphics and Interactive Techniques (SIGGRAPH), 9.

[1009] Shi, Guowei, Yao, Chen, Liu, Xin, Zhao, Yuntian, Zhu, Zheng, and Jia,
Zhenzhong. 2024. Foot Vision: A Vision-Based Multi-Functional Sensorized
Foot for Quadruped Robots. IEEE Robotics and Automation Letters, 9(7),
6720–6727.

[1010] Shi, J., and Tomasi, C. 1994. Good features to track. Pages 593–600 of:
IEEE Conf. on Computer Vision and Pattern Recognition (CVPR).

[1011] Shi, J., Yang, H., and Carlone, L. 2021. ROBIN: a Graph-Theoretic Ap-
proach to Reject Outliers in Robust Estimation using Invariants. In: IEEE
Intl. Conf. on Robotics and Automation (ICRA). arXiv preprint: 2011.03659,
.

[1012] Shi, Jingnan, Yang, Heng, and Carlone, Luca. 2023a. Optimal and Robust
Category-Level Perception: Object Pose and Shape Estimation From 2-D
and 3-D Semantic Keypoints. IEEE Trans. Robotics, 39(5), 4131–4151.

[1013] Shi, Pengcheng, Zhang, Yongjun, and Li, Jiayuan. 2023b. Lidar-based place
recognition for autonomous driving: A survey. arXiv preprint.

[1014] Shi, Xuesong, Li, Dongjiang, Zhao, Pengpeng, Tian, Qinbin, Tian, Yuxin,
Long, Qiwei, Zhu, Chunhao, Song, Jingwei, Qiao, Fei, Song, Le, et al. 2020.
Are we ready for service robots? the openloris-scene datasets for lifelong
slam. Pages 3139–3145 of: 2020 IEEE international conference on robotics
and automation (ICRA). IEEE.

[1015] Shiba, Shintaro, Aoki, Yoshimitsu, and Gallego, Guillermo. 2022. Event
Collapse in Contrast Maximization Frameworks. Sensors, 22(14), 1–20.

[1016] Shiba, Shintaro, Klose, Yannick, Aoki, Yoshimitsu, and Gallego, Guillermo.
2024. Secrets of Event-based Optical Flow, Depth, and Ego-Motion by Con-
trast Maximization. IEEE Trans. Pattern Anal. Machine Intell., 46(12),
7742–7759.

[1017] Shor, N.Z. 1987. Quadratic optimization problems. Izv. Akad. Nauk SSSR
Tekhn. Kibernet., 1, 128–139.

[1018] Siciliano, Bruno, Sciavicco, Lorenzo, Villani, Luigi, and Oriolo, Giuseppe.
2008. Robotics: Modelling, Planning and Control. 1st edn. Springer Pub-
lishing Company, Incorporated. Chap. 5.

[1019] Sim, R., Elinas, P., Griffin, M., Shyr, A., and Little, J.J. 2006 (Jun). De-
sign and Analysis of a Framework for Real-time Vision-based SLAM using
Rao-Blackwellised Particle Filters. In: Proc. of the 3rd Canadian Conf. on
Computer and Robotic Vision (CRV).

[1020] Singer, A. 2010. Angular synchronization by eigenvectors and semidefinite
programming. Appl. Comput. Harmon. Anal., 30, 20–36.



612 References

[1021] Sitzmann, Vincent, Zollhöfer, Michael, and Wetzstein, Gordon. 2019. Scene
Representation Networks: Continuous 3D-Structure-Aware Neural Scene
Representations. In: Advances in Neural Information Processing Systems
(NIPS).

[1022] Slavcheva, Miroslava, Baust, Maximilian, Cremers, Daniel, and Ilic, Slobo-
dan. 2017. KillingFusion: Non-rigid 3D reconstruction without correspon-
dences. Pages 1386–1395 of: IEEE Conf. on Computer Vision and Pattern
Recognition (CVPR).

[1023] Slonim, Noam, and Tishby, Naftali. 1999. Agglomerative Information Bot-
tleneck. Pages 617–623 of: Conf. Neural Information Processing Systems
(NIPS). NIPS’99.

[1024] Smith, R., and Cheeseman, P. 1987. On the representation and estimation
of spatial uncertainty. Intl. J. of Robotics Research, 5(4), 56–68.

[1025] Soatto, Stefano, and Chiuso, Alessandro. 2016. Visual Representations:
Defining Properties and Deep Approximations. In: Intl. Conf. on Learn-
ing Representations (ICLR).

[1026] Sodhi, P., Dexheimer, E., Mukadam, M., Anderson, S., and Kaess, M.
2021. LEO: Learning energy-based models in factor graph optimization.
In: Conf. on Robot Learning (CoRL).

[1027] Sola, Joan, Vidal-Calleja, Teresa, Civera, Javier, and Montiel, J. 2012. Im-
pact of Landmark Parametrization on Monocular EKF-SLAM with Points
and Lines. International Journal of Computer Vision, 05.

[1028] Sola, Joan, Deray, Jeremie, and Atchuthan, Dinesh. 2018. A micro Lie theory
for state estimation in robotics. arXiv preprint arXiv:1812.01537.

[1029] Song, Jingwei, Wang, Jun, Zhao, Liang, Huang, Shoudong, and Dissanayake,
Gamini. 2018. Mis-slam: Real-time large-scale dense deformable slam sys-
tem in minimal invasive surgery based on heterogeneous computing. IEEE
Robotics and Automation Letters, 3(4), 4068–4075.

[1030] Song, Seungwon, Lim, Hyungtae, Lee, Alex Junho, and Myung, Hyun.
2022. DynaVINS: A visual-inertial SLAM for dynamic environments. IEEE
Robotics and Automation Letters, 7(4), 11523–11530.

[1031] Sorkine, Olga, and Alexa, Marc. 2007. As-rigid-as-possible surface model-
ing. Pages 109–116 of: Proceedings of the fifth Eurographics symposium on
Geometry processing.

[1032] Speciale, P., Paudel, D. P., Oswald, M. R., Kroeger, T., Gool, L. V., and
Pollefeys, M. 2017 (July). Consensus Maximization with Linear Matrix In-
equality Constraints. Pages 5048–5056 of: IEEE Conf. on Computer Vision
and Pattern Recognition (CVPR).

[1033] Stadie, Bradly, Zhang, Lunjun, and Ba, Jimmy. 2020. Learning intrinsic
rewards as a bi-level optimization problem. Pages 111–120 of: Conference
on Uncertainty in Artificial Intelligence. PMLR.

[1034] Stathoulopoulos, Nikolaos, Lindqvist, Björn, Koval, Anton, akbar Agha-
mohammadi, Ali, and Nikolakopoulos, George. 2024. FRAME: A Modu-
lar Framework for Autonomous Map-merging: Advancements in the Field.
IEEE Trans. Field Robotics, Apr.

[1035] Steinbruecker, F., Sturm, J., and Cremers, D. 2011. Real-Time Visual Odom-
etry from Dense RGB-D Images. In: Workshop on Live Dense Reconstruction
with Moving Cameras at the Intl. Conf. on Computer Vision (ICCV).



References 613

[1036] Steinbruecker, F., Kerl, C., Sturm, J., and Cremers, D. 2013. Large-Scale
Multi-Resolution Surface Reconstruction from RGB-D Sequences. In: IEEE
International Conference on Computer Vision (ICCV).

[1037] Steinbruecker, F., Sturm, J., and Cremers, D. 2014. Volumetric 3D Map-
ping in Real-Time on a CPU. In: International Conference on Robotics and
Automation (ICRA).

[1038] Steinke, Tim, Büchner, Martin, Vödisch, Niclas, and Valada, Abhinav. 2025.
Collaborative Dynamic 3D Scene Graphs for Open-Vocabulary Urban Scene
Understanding. arXiv preprint arXiv:2503.08474.

[1039] Stillwell, J. 2008. Naive Lie Theory. Springer.
[1040] Stork, Johannes A, and Stoyanov, Todor. 2020. Ensemble of Sparse Gaussian

Process Experts for Implicit Surface Mapping with Streaming Data. IEEE
Intl. Conf. on Robotics and Automation (ICRA).

[1041] Stoyanov, T., Saarinen, J.P., Andreasson, H., and Lilienthal, A.J. 2013. Nor-
mal Distributions Transform Occupancy Map Fusion: Simultaneous Map-
ping and Tracking in Large Scale Dynamic Environments. In: IEEE/RSJ
Intl. Conf. on Intelligent Robots and Systems (IROS).

[1042] Strader, Jared, Hughes, Nathan, Chen, William, Speranzon, Alberto, and
Carlone, Luca. 2024. Indoor and Outdoor 3D Scene Graph Generation via
Language-Enabled Spatial Ontologies. IEEE Robotics and Automation Let-
ters, 9(6), 4886–4893.

[1043] Strasdat, H., Davison, A. J., Montiel, José M. M., and Konolige, K. 2011.
Double window optimisation for constant time visual SLAM. Pages 2352–
2359 of: Intl. Conf. on Computer Vision (ICCV).

[1044] Strasdat, H., Montiel, Jose M. M., and Davison, A. J. 2012. Visual SLAM:
Why filter? Image and Vision Computing, 30(2), 65–77.

[1045] Straub, Julian, Whelan, Thomas, Ma, Lingni, Chen, Yufan, Wijmans, Erik,
Green, Simon, Engel, Jakob J, Mur-Artal, Raul, Ren, Carl, Verma, Shobhit,
et al. 2019. The Replica dataset: A digital replica of indoor spaces. arXiv
preprint arXiv:1906.05797.

[1046] Stückler, J., and Behnke, S. 2014. Multi-Resolution Surfel Maps for Efficient
Dense 3D Modeling and Tracking. J. of Visual Communication and Image
Representation, 25(1), 137–147.

[1047] Stueckler, J., and Behnke, S. 2014. Efficient Deformable Registration of
Multi-Resolution Surfel Maps for Object Manipulation Skill Transfer. In:
IEEE Intl. Conf. on Robotics and Automation (ICRA).

[1048] Stumberg, Lukas von, and Cremers, Daniel. 2022. DM-VIO: Delayed
Marginalization Visual-Inertial Odometry. IEEE Robotics and Automation
Letters, 7(2), 1408–1415.

[1049] Sturm, J., Bylow, E., Kahl, F., and Cremers, D. 2013 (September).
CopyMe3D: Scanning and Printing Persons in 3D. In: German Conference
on Pattern Recognition (GCPR).

[1050] Sturm, Jürgen, Engelhard, Nikolas, Endres, Felix, Burgard, Wolfram, and
Cremers, Daniel. 2012. A benchmark for the evaluation of RGB-D SLAM
systems. Pages 573–580 of: IEEE/RSJ Intl. Conf. on Intelligent Robots and
Systems (IROS). IEEE.

[1051] Stühmer, J., Gumhold, S., and Cremers, D. 2010 (September). Real-Time
Dense Geometry from a Handheld Camera. Pages 11–20 of: Pattern Recog-
nition (Proc. DAGM).



614 References

[1052] Sucar, Edgar, Liu, Shikun, Ortiz, Joseph, and Davison, Andrew J. 2021.
imap: Implicit mapping and positioning in real-time. In: Intl. Conf. on
Computer Vision (ICCV).

[1053] Suleiman, A., Zhang, Z., Carlone, L., Karaman, S., and Sze, V. 2018. Navion:
A Fully Integrated Energy-Efficient Visual-Inertial Odometry Accelerator
for Autonomous Navigation of Nano Drones. In: IEEE Symposium on VLSI
Circuits (VLSI-Circuits). , , highlighted in the MIT News: other media
coverage: .

[1054] Sumner, Robert W, Schmid, Johannes, and Pauly, Mark. 2007. Embedded
deformation for shape manipulation. Pages 80–es of: Intl. Conf. on Computer
Graphics and Interactive Techniques (SIGGRAPH).

[1055] Sun, Cheng, Sun, Min, and Chen, Hwann-Tzong. 2022. Direct voxel grid
optimization: Super-fast convergence for radiance fields reconstruction. In:
IEEE Conf. on Computer Vision and Pattern Recognition (CVPR).

[1056] Sun, Deqing, Yang, Xiaodong, Liu, Ming-Yu, and Kautz, Jan. 2018. Pwc-
net: Cnns for optical flow using pyramid, warping, and cost volume. Pages
8934–8943 of: IEEE Conf. on Computer Vision and Pattern Recognition
(CVPR).

[1057] Sun, Jiaming, Shen, Zehong, Wang, Yuang, Bao, Hujun, and Zhou, Xiaowei.
2021a. LoFTR: Detector-free local feature matching with transformers.
Pages 8922–8931 of: IEEE Conf. on Computer Vision and Pattern Recogni-
tion (CVPR).

[1058] Sun, L., and Deng, Z. 2020. Certifiably Optimal and Robust Camera Pose
Estimation from Points and Lines. IEEE Access.

[1059] Sun, Lisong C., Bhatt, Neel P., Liu, Jonathan C., Fan, Zhiwen, Wang,
Zhangyang, Humphreys, Todd E., and Topcu, Ufuk. 2024a. MM3DGS
SLAM: Multi-modal 3D Gaussian Splatting for SLAM Using Vision, Depth,
and Inertial Measurements. IEEE/RSJ Intl. Conf. on Intelligent Robots and
Systems (IROS).

[1060] Sun, Scott, Melamed, Dennis, and Kitani, Kris. 2021b. IDOL: Inertial deep
orientation-estimation and localization. Pages 6128–6137 of: Proceedings of
the AAAI Conference on Artificial Intelligence, vol. 35.

[1061] Sun, Shuo, Mielle, Malcolm, Lilienthal, Achim J., and Magnusson, Martin.
2024b. 3QFP: Efficient neural implicit surface reconstruction using Tri-
Quadtrees and Fourier feature Positional encoding. Pages 4036–4044 of:
IEEE Intl. Conf. on Robotics and Automation (ICRA).

[1062] Sun, Tao, Hao, Yan, Huang, Shengyu, Savarese, Silvio, Schindler, Konrad,
Pollefeys, Marc, and Armeni, Iro. 2025. Nothing stands still: A spatiotem-
poral benchmark on 3d point cloud registration under large geometric and
temporal change. ISPRS Journal of Photogrammetry and Remote Sensing,
220, 799–823.

[1063] Sünderhauf, N., and Protzel, P. 2012. Towards a robust back-end for pose
graph SLAM. Pages 1254–1261 of: IEEE Intl. Conf. on Robotics and Au-
tomation (ICRA). IEEE.

[1064] Sünderhauf, Niko, and Protzel, Peter. 2012. Switchable constraints for robust
pose graph SLAM. Pages 1879–1884 of: IEEE/RSJ Intl. Conf. on Intelligent
Robots and Systems (IROS). IEEE.

[1065] Sünderhauf, Niko, and Protzel, Peter. 2013. Switchable constraints vs. max-
mixture models vs. RRR-a comparison of three approaches to robust pose



References 615

graph SLAM. Pages 5198–5203 of: IEEE Intl. Conf. on Robotics and Au-
tomation (ICRA). IEEE.

[1066] Sünderhauf, Niko, Dayoub, Feras, McMahon, Sean, Eich, Markus, Upcroft,
Ben, and Milford, Michael. 2015. SLAM–quo vadis? In Support of Object
Oriented and Semantic SLAM. In: In Proceedings of the RSS 2015 Work-
shop – The problem of mobile sensors: Setting future goals and indicators of
progress for SLAM. http://ylatif.github.io/movingsensors/.

[1067] Sutter, H. 2011. Welcome to the Jungle. URL
https://herbsutter.com/welcome-to-the-jungle.

[1068] Sutton, R. 2019. The Bitter Lesson. URL
http://www.incompleteideas.net/IncIdeas/BitterLesson.html.

[1069] Suzuki, Taro, Kitamura, Mitsunori, Amano, Yoshiharu, and Hashizume,
Takumi. 2010. 6-DOF Localization for a Mobile Robot Using Outdoor 3D
Voxel Maps. Pages 5737–5743 of: IEEE/RSJ Intl. Conf. on Intelligent Robots
and Systems (IROS).

[1070] Takeuchi, Eijiro, Elfes, Alberto, and Roberts, Jonathan. 2015. Localization
and Place Recognition Using an Ultra-Wide Band (UWB) Radar. Cham:
Springer International Publishing. Pages 275–288.

[1071] Takmaz, Ayça, Fedele, Elisabetta, Sumner, Robert W, Pollefeys, Marc,
Tombari, Federico, and Engelmann, Francis. 2023. Openmask3d: Open-
vocabulary 3d instance segmentation. arXiv preprint arXiv:2306.13631.

[1072] Tang, Chengzhou, and Tan, Ping. 2019. Ba-net: Dense bundle adjustment
network. Intl. Conf. on Learning Representations (ICLR).

[1073] Tang, Tim Yuqing, De Martini, Daniele, Barnes, Dan, and Newman, Paul.
2020. RSL-Net: Localising in Satellite Images From a Radar on the Ground.
IEEE Robotics and Automation Letters, 5(2), 1087–1094.

[1074] Tang, Yijie, Zhang, Jiazhao, Yu, Zhinan, Wang, He, and Xu, Kai. 2023.
Mips-fusion: Multi-implicit-submaps for scalable and robust online neural
rgb-d reconstruction. ACM Transactions on Graphics (TOG), 42(6), 1–16.

[1075] Tanner, Michael, Piniés, Pedro, Paz, Lina Maŕıa, and Newman, Paul. 2016.
What lies behind: Recovering hidden shape in dense mapping.

[1076] Tao, Yifu, Ángel Muñoz-Bañón, Miguel, Zhang, Lintong, Wang, Jiahao, Fu,
Lanke Frank Tarimo, and Fallon, Maurice. 2025. The Oxford Spires Dataset:
Benchmarking Large-Scale LiDAR-Visual Localisation, Reconstruction and
Radiance Field Methods.

[1077] Tardós, Juan D., Neira, José, Newman, Paul M., and Leonard, John J.
2002. Robust Mapping and Localization in Indoor Environments Using
Sonar Data. Intl. J. of Robotics Research, 21(4), 311–330.

[1078] Taverni, Gemma, Moeys, Diederik Paul, Li, Chenghan, Cavaco, Celso, Mot-
snyi, Vasyl, Bello, David San Segundo, and Delbruck, Tobi. 2018. Front and
Back Illuminated Dynamic and Active Pixel Vision Sensors Comparison.
IEEE Trans. Circuits Syst. II (TCSII), 65(5), 677–681.

[1079] Tavish, K. Mac, and Barfoot, T. D. 2015. At all costs: A comparison of
robust cost functions for camera correspondence outliers. Pages 62–69 of:
Conf. Computer and Robot Vision. IEEE.

[1080] Taylor, Jonathan, Jepson, Allan D, and Kutulakos, Kiriakos N. 2010. Non-
rigid structure from locally-rigid motion. In: CVPR.

[1081] Team, ALOHA 2, Aldaco, Jorge, Armstrong, Travis, Baruch, Robert,
Bingham, Jeff, Chan, Sanky, Draper, Kenneth, Dwibedi, Debidatta, Finn,



616 References

Chelsea, Florence, Pete, Goodrich, Spencer, Gramlich, Wayne, Hage, Torr,
Herzog, Alexander, Hoech, Jonathan, Nguyen, Thinh, Storz, Ian, Ta-
banpour, Baruch, Takayama, Leila, Tompson, Jonathan, Wahid, Ayzaan,
Wahrburg, Ted, Xu, Sichun, Yaroshenko, Sergey, Zakka, Kevin, and Zhao,
Tony Z. 2024. ALOHA 2: An Enhanced Low-Cost Hardware for Bimanual
Teleoperation.

[1082] Team, Gemini, Anil, Rohan, Borgeaud, Sebastian, Alayrac, Jean-Baptiste,
Yu, Jiahui, Soricut, Radu, Schalkwyk, Johan, Dai, Andrew M, Hauth, Anja,
Millican, Katie, et al. 2023. Gemini: a family of highly capable multimodal
models. arXiv preprint arXiv:2312.11805.

[1083] Tedrake, Russ, and the Drake Development Team. 2019. Drake: Model-based
design and verification for robotics.

[1084] Teed, Zachary, and Deng, Jia. 2018. Deepv2d: Video to depth with differ-
entiable structure from motion. arXiv preprint arXiv:1812.04605.

[1085] Teed, Zachary, and Deng, Jia. 2020. RAFT: Recurrent All-Pairs Field Trans-
forms for Optical Flow. ArXiv, abs/2003.12039.

[1086] Teed, Zachary, and Deng, Jia. 2021a. Droid-slam: Deep visual slam for
monocular, stereo, and rgb-d cameras. Advances in Neural Information Pro-
cessing Systems (NIPS), 34, 16558–16569.

[1087] Teed, Zachary, and Deng, Jia. 2021b. Tangent space backpropagation for
3d transformation groups. Pages 10338–10347 of: IEEE Conf. on Computer
Vision and Pattern Recognition (CVPR).

[1088] Teed, Zachary, Lipson, Lahav, and Deng, Jia. 2023. Deep patch visual
odometry. Advances in Neural Information Processing Systems (NIPS), 36,
39033–39051.

[1089] Teng, Sangli, Mueller, Mark Wilfried, and Sreenath, Koushil. 2021. Legged
Robot State Estimation in Slippery Environments Using Invariant Extended
Kalman Filter with Velocity Update. Pages 3104–3110 of: IEEE Intl. Conf.
on Robotics and Automation (ICRA).

[1090] Thomas, Hugues, Sivapurapu, Mouli, and Zhang, Jian. 2024. Embedding
Pose Graph, Enabling 3D Foundation Model Capabilities with a Compact
Representation. arXiv preprint arXiv:2403.13777.

[1091] Thrun, S., Liu, Y., Koller, D., Ng, A.Y., Ghahramani, Z., and Durrant-
Whyte, H. 2004. Simultaneous Localization and Mapping With Sparse Ex-
tended Information Filters. Intl. J. of Robotics Research, 23(7-8), 693–716.

[1092] Thrun, S., Burgard, W., and Fox, D. 2005. Probabilistic Robotics. MIT Press
Cambridge.

[1093] Thrun, Sebastian. 2003. Learning occupancy grid maps with forward sensor
models. Autonomous robots, 15, 111–127.

[1094] Thrun, Sebastian, Gutmann, Jens-Steffen, Fox, Dieter, Burgard, Wolfram,
and Kuipers, Benjamin. 1998. Integrating Topological And Metric Maps
For Mobile Robot Navigation: A Statistical Approach. Pages 989–995 of:
National Conf. on Artificial Intelligence (AAAI), vol. 9.

[1095] Thrun, Sebastian, et al. 2002. Robotic mapping: A survey. Exploring arti-
ficial intelligence in the new millennium, 1(1-35), 1.

[1096] Tian, Y., Chang, Y., Quang, L., Schang, A., Nieto-Granda, C., How, J.P.,
and Carlone, L. 2023. Resilient and Distributed Multi-Robot Visual SLAM:
Datasets, Experiments, and Lessons Learned. In: IEEE/RSJ Intl. Conf. on
Intelligent Robots and Systems (IROS).



References 617

[1097] Tian, Yulun, Khosoussi, Kasra, and How, Jonathan P. 2019. Block-
Coordinate Descent on the Riemannian Staircase for Certifiably Correct
Distributed Rotation and Pose Synchronization. Intl. J. of Robotics Re-
search.

[1098] Tian, Yulun, Khosoussi, Kasra, and How, Jonathan P. 2021. A resource-
aware approach to collaborative loop-closure detection with provable perfor-
mance guarantees. Intl. J. of Robotics Research, 40(10-11), 1212–1233.

[1099] Tian, Yulun, Chang, Yun, Arias, Fernando Herrera, Nieto-Granda, Carlos,
How, Jonathan P, and Carlone, Luca. 2022. Kimera-multi: Robust, dis-
tributed, dense metric-semantic slam for multi-robot systems. IEEE Trans.
Robotics, 38(4).

[1100] Tipaldi, Gian Diego, and Arras, Kai O. 2010. Flirt-interest regions for 2d
range data. Pages 3616–3622 of: IEEE Intl. Conf. on Robotics and Automa-
tion (ICRA). IEEE.

[1101] Tirado-Garin, J., and Civera, J. 2025. From Correspondences to Pose: Non-
minimal Certifiably Optimal Relative Pose without Disambiguation. In:
IEEE Conf. on Computer Vision and Pattern Recognition (CVPR).

[1102] Tishby, Naftali, Pereira, Fernando, and Bialek, William. 2001. The Infor-
mation Bottleneck Method. Proc. of the Allerton Conference on Communi-
cation, Control and Computation, 49(07).

[1103] Titterton, D., and Weston, J. 2005. Strapdown Inertial Navigation Technol-
ogy. second edn. The Institution of Engineering and Technology.

[1104] Todd, D. J. 1985. A brief history of walking machines. Boston, MA: Springer
US. Pages 169–177.

[1105] Tokui, Seiya, Oono, Kenta, Hido, Shohei, and Clayton, Justin. 2015.
Chainer: a next-generation open source framework for deep learning. Pages
1–6 of: Proceedings of workshop on machine learning systems (LearningSys)
in the twenty-ninth annual conference on neural information processing sys-
tems (NIPS), vol. 5.

[1106] Tomasi, Carlo, and Kanade, Takeo. 1992. Shape and motion from image
streams under orthography: a factorization method. Intl. J. of Computer
Vision, 9(2), 137–154.

[1107] Tombari, Federico, Salti, Samuele, and Di Stefano, Luigi. 2011. A combined
texture-shape descriptor for enhanced 3D feature matching. Pages 809–812
of: Intl. Conf. on Image Processing (ICIP). IEEE.

[1108] Touvron, Hugo, Lavril, Thibaut, Izacard, Gautier, Martinet, Xavier,
Lachaux, Marie-Anne, Lacroix, Timothée, Rozière, Baptiste, Goyal, Naman,
Hambro, Eric, Azhar, Faisal, et al. 2023. Llama: Open and efficient founda-
tion language models. arXiv preprint arXiv:2302.13971.

[1109] Trawny, N., and Roumeliotis, S.I. 2005. Indirect Kalman Filter for 3D At-
titude Estimation. Mars Lab, Technical Report Number 2005-002, Rev. 57.

[1110] Trevor, Alexander J. B., Rogers, John G., and Christensen, Henrik I. 2012.
Planar surface SLAM with 3D and 2D sensors. Pages 3041–3048 of: IEEE
Intl. Conf. on Robotics and Automation (ICRA).

[1111] Triggs, Bill, McLauchlan, Philip F, Hartley, Richard I, and Fitzgibbon, An-
drew W. 2000. Bundle adjustment—a modern synthesis. Pages 298–372 of:
Vision Algorithms: Theory and Practice: International Workshop on Vision
Algorithms Corfu, Greece, September 21–22, 1999 Proceedings. Springer.



618 References

[1112] Tron, R., Rosen, D., and Carlone, L. 2015. On the Inclusion of Determinant
Constraints in Lagrangian Duality for 3D SLAM. In: Robotics: Science and
Systems (RSS), Workshop “The problem of mobile sensors: Setting future
goals and indicators of progress for SLAM”. .

[1113] Trulls, E., Jin, Y., Yi, K.M., Mishkin, D., and Matas, J. 2022. Im-
age matching challenge. https://www.kaggle.com/competitions/image-
matching-challenge-2022. Accessed: 2022.

[1114] Tsardoulias, Emmanouil G, Iliakopoulou, A, Kargakos, Andreas, and Petrou,
Loukas. 2016. A review of global path planning methods for occupancy grid
maps regardless of obstacle density. J. of Intelligent and Robotic Systems,
84(1), 829–858.

[1115] Tschernezki, Vadim, Laina, Iro, Larlus, Diane, and Vedaldi, Andrea. 2022.
Neural Feature Fusion Fields: 3D Distillation of Self-Supervised 2D Image
Representations. In: Proceedings of the International Conference on 3D Vi-
sion (3DV).

[1116] Tseng, Paul. 2001. Convergence of a block coordinate descent method for
nondifferentiable minimization. Journal of optimization theory and applica-
tions, 109, 475–494.

[1117] Tunstall, Lewis, Von Werra, Leandro, and Wolf, Thomas. 2022. Natural
language processing with transformers. ” O’Reilly Media, Inc.”.

[1118] Ummenhofer, Benjamin, Zhou, Huizhong, Uhrig, Jonas, Mayer, Nikolaus,
Ilg, Eddy, Dosovitskiy, Alexey, and Brox, Thomas. 2017. Demon: Depth and
motion network for learning monocular stereo. Pages 5038–5047 of: Proceed-
ings of the IEEE conference on computer vision and pattern recognition.

[1119] Urmson, C., Anhalt, J., Bagnell, D., Baker, C., Bittner, R., Clark, M. N.,
Dolan, J., Duggins, D., Galatali, T., Geyer, C., Gittleman, M., Harbaugh,
S., Hebert, M., Howard, T. M., Kolski, S., Kelly, A., Likhachev, M., Mc-
Naughton, M., Miller, N., Peterson, K., Pilnick, B., Rajkumar, R., Rybski,
P., Salesky, B., Seo, Y., Singh, S., Snider, J., Stentz, A., Whittaker, W.,
Wolkowicki, Z., Ziglar, J., Bae, H., Brown, T., Demitrish, D., Litkouhi, B.,
Nickolaou, J., Sadekar, V., Zhang, W., Struble, J., Taylor, M., Darms, M.,
and Ferguson, D. 2008. Autonomous Driving in Urban Environments: Boss
and the Urban Challenge. J. of Field Robotics, 25(8), 425–426.

[1120] Usenko, Vladyslav, Engel, Jakob, Stückler, Jörg, and Cremers, Daniel. 2016.
Direct visual-inertial odometry with stereo cameras. Pages 1885–1892 of:
IEEE Intl. Conf. on Robotics and Automation (ICRA). IEEE.

[1121] Usenko, Vladyslav, Demmel, Nikolaus, and Cremers, Daniel. 2018. The dou-
ble sphere camera model. Pages 552–560 of: 2018 International Conference
on 3D Vision (3DV). IEEE.

[1122] Usenko, Vladyslav, Demmel, Nikolaus, Schubert, David, Stückler, Jörg, and
Cremers, Daniel. 2019. Visual-inertial mapping with non-linear factor re-
covery. IEEE Robotics and Automation Letters, 5(2), 422–429.

[1123] Uy, Mikaela Angelina, and Lee, Gim Hee. 2018. Pointnetvlad: Deep point
cloud based retrieval for large-scale place recognition. Pages 4470–4479 of:
IEEE Conf. on Computer Vision and Pattern Recognition (CVPR).

[1124] van den Oord, Aäron, Li, Yazhe, and Vinyals, Oriol. 2018. Repre-
sentation Learning with Contrastive Predictive Coding. arXiv preprint
arXiv:1807.03748.



References 619

[1125] Varghese, Rejin, and M., Sambath. 2024. YOLOv8: A Novel Object Detec-
tion Algorithm with Enhanced Performance and Robustness. In: Interna-
tional Conference on Advances in Data Engineering and Intelligent Com-
puting Systems (ADICS).

[1126] Vasudevan, Shrihari, Ramos, Fabio, Nettleton, Eric, and Durrant-Whyte,
Hugh. 2009. Gaussian process modeling of large-scale terrain. Pages 812–
840 of: J. of Field Robotics, vol. 26.

[1127] Vaswani, Ashish, Shazeer, Noam, Parmar, Niki, Uszkoreit, Jakob, Jones,
Llion, Gomez, Aidan N, Kaiser,  Lukasz, and Polosukhin, Illia. 2017. Atten-
tion is all you need. Advances in Neural Information Processing Systems
(NIPS), 30.

[1128] Vespa, E., Nikolov, N., Grimm, M., Nardi, L., Kelly, P. H.J., and Leuteneg-
ger, S. 2018. Efficient Octree-based Volumetric SLAM Supporting Signed-
distance and Occupancy Mapping. IEEE Robotics and Automation Letters,
3(2), 1144–1151.

[1129] Vespa, Emanuele, Funk, Nils, Kelly, Paul HJ, and Leutenegger, Stefan.
2019. Adaptive-resolution octree-based volumetric SLAM. Pages 654–662
of: Intl. Conf. on 3D Vision (3DV).

[1130] Vial, Pau, Solà, Joan, Palomeras, Narćıs, and Carreras, Marc. 2024. On Lie
group IMU and linear velocity preintegration for autonomous navigation
considering the Earth rotation compensation. IEEE Trans. Robotics, 1–18.

[1131] Vicente, Sara, and Agapito, Lourdes. 2012. Soft inextensibility constraints
for template-free non-rigid reconstruction. In: ECCV.

[1132] Vigne, Matthieu, Khoury, Antonio El, Pétriaux, Marine, Meglio, Florent Di,
and Petit, Nicolas. 2022. MOVIE: A Velocity-Aided IMU Attitude Estimator
for Observing and Controlling Multiple Deformations on Legged Robots.
IEEE Robotics and Automation Letters, 7(2), 3969–3976.

[1133] Vijayanarasimhan, Sudheendra, Ricco, Susanna, Schmid, Cordelia, Suk-
thankar, Rahul, and Fragkiadaki, Katerina. 2017. Sfm-net: Learning of struc-
ture and motion from video. arXiv preprint arXiv:1704.07804.

[1134] Virgolino Soares, João Carlos, Medeiros, Vivian Suzano, Abati, Gabriel Fis-
cher, Becker, Marcelo, Caurin, Glauco, Gattass, Marcelo, and Meggiolaro,
Marco Antonio. 2023. Visual localization and mapping in dynamic and
changing environments. J. of Intelligent and Robotic Systems, 109(4), 95.

[1135] Vizzo, I., Chen, X., Chebrolu, N., Behley, J., and Stachniss, C. 2021. Poisson
Surface Reconstruction for LiDAR Odometry and Mapping. In: IEEE Intl.
Conf. on Robotics and Automation (ICRA).

[1136] Vizzo, Ignacio, Guadagnino, Tiziano, Behley, Jens, and Stachniss, Cyrill.
2022. VDBFusion: Flexible and Efficient TSDF Integration of Range Sensor
Data. IEEE Sensors, 22(3).

[1137] Vizzo, Ignacio, Guadagnino, Tiziano, Mersch, Benedikt, Wiesmann, Louis,
Behley, Jens, and Stachniss, Cyrill. 2023. KISS-ICP: In Defense of Point-to-
Point ICP – Simple, Accurate, and Robust Registration If Done the Right
Way. IEEE Robotics and Automation Letters, 8(2), 1029–1036.

[1138] Vödisch, Niclas, Cattaneo, Daniele, Burgard, Wolfram, and Valada, Abhi-
nav. 2022. Continual slam: Beyond lifelong simultaneous localization and
mapping through continual learning. Pages 19–35 of: The International
Symposium of Robotics Research. Springer.



620 References

[1139] von Stumberg, L., and Cremers, D. 2022. DM-VIO: Delayed Marginalization
Visual-Inertial Odometry. IEEE Robotics and Automation Letters (RA-L)
and International Conference on Robotics and Automation (ICRA), 7(2),
1408–1415.

[1140] Von Stumberg, Lukas, Usenko, Vladyslav, and Cremers, Daniel. 2018. Direct
sparse visual-inertial odometry using dynamic marginalization. Pages 2510–
2517 of: IEEE Intl. Conf. on Robotics and Automation (ICRA). IEEE.

[1141] Von Stumberg, Lukas, Wenzel, Patrick, Khan, Qadeer, and Cremers, Daniel.
2020a. Gn-net: The gauss-newton loss for multi-weather relocalization. IEEE
Robotics and Automation Letters, 5(2), 890–897.

[1142] Von Stumberg, Lukas, Wenzel, Patrick, Yang, Nan, and Cremers, Daniel.
2020b. Lm-reloc: Levenberg-marquardt based direct visual relocalization.
Pages 968–977 of: Intl. Conf. on 3D Vision (3DV). IEEE.

[1143] Wächter, Andreas, and Biegler, Lorenz T. 2006. On the implementation
of an interior-point filter line-search algorithm for large-scale nonlinear pro-
gramming. Mathematical programming, 106(1), 25–57.

[1144] Wald, Johanna, Avetisyan, Armen, Navab, Nassir, Tombari, Federico, and
Nießner, Matthias. 2019. Rio: 3d object instance re-localization in changing
indoor environments. Pages 7658–7667 of: Proceedings of the IEEE/CVF
International Conference on Computer Vision.

[1145] Wald, Johanna, Dhamo, Helisa, Navab, Nassir, and Tombari, Federico. 2020.
Learning 3D Semantic Scene Graphs from 3D Indoor Reconstructions. Pages
3961–3970 of: IEEE Conf. on Computer Vision and Pattern Recognition
(CVPR).

[1146] Walke, Homer, Black, Kevin, Lee, Abraham, Kim, Moo Jin, Du, Max, Zheng,
Chongyi, Zhao, Tony, Hansen-Estruch, Philippe, Vuong, Quan, He, Andre,
Myers, Vivek, Fang, Kuan, Finn, Chelsea, and Levine, Sergey. 2023. Bridge-
Data V2: A Dataset for Robot Learning at Scale. In: Conference on Robot
Learning (CoRL).

[1147] Wang, Chen, Gao, Dasong, Xu, Kuan, Geng, Junyi, Hu, Yaoyu, Qiu, Yuheng,
Li, Bowen, Yang, Fan, Moon, Brady, Pandey, Abhinav, Aryan, Xu, Jiahe,
Wu, Tianhao, He, Haonan, Huang, Daning, Ren, Zhongqiang, Zhao, Shibo,
Fu, Taimeng, Reddy, Pranay, Lin, Xiao, Wang, Wenshan, Shi, Jingnan, Ta-
lak, Rajat, Cao, Kun, Du, Yi, Wang, Han, Yu, Huai, Wang, Shanzhao,
Chen, Siyu, Kashyap, Ananth, Bandaru, Rohan, Dantu, Karthik, Wu, Ji-
ajun, Xie, Lihua, Carlone, Luca, Hutter, Marco, and Scherer, Sebastian.
2023a. PyPose: A Library for Robot Learning with Physics-based Optimiza-
tion. In: IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion (CVPR).

[1148] Wang, Chen, Ji, Kaiyi, Geng, Junyi, Ren, Zhongqiang, Fu, Taimeng, Yang,
Fan, Guo, Yifan, He, Haonan, Chen, Xiangyu, Zhan, Zitong, Du, Qiwei, Su,
Shaoshu, Li, Bowen, Qiu, Yuheng, Lin, Xiao, Du, Yi, Li, Qihang, and Zhao,
Zhipeng. 2024a. Imperative Learning: A Self-supervised Neural-Symbolic
Learning Framework for Robot Autonomy. arXiv preprint.

[1149] Wang, Chieh-Chih, Thorpe, Charles, Thrun, Sebastian, Hebert, Martial, and
Durrant-Whyte, Hugh. 2007. Simultaneous Localization, Mapping and Mov-
ing Object Tracking. Intl. J. of Robotics Research, 26(9), 889–916.

[1150] Wang, H., Wang, C., Chen, C., and Xie, L. 2021a. F-LOAM: Fast LiDAR



References 621

Odometry and Mapping. In: IEEE/RSJ Intl. Conf. on Intelligent Robots
and Systems (IROS).

[1151] Wang, Han, Wang, Chen, and Xie, Lihua. 2020a. Intensity scan context:
Coding intensity and geometry relations for loop closure detection. Pages
2095–2101 of: IEEE Intl. Conf. on Robotics and Automation (ICRA). IEEE.

[1152] Wang, He, Sridhar, Srinath, Huang, Jingwei, Valentin, Julien, Song, Shuran,
and Guibas, Leonidas J. 2019a. Normalized Object Coordinate Space for
Category-Level 6D Object Pose and Size Estimation. In: IEEE Conf. on
Computer Vision and Pattern Recognition (CVPR).

[1153] Wang, Hengyi, Wang, Jingwen, and Agapito, Lourdes. 2023b. Co-slam: Joint
coordinate and sparse parametric encodings for neural real-time slam. In:
IEEE Conf. on Computer Vision and Pattern Recognition (CVPR).

[1154] Wang, Jianeng, and Gammell, Jonathan D. 2023. Event-Based Stereo Visual
Odometry With Native Temporal Resolution via Continuous-Time Gaussian
Process Regression. IEEE Robotics and Automation Letters, 8(10), 6707–
6714.

[1155] Wang, Jinkun, and Englot, Brendan. 2016. Fast, accurate gaussian process
occupancy maps via test-data octrees and nested Bayesian fusion. Pages
1003–1010 of: IEEE Intl. Conf. on Robotics and Automation (ICRA).

[1156] Wang, K., Gao, F., and Shen, S. 2019b. Real-Time Scalable Dense Surfel
Mapping. In: IEEE Intl. Conf. on Robotics and Automation (ICRA).

[1157] Wang, Peng, Liu, Lingjie, Liu, Yuan, Theobalt, Christian, Komura, Taku,
and Wang, Wenping. 2021b. Neus: Learning neural implicit surfaces by
volume rendering for multi-view reconstruction. In: Advances in Neural
Information Processing Systems (NIPS).

[1158] Wang, R., Schwörer, M., and Cremers, D. 2017a (October). Stereo DSO:
Large-Scale Direct Sparse Visual Odometry with Stereo Cameras. In: Intl.
Conf. on Computer Vision (ICCV).

[1159] Wang, Rui, Yang, Nan, Stückler, Jörg, and Cremers, Daniel. 2020b. Di-
rectShape: Photometric Alignment of Shape Priors for Visual Vehicle Pose
and Shape Estimation. In: IEEE Intl. Conf. on Robotics and Automation
(ICRA).

[1160] Wang, Ruicheng, Xu, Sicheng, Dai, Cassie, Xiang, Jianfeng, Deng, Yu, Tong,
Xin, and Yang, Jiaolong. 2025. Moge: Unlocking accurate monocular geom-
etry estimation for open-domain images with optimal training supervision.
IEEE Conf. on Computer Vision and Pattern Recognition (CVPR).

[1161] Wang, Sen, Clark, Ronald, Wen, Hongkai, and Trigoni, Niki. 2017b. Deepvo:
Towards end-to-end visual odometry with deep recurrent convolutional neu-
ral networks. Pages 2043–2050 of: IEEE Intl. Conf. on Robotics and Au-
tomation (ICRA). IEEE.

[1162] Wang, Shuzhe, Leroy, Vincent, Cabon, Yohann, Chidlovskii, Boris, and
Revaud, Jerome. 2024b. Dust3r: Geometric 3d vision made easy. Pages
20697–20709 of: IEEE Conf. on Computer Vision and Pattern Recognition
(CVPR).

[1163] Wang, T., Dhiman, V., and Atanasov, N. 2023c. Inverse Reinforcement
Learning for Autonomous Navigation via Differentiable Semantic Mapping
and Planning. Autonomous Robots, 47(6), 809–830.

[1164] Wang, Wenshan, Zhu, Delong, Wang, Xiangwei, Hu, Yaoyu, Qiu, Yuheng,



622 References

Wang, Chen, Hu, Yafei, Kapoor, Ashish, and Scherer, Sebastian. 2020c. Tar-
tanair: A dataset to push the limits of visual slam. Pages 4909–4916 of:
2020 IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems (IROS). IEEE.

[1165] Wang, Wenshan, Hu, Yaoyu, and Scherer, Sebastian. 2021c. Tartanvo: A
generalizable learning-based vo. Pages 1761–1772 of: Conference on Robot
Learning. PMLR.

[1166] Wang, Y., Duan, J., Fox, D., and Srinivasa, S. 2023d. NEWTON: Are Large
Language Models Capable of Physical Reasoning?

[1167] Warburg, Frederik, Hauberg, Soren, Lopez-Antequera, Manuel, Gargallo,
Pau, Kuang, Yubin, and Civera, Javier. 2020. Mapillary street-level se-
quences: A dataset for lifelong place recognition. Pages 2626–2635 of: Pro-
ceedings of the IEEE/CVF conference on computer vision and pattern recog-
nition.

[1168] Weber, S, Demmel, N, and Cremers, D. 2021. Multidirectional Conjugate
Gradients for Scalable Bundle Adjustment. In: German Conference on Pat-
tern Recognition (GCPR).

[1169] Weber, S, Demmel, N, Chan, T Chon, and Cremers, D. 2023. Power Bundle
Adjustment for Large-Scale 3D Reconstruction. In: IEEE Conf. on Com-
puter Vision and Pattern Recognition (CVPR).

[1170] Weber, S, Hong, JH, and Cremers, D. 2024. Power Variable Projection for
Initialization-Free Large-Scale Bundle Adjustment. In: European Conference
on Computer Vision (ECCV).

[1171] Wei, Peng, Hua, Guoliang, Huang, Weibo, Meng, Fanyang, and Liu, Hong.
2021. Unsupervised monocular visual-inertial odometry network. Pages
2347–2354 of: Proceedings of the Twenty-Ninth International Conference on
International Joint Conferences on Artificial Intelligence.

[1172] Wei, T., Patel, Y., Shekhovtsov, A., Matas, J., and Barath, D. 2023. Gener-
alized differentiable RANSAC. In: Intl. Conf. on Computer Vision (ICCV).

[1173] Weikersdorfer, David, Hoffmann, Raoul, and Conradt, Jörg. 2013. Simul-
taneous Localization and Mapping for event-based Vision Systems. Pages
133–142 of: Int. Conf. Comput. Vis. Syst. (ICVS).

[1174] Weikersdorfer, David, Adrian, David B., Cremers, Daniel, and Conradt,
Jörg. 2014. Event-based 3D SLAM with a depth-augmented dynamic vision
sensor. Pages 359–364 of: IEEE Intl. Conf. on Robotics and Automation
(ICRA).

[1175] Weitkamp, Claus. 2006. Lidar: range-resolved optical remote sensing of the
atmosphere. Vol. 102. Springer Verlag.

[1176] Wen, Bowen, and Bekris, Kostas. 2021. Bundletrack: 6d pose tracking for
novel objects without instance or category-level 3d models. Pages 8067–8074
of: IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems (IROS). IEEE.

[1177] Wendel, Andreas, Maurer, Michael, Graber, Gottfried, Pock, Thomas, and
Bischof, Horst. 2012. Dense reconstruction on-the-fly. Pages 1450–1457 of:
2012 IEEE Conference on Computer Vision and Pattern Recognition. IEEE.

[1178] Wenzel, P., Wang, R., Yang, N., Cheng, Q., Khan, Q., von Stumberg, L.,
Zeller, N., and Cremers, D. 2020. 4Seasons: A Cross-Season Dataset for
Multi-Weather SLAM in Autonomous Driving. In: Proceedings of the Ger-
man Conference on Pattern Recognition (GCPR).



References 623

[1179] Werby, Abdelrhman, Huang, Chenguang, Büchner, Martin, Valada, Abhi-
nav, and Burgard, Wolfram. 2024. Hierarchical Open-Vocabulary 3D Scene
Graphs for Language-Grounded Robot Navigation. Robotics: Science and
Systems (RSS).

[1180] Whelan, Thomas, Kaess, Michael, Fallon, Maurice, Johannsson, Hordur,
Leonard, John, and McDonald, John. 2012 (July). Kintinuous: Spatially
extended kinectfusion. In: Robotics: Science and Systems Workshop.

[1181] Whelan, Thomas, Leutenegger, Stefan, Salas-Moreno, Renato F, Glocker,
Ben, and Davison, Andrew J. 2015. ElasticFusion: Dense SLAM without a
pose graph. Page 3 of: Robotics: Science and Systems (RSS), vol. 11. Rome.

[1182] Williams, Christopher, and Seeger, Matthias. 2000. Using the Nyström
method to speed up kernel machines. In: Advances in Neural Information
Processing Systems (NIPS), vol. 13.

[1183] Williams, Oliver, and Fitzgibbon, Andrew. 2007. Gaussian Process Implicit
Surfaces.

[1184] Wimbauer, Felix, Yang, Nan, Von Stumberg, Lukas, Zeller, Niclas, and Cre-
mers, Daniel. 2021. Monorec: Semi-supervised dense reconstruction in dy-
namic environments from a single moving camera. Pages 6112–6122 of: IEEE
Conf. on Computer Vision and Pattern Recognition (CVPR).

[1185] Wimbauer, Felix, Yang, Nan, Rupprecht, Christian, and Cremers, Daniel.
2023. Behind the scenes: Density fields for single view reconstruction. Pages
9076–9086 of: IEEE Conf. on Computer Vision and Pattern Recognition
(CVPR).

[1186] Wimbauer, Felix, Chen, Weirong, Muhle, Dominik, Rupprecht, Christian,
and Cremers, Daniel. 2025. AnyCam: Learning to Recover Camera Poses and
Intrinsics from Casual Videos. In: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition.

[1187] Wisth, David, Camurri, Marco, and Fallon, Maurice F. 2020. Preintegrated
Velocity Bias Estimation to Overcome Contact Nonlinearities in Legged
Robot Odometry. Pages 392–398 of: IEEE Intl. Conf. on Robotics and Au-
tomation (ICRA).

[1188] Wisth, David, Camurri, Marco, and Fallon, Maurice. 2022. Vilens: Visual,
inertial, lidar, and leg odometry for all-terrain legged robots. IEEE Trans.
Robotics, 39(1), 309–326.

[1189] Wu, Guanjun, Yi, Taoran, Fang, Jiemin, Xie, Lingxi, Zhang, Xiaopeng, Wei,
Wei, Liu, Wenyu, Tian, Qi, and Wang, Xinggang. 2024a. 4d gaussian splat-
ting for real-time dynamic scene rendering. Pages 20310–20320 of: IEEE
Conf. on Computer Vision and Pattern Recognition (CVPR).

[1190] Wu, Hao, Sankaranarayanan, Aswin C., and Chellappa, Rama. 2007. In Situ
Evaluation of Tracking Algorithms Using Time Reversed Chains. In: IEEE
Conf. on Computer Vision and Pattern Recognition (CVPR).

[1191] Wu, Kejian J, Ahmed, Ahmed M, Georgiou, Georgios A, and Roumeliotis,
Stergios I. 2015. A square root inverse filter for efficient vision-aided inertial
navigation on mobile devices. In: Robotics: Science and Systems Conference
(RSS).

[1192] Wu, Lan, Lee, Ki Myung Brian, Liu, Liyang, and Vidal-Calleja, Teresa.
2021a. Faithful Euclidean distance field from log-Gaussian process implicit
surfaces. IEEE Robotics and Automation Letters, 2461–2468.



624 References

[1193] Wu, Lan, Lee, Ki Myung Brian, Le Gentil, Cedric, and Vidal-Calleja, Teresa.
2023a. Log-GPIS-MOP: A Unified Representation for Mapping, Odometry,
and Planning. IEEE Trans. Robotics, 39(5), 4078–4094.

[1194] Wu, Qinghua, and Hao, Jin-Kao. 2015. A review on algorithms for maximum
clique problems. European Journal of Operational Research, 242(3), 693–
709.

[1195] Wu, Shun-Cheng, Wald, Johanna, Tateno, Keisuke, Navab, Nassir, and
Tombari, Federico. 2021b. SceneGraphFusion: Incremental 3D Scene Graph
Prediction from RGB-D Sequences. Pages 7515–7525 of: IEEE Conf. on
Computer Vision and Pattern Recognition (CVPR).

[1196] Wu, Xiaoyi, Chen, Yushuai, Li, Zhan, Hong, Ziyang, and Hu, Liang. 2024b.
EFEAR-4D: Ego-Velocity Filtering for Efficient and Accurate 4D Radar
Odometry. IEEE Robotics and Automation Letters, 9(11), 9828–9835.

[1197] Wu, Yibin, Kuang, Jian, Niu, Xiaoji, Behley, Jens, Klingbeil, Lasse, and
Kuhlmann, Heiner. 2023b. Wheel-SLAM: Simultaneous Localization and
Terrain Mapping Using One Wheel-Mounted IMU. IEEE Robotics and Au-
tomation Letters, 8(1), 280–287.

[1198] Wu, Yuchen, Yoon, David J., Burnett, Keenan, Kammel, Soeren, Chen,
Yi, Vhavle, Heethesh, and Barfoot, Timothy D. 2023c. Picking Up Speed:
Continuous-Time Lidar-Only Odometry using Doppler Velocity Measure-
ments. In: IEEE Intl. Conf. on Robotics and Automation (ICRA).

[1199] Xie, Yiheng, Takikawa, Towaki, Saito, Shunsuke, Litany, Or, Yan, Shiqin,
Khan, Numair, Tombari, Federico, Tompkin, James, Sitzmann, Vincent, and
Sridhar, Srinath. 2022. Neural fields in visual computing and beyond. Pages
641–676 of: Computer Graphics Forum, vol. 41. Wiley Online Library.

[1200] Xinjilefu, X., Feng, Siyuan, Huang, Weiwei, and Atkeson, Christopher G.
2014a. Decoupled state estimation for humanoids using full-body dynamics.
Pages 195–201 of: IEEE Intl. Conf. on Robotics and Automation (ICRA).

[1201] Xinjilefu, X., Feng, Siyuan, and Atkeson, Christopher G. 2014b. Dy-
namic state estimation using Quadratic Programming. Pages 989–994 of:
IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems (IROS).

[1202] Xinjilefu, X, Feng, Siyuan, and Atkeson, Christopher G. 2016. A distributed
MEMS gyro network for joint velocity estimation. Pages 1879–1884 of: IEEE
Intl. Conf. on Robotics and Automation (ICRA).

[1203] Xu, Binbin, Li, Wenbin, Tzoumanikas, Dimos, Bloesch, Michael, Davison,
Andrew, and Leutenegger, Stefan. 2019. Mid-fusion: Octree-based object-
level multi-instance dynamic slam. Pages 5231–5237 of: IEEE Intl. Conf. on
Robotics and Automation (ICRA). IEEE.

[1204] Xu, Binbin, Davison, Andrew J, and Leutenegger, Stefan. 2022a. Learn-
ing to complete object shapes for object-level mapping in dynamic scenes.
Pages 2257–2264 of: 2022 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). IEEE.

[1205] Xu, Qiangeng, Xu, Zexiang, Philip, Julien, Bi, Sai, Shu, Zhixin, Sunkavalli,
Kalyan, and Neumann, Ulrich. 2022b. Point-nerf: Point-based neural radi-
ance fields. In: IEEE Conf. on Computer Vision and Pattern Recognition
(CVPR).

[1206] Xu, R., Dong, W., Sharma, A., and Kaess, M. 2022c (Oct.). Learned Depth
Estimation of 3D Imaging Radar for Indoor Mapping. In: Proc. IEEE/RSJ
Intl. Conf. on Intelligent Robots and Systems (IROS).



References 625

[1207] Xu, Wei, Cai, Yixi, He, Dongjiao, Lin, Jiarong, and Zhang, Fu. 2022d. Fast-
lio2: Fast direct lidar-inertial odometry. IEEE Trans. Robotics, 38(4), 2053–
2073.

[1208] Xu, Xuecheng, Lu, Sha, Wu, Jun, Lu, Haojian, Zhu, Qiuguo, Liao, Yiyi,
Xiong, Rong, and Wang, Yue. 2023. Ring++: Roto-translation-invariant
gram for global localization on a sparse scan map. IEEE Trans. Robotics.

[1209] Yamazaki, Kashu, Hanyu, Taisei, Vo, Khoa, Pham, Thang, Tran, Minh,
Doretto, Gianfranco, Nguyen, Anh, and Le, Ngan. 2024. Open-fusion: Real-
time open-vocabulary 3d mapping and queryable scene representation. Pages
9411–9417 of: 2024 IEEE International Conference on Robotics and Automa-
tion (ICRA). IEEE.

[1210] Yan, Chi, Qu, Delin, Xu, Dan, Zhao, Bin, Wang, Zhigang, Wang, Dong, and
Li, Xuelong. 2024. Gs-slam: Dense visual slam with 3d gaussian splatting.
In: IEEE Conf. on Computer Vision and Pattern Recognition (CVPR).

[1211] Yan, Hang, Shan, Qi, and Furukawa, Yasutaka. 2018. RIDI: Robust IMU
double integration. Pages 621–636 of: Proceedings of the European conference
on computer vision (ECCV).

[1212] Yang, Fan, Wang, Chen, Cadena, Cesar, and Hutter, Marco. 2023a. iPlanner:
Imperative Path Planning. In: Robotics: Science and Systems (RSS).

[1213] Yang, H., and Carlone, L. 2019a. A Polynomial-time Solution for Robust
Registration with Extreme Outlier Rates. In: Robotics: Science and Systems
(RSS).

[1214] Yang, H., and Carlone, L. 2019b. A Quaternion-based Certifiably Optimal
Solution to the Wahba Problem with Outliers. In: Intl. Conf. on Com-
puter Vision (ICCV). (Oral Presentation, accept rate: 4%), Arxiv version:
1905.12536, .

[1215] Yang, H., and Carlone, L. 2020. One Ring to Rule Them All: Certifiably
Robust Geometric Perception with Outliers. Pages 18846–18859 of: Advances
in Neural Information Processing Systems (NIPS), vol. 33. .

[1216] Yang, H., Liang, L., Carlone, L., and Toh, K. 2022a. An Inexact Projected
Gradient Method with Rounding and Lifting by Nonlinear Programming
for Solving Rank-One Semidefinite Relaxation of Polynomial Optimization.
Mathematical Programming (MAPR). .

[1217] Yang, Heng, and Carlone, Luca. 2022. Certifiably optimal outlier-robust geo-
metric perception: Semidefinite relaxations and scalable global optimization.
IEEE Trans. Pattern Anal. Machine Intell., 45(3), 2816–2834.

[1218] Yang, Heng, Antonante, Pasquale, Tzoumas, Vasileios, and Carlone, Luca.
2020a. Graduated non-convexity for robust spatial perception: From non-
minimal solvers to global outlier rejection. IEEE Robotics and Automation
Letters, 5(2), 1127–1134.

[1219] Yang, Heng, Shi, Jingnan, and Carlone, Luca. 2020b. Teaser: Fast and
certifiable point cloud registration. IEEE Trans. Robotics, 37(2), 314–333.

[1220] Yang, J., Li, H., Campbell, D., and Jia, Y. 2016. Go-ICP: A Globally Opti-
mal Solution to 3D ICP Point-Set Registration. IEEE Trans. Pattern Anal.
Machine Intell., 38(11), 2241–2254.

[1221] Yang, Jiaolong, Li, Hongdong, and Jia, Yunde. 2014. Optimal essential
matrix estimation via inlier-set maximization. Pages 111–126 of: European
Conf. on Computer Vision (ECCV). Springer.



626 References

[1222] Yang, N., Wang, R., Gao, X., and Cremers, D. 2018a. Challenges in Monoc-
ular Visual Odometry: Photometric Calibration, Motion Bias and Rolling
Shutter Effect. In IEEE Robotics and Automation Letters (RA-L) and Int.
Conference on Intelligent Robots and Systems (IROS), 3(Oct), 2878–2885.

[1223] Yang, Nan, Wang, Rui, Stuckler, Jorg, and Cremers, Daniel. 2018b. Deep
virtual stereo odometry: Leveraging deep depth prediction for monocular
direct sparse odometry. Pages 817–833 of: European Conf. on Computer
Vision (ECCV).

[1224] Yang, Nan, Stumberg, Lukas von, Wang, Rui, and Cremers, Daniel. 2020c.
D3vo: Deep depth, deep pose and deep uncertainty for monocular visual
odometry. Pages 1281–1292 of: IEEE Conf. on Computer Vision and Pattern
Recognition (CVPR).

[1225] Yang, Shuo, Zhang, Zixin, Bokser, Benjamin, and Manchester, Zachary.
2023b. Multi-IMU Proprioceptive Odometry for Legged Robots. Pages 774–
779 of: IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems (IROS).

[1226] Yang, Wen, Gong, Zheng, Huang, Baifu, and Hong, Xiaoping. 2022b. Lidar
With Velocity: Correcting Moving Objects Point Cloud Distortion From
Oscillating Scanning Lidars by Fusion With Camera. IEEE Robotics and
Automation Letters, 7(3).

[1227] Yang, Xingrui, Li, Hai, Zhai, Hongjia, Ming, Yuhang, Liu, Yuqian, and
Zhang, Guofeng. 2022c. Vox-fusion: Dense tracking and mapping with voxel-
based neural implicit representation. Pages 499–507 of: 2022 IEEE Interna-
tional Symposium on Mixed and Augmented Reality (ISMAR). IEEE.

[1228] Yang, Yulin. 2024. Aided Inertial Navigation System: Analysis and Algo-
rithms. phdthesis, Unviersity of Delaware.

[1229] Yang, Yulin, and Huang, Guoquan. 2019. Observability Analysis of Aided
INS with Heterogeneous Features of Points, Lines and Planes. IEEE Trans-
actions on Robotics, 35(6), 399–1418.

[1230] Yang, Yulin, Geneva, Patrick, Eckenhoff, Kevin, and Huang, Guoquan.
2019a. Degenerate Motion Analysis for Aided INS with Online Spatial and
Temporal Calibration. IEEE Robotics and Automation Letters (RA-L), 4(2),
2070–2077.

[1231] Yang, Yulin, Geneva, Patrick, Zuo, Xingxing, Eckenhoff, Kevin, Liu, Yong,
and Huang, Guoquan. 2019b (May). Tightly-Coupled Aided Inertial Nav-
igation with Point and Plane Features. In: Proc. International Conference
on Robotics and Automation.

[1232] Yang, Yulin, Geneva, Patrick, Zuo, Xingxing, and Huang, Guoquan. 2023c.
Online Self-Calibration for Visual-Inertial Navigation Systems: Models,
Analysis and Degeneracy. IEEE Transactions on Robotics, May.

[1233] Yang, Zheyu, Wang, Taoyi, Lin, Yihan, Chen, Yuguo, Zeng, Hui, Pei, Jing,
Wang, Jiazheng, Liu, Xue, Zhou, Yichun, Zhang, Jianqiang, Wang, Xin, Lv,
Xinhao, Zhao, Rong, and Shi, Luping. 2024. A vision chip with complemen-
tary pathways for open-world sensing. Nature, 629(8014), 1027–1033.

[1234] Yannakakis, M. 1981. Computing the minimum fill-in is NP-complete. SIAM
J. Algebraic Discrete Methods, 2.

[1235] Yao, Shanliang, Guan, Runwei, Peng, Zitian, Xu, Chenhang, Shi, Yilu,
Ding, Weiping, Lim, Eng Gee, Yue, Yong, Seo, Hyungjoon, Man, Ka Lok,
Ma, Jieming, Zhu, Xiaohui, and Yue, Yutao. 2025. Exploring Radar Data



References 627

Representations in Autonomous Driving: A Comprehensive Review. IEEE
Trans. on Intelligent Transportation Systems (TITS), 1–25.

[1236] Yariv, Lior, Gu, Jiatao, Kasten, Yoni, and Lipman, Yaron. 2021. Volume
rendering of neural implicit surfaces. Advances in Neural Information Pro-
cessing Systems (NIPS).

[1237] Ye, Botao, Liu, Sifei, Xu, Haofei, Xueting, Li, Pollefeys, Marc, Yang, Ming-
Hsuan, and Songyou, Peng. 2025. No Pose, No Problem: Surprisingly Simple
3D Gaussian Splats from Sparse Unposed Images. Intl. Conf. on Learning
Representations (ICLR).

[1238] Ye, Chengxi, Mitrokhin, Anton, Parameshwara, Chethan, Fermüller, Cor-
nelia, Yorke, James A., and Aloimonos, Yiannis. 2020. Unsupervised Learn-
ing of Dense Optical Flow, Depth and Egomotion with Event-Based Sensors.
Pages 5831–5838 of: IEEE/RSJ Intl. Conf. on Intelligent Robots and Sys-
tems (IROS).

[1239] Yi, Brent, Lee, Michelle A, Kloss, Alina, Mart́ın-Mart́ın, Roberto, and
Bohg, Jeannette. 2021. Differentiable factor graph optimization for learning
smoothers. Pages 1339–1345 of: IEEE/RSJ Intl. Conf. on Intelligent Robots
and Systems (IROS). IEEE.

[1240] Yi, Kwang Moo, Verdie, Yannick, Lepetit, Vincent, and Fua, Pascal. 2016.
LIFT: Learned Invariant Feature Transform. In: European Conf. on Com-
puter Vision (ECCV).

[1241] Yilmaz, Alper, Javed, Omar, and Shah, Mubarak. 2006. Object tracking: A
survey. Acm computing surveys (CSUR), 38(4), 13–es.

[1242] Yin, Huan, Xu, Xuecheng, Wang, Yue, and Xiong, Rong. 2021a. Radar-
to-Lidar: Heterogeneous Place Recognition via Joint Learning. Frontiers in
Robotics and AI, 8.

[1243] Yin, Huan, Chen, Runjian, Wang, Yue, and Xiong, Rong. 2021b. Rall:
end-to-end radar localization on lidar map using differentiable measurement
model. IEEE Trans. on Intelligent Transportation Systems (TITS), 23(7),
6737–6750.

[1244] Yin, Huan, Xu, Xuecheng, Lu, Sha, Chen, Xieyuanli, Xiong, Rong, Shen,
Shaojie, Stachniss, Cyrill, and Wang, Yue. 2024. A Survey on Global LiDAR
Localization: Challenges, Advances and Open Problems. Intl. J. of Computer
Vision, 1–33.

[1245] Yin, Jie, Li, Ang, Li, Tao, Yu, Wenxian, and Zou, Danping. 2022. M2DGR: A
Multi-Sensor and Multi-Scenario SLAM Dataset for Ground Robots. IEEE
Robotics and Automation Letters, 7(2), 2266–2273.

[1246] Yin, Peng, Zhao, Shiqi, Lai, Haowen, Ge, Ruohai, Zhang, Ji, Choset, Howie,
and Scherer, Sebastian. 2023. Automerge: A framework for map assembling
and smoothing in city-scale environments. IEEE Trans. Robotics.

[1247] Yokoyama, N., Ha, S., Batra, D., Wang, J., and Bucher, B. 2024. VLFM:
Vision-Language Frontier Maps for Zero-Shot Semantic Navigation. In:
IEEE Intl. Conf. on Robotics and Automation (ICRA).

[1248] Yokozuka, M., Koide, K., Oishi, S., and Banno, A. 2021. LiTAMIN2: Ultra
Light LiDAR-Based SLAM Using Geometric Approximation Applied with
KL-Divergence. In: IEEE Intl. Conf. on Robotics and Automation (ICRA).

[1249] Yoon, David, Tang, Tim, and Barfoot, Timothy. 2019. Mapless online detec-
tion of dynamic objects in 3d lidar. Pages 113–120 of: 2019 16th Conference
on Computer and Robot Vision (CRV). IEEE.



628 References

[1250] Youm, Donghoon, Oh, Hyunsik, Choi, Suyoung, Kim, Hyeongjun, and
Hwangbo, Jemin. 2024. Legged Robot State Estimation With Invariant Ex-
tended Kalman Filter Using Neural Measurement Network. arXiv preprint.

[1251] Yu, X., and Yang, H. 2024. SIM-Sync: From Certifiably Optimal Syn-
chronization Over the 3D Similarity Group to Scene Reconstruction With
Learned Depth. IEEE Robotics and Automation Letters, 9(5), 4471–4478.

[1252] Yu, Z., Feng, C., Liu, M., and Ramalingam, S. 2017. CASENet: Deep
Category-Aware Semantic Edge Detection. In: IEEE Conf. on Computer
Vision and Pattern Recognition (CVPR).

[1253] Yuan, Chongjian, Lin, Jiarong, Zou, Zuhao, Hong, Xiaoping, and Zhang,
Fu. 2023. STD: Stable triangle descriptor for 3d place recognition. Pages
1897–1903 of: IEEE Intl. Conf. on Robotics and Automation (ICRA). IEEE.

[1254] Yuan, Chongjian, Lin, Jiarong, Liu, Zheng, Wei, Hairuo, Hong, Xiaoping,
and Zhang, Fu. 2024. BTC: A Binary and Triangle Combined Descriptor
for 3D Place Recognition. IEEE Trans. Robotics, 40, 1580–1599.

[1255] Yuan, Wenzhen, and Ramalingam, Srikumar. 2016. Fast Localization and
Tracking using Event Sensors. Pages 4564–4571 of: IEEE Intl. Conf. on
Robotics and Automation (ICRA).

[1256] Yugay, Vladimir, Li, Yue, Gevers, Theo, and Oswald, Martin R. 2023.
Gaussian-SLAM: Photo-realistic Dense SLAM with Gaussian Splatting.
arXiv preprint.

[1257] Yun, Seungsang, Jung, Minwoo, Kim, Jeongyun, Jung, Sangwoo, Cho,
Younghun, Jeon, Myung-Hwan, Kim, Giseop, and Kim, Ayoung. 2022.
STheReO: Stereo Thermal Dataset for Research in Odometry and Map-
ping. In: IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems (IROS).
IEEE.

[1258] Zaganidis, A., Sun, L., Duckett, T., and Cielniak, G. 2018. Integrating deep
semantic segmentation into 3-d point cloud registration. IEEE Robotics and
Automation Letters, 3(4), 2942–2949.

[1259] Zang, Yuhang, Li, Wei, Zhou, Kaiyang, Huang, Chen, and Loy,
Chen Change. 2022. Open-Vocabulary DETR with Conditional Match-
ing. Pages 106–122 of: Avidan, Shai, Brostow, Gabriel, Cissé, Moustapha,
Farinella, Giovanni Maria, and Hassner, Tal (eds), ECCV 2022.

[1260] Ze, Yanjie, Yan, Ge, Wu, Yueh-Hua, Macaluso, Annabella, Ge, Yuying, Ye,
Jianglong, Hansen, Nicklas, Li, Li Erran, and Wang, Xiaolong. 2023. Multi-
Task Real Robot Learning with Generalizable Neural Feature Fields.

[1261] Zender, Hendrik, Mozos, Óscar Mart́ınez, Jensfelt, Patric, Kruijff, Geert
Jan M, and Burgard, Wolfram. 2008. Conceptual spatial representations for
indoor mobile robots. Robotics and Autonomous Systems, 56(6), 493–502.

[1262] Zhan, Zitong, Gao, Dasong, Lin, Yun-Jou, Xia, Youjie, and Wang, Chen.
2024. iMatching: Imperative Correspondence Learning. In: European Con-
ference on Computer Vision (ECCV).

[1263] Zhang, C., Delitzas, A., Wang, F., Zhang, R., Ji, X., Pollefeys, M., and
Engelmann, F. 2025a. Open-Vocabulary Functional 3D Scene Graphs for
Real-World Indoor Spaces. In: arxiv preprint: 2503.19199.

[1264] Zhang, J., and Singh, S. 2014. LOAM: Lidar Odometry and Mapping in
Real-time. In: Robotics: Science and Systems (RSS).



References 629

[1265] Zhang, Jun, Henein, Mina, Mahony, Robert, and Ila, Viorela. 2020. VDO-
SLAM: A visual dynamic object-aware SLAM system. arXiv preprint
arXiv:2005.11052.

[1266] Zhang, Jun, Zhuge, Huayang, Wu, Zhenyu, Peng, Guohao, Wen, Mingx-
ing, Liu, Yiyao, and Wang, Danwei. 2023a. 4DRadarSLAM: A 4D Imaging
Radar SLAM System for Large-scale Environments based on Pose Graph
Optimization. Pages 8333–8340 of: IEEE Intl. Conf. on Robotics and Au-
tomation (ICRA).

[1267] Zhang, Jun, Xiao, Renxiang, Li, Heshan, Liu, Yiyao, Suo, Xudong, Hong,
Chaoyu, Lin, Zhongxu, and Wang, Danwei. 2023b. 4DRT-SLAM: Robust
SLAM in Smoke Environments using 4D Radar and Thermal Camera based
on Dense Deep Learnt Features. Pages 19–24 of: 2023 IEEE International
Conference on Cybernetics and Intelligent Systems (CIS) and IEEE Con-
ference on Robotics, Automation and Mechatronics (RAM).

[1268] Zhang, Jun, Zhuge, Huayang, Liu, Yiyao, Peng, Guohao, Wu, Zhenyu,
Zhang, Haoyuan, Lyu, Qiyang, Li, Heshan, Zhao, Chunyang, Kircali, Do-
gan, et al. 2023c. Ntu4dradlm: 4d radar-centric multi-modal dataset for
localization and mapping. Pages 4291–4296 of: IEEE Intl. Conf. on Intelli-
gent Transportation Systems (ITSC). IEEE.

[1269] Zhang, Lintong, Digumarti, Tejaswi, Tinchev, Georgi, and Fallon, Maurice.
2023d. InstaLoc: One-shot Global Lidar Localisation in Indoor Environ-
ments through Instance Learning. In: Robotics: Science and Systems (RSS).

[1270] Zhang, Mike, Qu, Kaixian, Patil, Vaishakh, Cadena, Cesar, and Hutter,
Marco. 2025b. Tag Map: A Text-Based Map for Spatial Reasoning and
Navigation with Large Language Models. Pages 2120–2146 of: Agrawal,
Pulkit, Kroemer, Oliver, and Burgard, Wolfram (eds), Proceedings of The 8th
Conference on Robot Learning. Proceedings of Machine Learning Research,
vol. 270. PMLR.

[1271] Zhang, Ming, Zhang, Mingming, Chen, Yiming, and Li, Mingyang. 2021a.
IMU Data Processing For Inertial Aided Navigation: A Recurrent Neural
Network Based Approach. Pages 3992–3998 of: 2021 IEEE International
Conference on Robotics and Automation (ICRA).

[1272] Zhang, Tingrui, Wang, Jingping, Xu, Chao, Gao, Alan, and Gao, Fei. 2023e.
Continuous Implicit SDF Based Any-Shape Robot Trajectory Optimization.
Pages 282–289 of: IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems
(IROS).

[1273] Zhang, Xiaoshuai, Kundu, Abhijit, Funkhouser, Thomas, Guibas, Leonidas,
Su, Hao, and Genova, Kyle. 2023f. Nerflets: Local Radiance Fields for Ef-
ficient Structure-Aware 3D Scene Representation from 2D Supervision. In:
IEEE Conf. on Computer Vision and Pattern Recognition (CVPR).

[1274] Zhang, Z., Suleiman, A., Carlone, L., Sze, V., and Karaman, S. 2017. Visual-
Inertial Odometry on Chip: An Algorithm-and-Hardware Co-design Ap-
proach. In: Robotics: Science and Systems (RSS). , highlighted in the MIT
News: .

[1275] Zhang, Zelin, Yezzi, Anthony, and Gallego, Guillermo. 2023g. Formulating
Event-based Image Reconstruction as a Linear Inverse Problem with Deep
Regularization using Optical Flow. IEEE Trans. Pattern Anal. Machine
Intell., 45(7), 8372–8389.



630 References

[1276] Zhang, Zhengyou. 1994. Iterative point matching for registration of free-form
curves and surfaces. Intl. J. of Computer Vision, 13, 119–152.

[1277] Zhang, Zhongyang, Cui, Shuyang, Chai, Kaidong, Yu, Haowen, Dasgupta,
Subhasis, Mahbub, Upal, and Rahman, Tauhidur. 2024. V2CE: Video to
Continuous Events Simulator. Pages 12455–12461 of: IEEE Intl. Conf. on
Robotics and Automation (ICRA).

[1278] Zhang, Zichao, and Scaramuzza, Davide. 2018. A Tutorial on Quantitative
Trajectory Evaluation for Visual(-Inertial) Odometry. Pages 7244–7251 of:
IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems (IROS).

[1279] Zhang, Zichao, Sattler, Torsten, and Scaramuzza, Davide. 2021b. Reference
Pose Generation for Long-term Visual Localization via Learned Features
and View Synthesis. Intl. J. of Computer Vision, 129(4), 821–844.

[1280] Zhao, Ji, Xu, Wanting, and Kneip, Laurent. 2020a. A Certifiably Globally
Optimal Solution to Generalized Essential Matrix Estimation. In: IEEE
Conf. on Computer Vision and Pattern Recognition (CVPR).

[1281] Zhao, Shibo, Wang, Peng, Zhang, Hengrui, Fang, Zheng, and Scherer, Se-
bastian. 2020b. Tp-tio: A robust thermal-inertial odometry with deep ther-
malpoint. Pages 4505–4512 of: 2020 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS). IEEE.

[1282] Zhao, Shibo, Zhang, Hengrui, Wang, Peng, Nogueira, Lucas, and Scherer,
Sebastian. 2021. Super odometry: Imu-centric lidar-visual-inertial estimator
for challenging environments. Pages 8729–8736 of: IEEE/RSJ Intl. Conf. on
Intelligent Robots and Systems (IROS). IEEE.

[1283] Zhao, Shibo, Gao, Yuanjun, Wu, Tianhao, Singh, Damanpreet, Jiang,
Rushan, Sun, Haoxiang, Sarawata, Mansi, Qiu, Yuheng, Whittaker, War-
ren, Higgins, Ian, Du, Yi, Su, Shaoshu, Xu, Can, Keller, John, Karhade,
Jay, Nogueira, Lucas, Saha, Sourojit, Zhang, Ji, Wang, Wenshan, Wang,
Chen, and Scherer, Sebastian. 2023. SubT-MRS Dataset: Pushing SLAM
Towards All-weather Environments.

[1284] Zheng, Jianhao, Zhu, Zihan, Bieri, Valentin, Pollefeys, Marc, Peng, Songyou,
and Iro, Armeni. 2025. WildGS-SLAM: Monocular Gaussian Splatting
SLAM in Dynamic Environments. In: IEEE Conf. on Computer Vision
and Pattern Recognition (CVPR).

[1285] Zheng, Y., Sugimoto, S., and Okutomi, M. 2011. Deterministically maximiz-
ing feasible subsystem for robust model fitting with unit norm constraint.
Pages 1825–1832 of: IEEE Conf. on Computer Vision and Pattern Recogni-
tion (CVPR).

[1286] Zhi, Shuaifeng, Laidlow, Tristan, Leutenegger, Stefan, and Davison, An-
drew J. 2021. In-place scene labelling and understanding with implicit scene
representation. In: Intl. Conf. on Computer Vision (ICCV).

[1287] Zhi, Shuaifeng, Sucar, Edgar, Mouton, Andre, Haughton, Iain, Laidlow, Tris-
tan, and Davison, Andrew J. 2022. ilabel: Revealing objects in neural fields.
IEEE Robotics and Automation Letters, 8(2), 832–839.

[1288] Zhong, Xingguang, Pan, Yue, Behley, Jens, and Stachniss, Cyrill. 2023.
Shine-mapping: Large-scale 3d mapping using sparse hierarchical implicit
neural representations. Pages 8371–8377 of: IEEE Intl. Conf. on Robotics
and Automation (ICRA). IEEE.

[1289] Zhou, Haoyin, and Jayender, Jagadeesan. 2021. EMDQ-SLAM: Real-time



References 631

high-resolution reconstruction of soft tissue surface from stereo laparoscopy
videos. Pages 331–340 of: MICCAI. Springer.

[1290] Zhou, Kun, Hou, Qiming, Wang, Rui, and Guo, Baining. 2008. Real-time
kd-tree construction on graphics hardware. ACM Transactions on Graphics
(TOG), 27(5), 1–11.

[1291] Zhou, Qian-Yi, and Koltun, Vladlen. 2013. Dense scene reconstruction with
points of interest. ACM Trans. on Graphics, 32(4).

[1292] Zhou, Q.Y., Park, J., and Koltun, V. 2016. Fast global registration. Pages
766–782 of: European Conf. on Computer Vision (ECCV). Springer.

[1293] Zhou, Shenghao, Katragadda, Saimouli, and Huang, Guoquan. 2025 (May).
Learning IMU Bias with Diffusion Model. In: Proc. InternationalConference
on Robotics and Automation.

[1294] Zhou, Tinghui, Brown, Matthew, Snavely, Noah, and Lowe, David G. 2017.
Unsupervised learning of depth and ego-motion from video.

[1295] Zhou, Xingyi, Karpur, Arjun, Luo, Linjie, and Huang, Qixing. 2018a.
StarMap for Category-Agnostic Keypoint and Viewpoint Estimation.

[1296] Zhou, Yi, Gallego, Guillermo, Rebecq, Henri, Kneip, Laurent, Li, Hong-
dong, and Scaramuzza, Davide. 2018b. Semi-Dense 3D Reconstruction with
a Stereo Event Camera. Pages 242–258 of: European Conf. on Computer
Vision (ECCV).

[1297] Zhou, Yi, Gallego, Guillermo, and Shen, Shaojie. 2021. Event-based Stereo
Visual Odometry. IEEE Trans. Robotics, 37(5), 1433–1450.

[1298] Zhu, Alex Zihao, Atanasov, Nikolay, and Daniilidis, Kostas. 2017. Event-
based Visual Inertial Odometry. Pages 5816–5824 of: IEEE Conf. on Com-
puter Vision and Pattern Recognition (CVPR).

[1299] Zhu, Alex Zihao, Thakur, Dinesh, Ozaslan, Tolga, Pfrommer, Bernd, Kumar,
Vijay, and Daniilidis, Kostas. 2018. The Multivehicle Stereo Event Camera
Dataset: An Event Camera Dataset for 3D Perception. IEEE Robotics and
Automation Letters, 3(3), 2032–2039.

[1300] Zhu, Alex Zihao, Yuan, Liangzhe, Chaney, Kenneth, and Daniilidis, Kostas.
2019. Unsupervised Event-based Learning of Optical Flow, Depth, and Ego-
motion. Pages 989–997 of: IEEE Conf. on Computer Vision and Pattern
Recognition (CVPR).

[1301] Zhu, Alex Zihao, Wang, Ziyun, Khant, Kaung, and Daniilidis, Kostas. 2021.
EventGAN: Leveraging Large Scale Image Datasets for Event Cameras.
Pages 1–11 of: IEEE Int. Conf. Comput. Photography (ICCP).

[1302] Zhu, Liyuan, Huang, Shengyu, Schindler, Konrad, and Armeni, Iro. 2024.
Living scenes: Multi-object relocalization and reconstruction in changing 3d
environments. Pages 28014–28024 of: Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition.

[1303] Zhu, Liyuan, Li, Yue, Sandström, Erik, Huang, Shengyu, Schindler, Konrad,
and Armeni, Iro. 2025. LoopSplat: Loop Closure by Registering 3D Gaussian
Splats. In: International Conference on 3D Vision (3DV).

[1304] Zhu, Zihan, Peng, Songyou, Larsson, Viktor, Xu, Weiwei, Bao, Hujun, Cui,
Zhaopeng, Oswald, Martin R, and Pollefeys, Marc. 2022. NICE-SLAM:
Neural Implicit Scalable Encoding for SLAM. In: IEEE Conf. on Computer
Vision and Pattern Recognition (CVPR).

[1305] Zhuang, Yuan, Wang, Binliang, Huai, Jianzhu, and Li, Miao. 2023a. 4D



632 References

iRIOM: 4D Imaging Radar Inertial Odometry and Mapping. IEEE Robotics
and Automation Letters, 8(6), 3246–3253.

[1306] Zhuang, Ziwen, Fu, Zipeng, Wang, Jianren, Atkeson, Christopher G., Schw-
ertfeger, Sören, Finn, Chelsea, and Zhao, Hang. 2023b. Robot Parkour
Learning. Pages 73–92 of: Tan, Jie, Toussaint, Marc, and Darvish, Kourosh
(eds), Conf. on Robot Learning (CoRL). Proceedings of Machine Learning
Research, vol. 229. PMLR.

[1307] Zou, Xueyan, Yang, Jianwei, Zhang, Hao, Li, Feng, Li, Linjie, Wang, Jian-
feng, Wang, Lijuan, Gao, Jianfeng, and Lee, Yong Jae. 2023. Segment ev-
erything everywhere all at once. In: Proceedings of the 37th International
Conference on Neural Information Processing Systems.

[1308] Zou, Xueyan, Song, Yuchen, Qiu, Ri-Zhao, Peng, Xuanbin, Ye, Jianglong,
Liu, Sifei, and Wang, Xiaolong. 2025. 3D-Spatial MultiModel Memory. In:
Intl. Conf. on Learning Representations (ICLR).

[1309] Zuckerman, David. 2006 (May). Linear degree extractors and the inapprox-
imability of max clique and chromatic number. Pages 681–690 of: ACM
Symp. on Theory of Computing (STOC).

[1310] Zuo, X., Xie, J., Liu, Y., and Huang, Guoquan. 2017 (Sept.). Robust Visual
SLAM with Point and Line Features. Pages 1775–1782 of: Proc. of the
IEEE/RSJ International Conference on Intelligent Robots and Systems.

[1311] Zuo, Xingxing, Samangouei, Pouya, Zhou, Yunwen, Di, Yan, and Li,
Mingyang. 2024a. Fmgs: Foundation model embedded 3d gaussian splat-
ting for holistic 3d scene understanding. Intl. J. of Computer Vision.

[1312] Zuo, Yi-Fan, Xu, Wanting, Wang, Xia, Wang, Yifu, and Kneip, Laurent.
2024b. Cross-Modal Semidense 6-DOF Tracking of an Event Camera in
Challenging Conditions. IEEE Trans. Robotics, 40, 1600–1616.

[1313] Zwicker, Matthias, Pfister, Hanspeter, van Baar, Jeroen, and Gross, Markus.
2001. Surface Splatting. In: Intl. Conf. on Computer Graphics and Interac-
tive Techniques (SIGGRAPH).

[1314] Zwicker, Matthias, Pfister, Hanspeter, Van Baar, Jeroen, and Gross, Markus.
2002. EWA splatting. IEEE Transactions on Visualization and Computer
Graphics, 8(3), 223–238.

[1315] Żywanowski, Kamil, Banaszczyk, Adam, Nowicki, Micha l R., and Ko-
morowski, Jacek. 2022. MinkLoc3D-SI: 3D LiDAR Place Recognition With
Sparse Convolutions, Spherical Coordinates, and Intensity. IEEE Robotics
and Automation Letters, 7(2), 1079–1086.



Author index



Subject index


